Canad. Math. Bull.Vol. 35 (1), 1992 pp. 84-98

THE HAUSDORFF DIMENSION OF AN ERGODIC INVARIANT
MEASURE FOR A PIECEWISE MONOTONIC MAP
OF THE INTERVAL

FRANZ HOFBAUER AND PETER RAITH

ABSTRACT. We consider a piecewise monotonic and piecewise continuous map 7'
on the interval. If T has a derivative of bounded variation, we show for an ergodic
invariant measure p with positive Ljapunov exponent ), that the Hausdorff dimension
of pequalshy, /A,.

1. Introduction. A map T on the interval [0, 1] is called piecewise monotonic, if
there exists a finite or countable set 2 of pairwise disjoint open subintervals of [0, 1] such
that T|Z is strictly monotone and continuous for all Z € Z. If Z is finite, we say that T
is a map with finitely many monotonic pieces. It suffices to define 7 on Uzc 7 Z. We are
interested in Ez := NX, T~(Uze z 2), the set of all points, for which all iterates of T are
defined. We consider an ergodic 7-invariant measure p concentrated on E 7. Its Ljapunov
exponent is denoted by A\, and its entropy by 4,,. The Hausdorff dimension HD(1) of p1
is defined as the infimum of the Hausdorff dimensions HD(X), the infimum taken over
all X C [0, 1] with (X) = 1. The aim of this paper is to show HD(p) = h, / A,.

In order to give the exact statement of the result we define p-variation. For p > 0,
g:10,1] — R and a subinterval [a, b] of [0, 1] define

Varfa’b,g = sup{z1 lg(xic)) — gx)|P :meN,a<x,<x <---<x, <b}
We say that a piecewise monotonic map has a derivative of bounded p-variation, if there
exists a function g: [0, 1] — R with varfo,l] g < ooandg(x)=0forx €[0,1]\ UzezZ
such that T|Z is an antiderivative of g|Z for Z € Z. We denote g by T’. Furthermore, if
@ is an ergodic T-invariant measure on E 7, we can define the Ljapunov exponent ), by
Jlog|T'| d. The result of this paper is then

THEOREM 1. Let T be a map on [0, 1] with finitely many monotonic pieces and a
derivative of bounded p-variationfor some p > 0. If u is an ergodic T-invariant measure
with Ljapunov exponent A\, > 0, then HD(p) = hy, [/ A,..

REMARK. Actually we shall show a bit more. Theorem 1 also holds, if T is piecewise
monotonic with the following additional property: The set of all x, which satisfy x € T(Z)
for infinitely many Z € 2, is at most countable. If T has finitely many monotonic pieces,
there are no such x. Furthermore, this property is also satisfied, if 7: [0, 1] — [0, 1] is
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continuous and if the endpoints of the intervals in Z have only finitely or countably many
limit points.

A proof of this formula for C'-maps T on [0, 1] under additional conditions is given
in the appendix of [4], using a result about entropy proved in [1]. If discontinuities are
allowed for T, one has the problem that the image of an interval might not be an interval.
Hence the proof in this paper follows different lines than that in [4] . In Section 2 we
show that, under certain conditions, the Hausdorff dimension does not change, if one
only allows certain intervals in its definition. These intervals are chosen such that they
behave well with respect to the discontinuities of 7. In Sections 3 and 4, this and certain
techniques about piecewise monotonic maps, for example Markov extensions, are used
to prove the desired formula.

Theorem 1 is trivial, if y is concentrated on a periodic orbit. If this does not happen,
then ¢ has no atoms, as p is ergodic. We shall assume this throughout the paper.

Next we prove a lemma which shows how the assumptions of Theorem 1 will be used
in the proofs of this paper. A function g: [0,1] — R is said to be regular, if g(x+) :=
limy|, g(y) and g(x—) := limyq, g(y) exist for all x € [0, 1]. Itis easy to see that a function
isregular, if it is of bounded p-variation. A family ¢ of disjoint open subintervals of [0, 1]
is called a p-partition, if u(Uyey ¥) = 1.

LEMMA 1. Let ¢:[0,1] — [0, 00) satisfy var’[’o,”d) < ooand Y(0) = ¢(1) = 0.
Let i be a probability measure on [0, 1] such that p := logvy € L'(u). Then, for every
€ > O there is a p-partition Y of [0, 1] into intervals, such that

(1.1 sup |[o(x) — o(y)| < eforallY €Y

x,yeY

and such that

(1.2) — 2 k(M logu(¥) < oo
Yey

PROOF. Let I be a subinterval of [0, 1]. Then we have va.(‘,’ o < (sup %)" varfo‘” Y,
where the supremum is taken over all x in the image of / under ¢». For « > 0 and
¢ := varj, ¥ we get that

(1.3) Y >aonl=varp <ca™?

As 1 is regular, we can define N = {z € [0,1] : ¥ (z) = 0,¢(z+) = Oory(z—) =
0}. Then N is closed and contains 0 and 1. Hence [0,1] \ N is the disjoint union of
finitely or countably many open intervals. We denote the set of these intervals by X. Since
Jlog du exists, it follows that u(N) = 0 and X is a p-partition. In order to construct Y,
which will be a refinement of X, we define w: Uje x J — R as follows. Foreach J € X fix
anuy; € J. Setw(x) = v ] © forx € J,x > uy and set w(x) = — v L] @ forx € J,
x < uy. Then wlJ is increasing for every J € X. If I is a compact subinterval of some
J € X, then v is bounded away from zero in / by definition of N and w is bounded on /
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by (1.3). Hence w is finite on each J € X. If J = (a, b) then w(a+) = —oo0, if and only if
Y (a+) = 0 and w(b—) = 00, if and only if 1) (b—) = 0. We can assume that ¢ is less than
one. Fix some J € X. Fori € Z let y; be an inverse image of ic” under the monotonic
function w|J. Here we say that y is an inverse image of x, if w(y—) < x < w(y+). As
wl|J is increasing, there are ¢ > —oo and 7 < oo such that y; exists foro < i < 7.
If J = (a,b), we have ¢ = —o0, if and only if ¢ (a+) = 0 and 7 = oo, if and only if
Y(b-=)=0.1f ¢ > —o0, we set y, = a, and if 7 < 00, we set y, = b. The intervals
(3}, yj+1) form a partition of J up to a countable set and hence a p-partition, since u has
no atoms. We do this forall / € X. As X is a -partition, we get in this way a p-partition
Y refining X. By definition of w and 9" we have (1.1).

It remains to show (1.2). As ¢ is bounded, thereis an r € Z withsupy, ;0 < r+1. We
construct a partition (‘M&,;)lgsqm,_mgsr of 7, such that J;; := UYeW,, Y is an interval
forl <j < g(hand —oo < I < r,suchthat/—1 < go(x) < [+1forallx € U}’g: J;1, where
—00 < I < r, and such that there is a constant b satisfying quﬂ card W,; < be= =D
for —0o < I < r. To this end set W, = {Yey : infyp > r—1}. Let(‘l;%,,)jzl be
the coarsest partition of W), such that Jiy = Uyeay, Y is a subinterval of the closure of

some element of X. Cancel those ‘7;%, which satisfy sup; ¢ < r. The remaining ‘l/]{, are
the sets W, It follows that r — 1 < p < r+ 1 holds on U;> J; . Furthermore, for every
J = 1, there is a point in J; ,, whose value under p is larger than r, and for each endpoint
of Jj, thereisa Y € & with Y ¢ J;,, which has this point as a common endpoint with J;,,
and which contains a point in its closure, whose value is less than or equal to r — 1 (if we
go through this step with m instead of r, for each end point of J;,, either the above holds
or there is a J;; with 1 < i < g(s) and m < s < r, which has this point as a common
endpoint with J; ., such that the Y € 9, which is contained in J;,, and adjacent to J
contains a pointin its closure, whose value is less than or equal to s—1). Hence, if there are
n different J;,, we get 2n—1)(e’—e" 'y’ < varfy |, ¢ =: c. This implies 2n—1 < c(e*)”
for some x € (r — 1,r), and hence n < c(¢"~!)P. This means that there are only finitely
many differentJ;, and that their number g(r) is bounded by ce 7"~ V. As J;, is an interval,
we get var) o < ce """ by (1.3),since ¢ > ¢ on Jj,. This and the definition of 9
imply card W., < ce PP So we get 2}’31) card W, < be "~V withb = ?e7P.
We have shown all desired properties of (‘W,)i<i<qq for I = r. As e < 1 the above
construction gives also that sup,p < rforall ¥ € 9"\ Uf’i’l) ‘W,,. Suppose we have
constructed (‘W;)1<j<q.m<i<r and that supy o < m+1forallY € '\ UL, u;’;’{ W,
Then we can go through the above construction with 9"\ Uj_,.,, U]‘.’L’; W, instead of
and with m instead of r, which gives (W) )1<j<q(m) With the desired properties. Since g
is bounded on each element of )", every Y € 9 will belong to some ‘W,,. Hence we end
with a partition (W,I)ISJ'Sq(I),—oo<l§r of .

Set By = 3p(r— ) for ¥ € UL} W),. Since —1 — 1 < —p(x) if x is in some ¥ €
UL M), we get Syeo Bypu(Y) < 3pfr+1—odp < 3p(r+1— [odp) < oo. Since
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quilz card W,; < be "1 we get

S et = Ze‘3”(’_’)2card Wy < b’ 5 el < o0,

Yey I<r Jj= >—r

Hence the inequality
1
(1.4) ——xlongﬁx+—e‘5
e

implies — YXyey u(Y)logu(Y) < Cyey Bru(Y) + i Tyey € < ocowhichis (1.2). m

We use Lemma 1 as follows. For a p-partition ) set 9, = Vf’z_ol Ty =
{4 T7'Y; # 0 : Y; € 9} which is again a p-partition of [0, 1], as p is T-invariant.
Furthermore, set Ey = e, Ures; ¥, which we have already introduced above for Z.
Then p(Ey) = 1.If x € Ey, for all n, there is a unique element in 9, which contains x.
We denote it ¥, (x) The length of an interval J is denoted by |J|. Finally set ¢ = log |T|
and S,p = Y1) p o T

COROLLARY 1. Let T be a piecewise monotonic map with respect to Z which has
a derivative of bounded p-variation for some p > 0. Let y be an ergodic T-invariant
measure on E z with Ljapunov exponent A, > 0. Then for every € > 0 there is a finite
or countable p-partition Y of [0, 1] into intervals, which refines Z, such that for x € Eoy
one has

(1.5)

Spp(x) —log ——— 590 dy‘ < ne foralln > 1

|Y, (X)l /”X)

and such that (1.2) holds.

PROOF. We apply Lemma 1 with) = |7|. This is possible, since 7" is bounded and
Ay = [log|T'| du > 0, which imply ¢ = log|T’| € L'(u). By (1.1) it is impossible,
that a zero of 7" is inan Y € 9. This and 7”(x) = O for x € Uzcz Z imply that 9" refines
Z. From (1.1) we get sup,y, ,) |Snp(x) = Spp(y)| < ne forallx € Ey and alln € N,
which implies (1.5). [ ]

In the course of the proof of Theorem 1 we only shall use the conclusions of Corol-
lary 1 and the fact that | 7’| is bounded. If T has finitely many monotonic pieces and if
|T'| is bounded away from zero and regular, then ¢ is bounded and regular, and hence
for every ¢ > O there is a finite p-partition ) of [0, 1] (it covers Uzec z Z up to a finite
set), such that (1.1) holds. This implies (1.5) for x € Ey as in the above proof. Since
is finite, (1.2) is trivial. Hence if T has finitely many monotonic pieces, Theorem 1 holds
also under the assumption, that |T’| is bounded away from zero and regular.

We give an application of this result to the problem considered in [5]. Suppose that
the piecewise monotonic map T is expanding, that is infjo1;|7’| > 1, and that ¢ :=
log|T’| is regular. One considers a T-invariant perfect subset R of [0, 1] and defines
p(t) as the pressure of the function —t¢ on (R, T|R). One can define the pressure in this
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case approximating ¢ uniformly by piecewise constant functions (see [5]). Since T is
expanding, ¢ — p(¢) is strictly decreasing with p(0) = h;,,(R,T) > 0 and p(¢) < O for
some ¢ > 0. It is shown in [5] , that HD(R) equals the unique zero g of p: R* — R.
The easier part of the proof is to show that HD(R) < g (Theorem 1 of [5]). Using the
above result, the other inequality is also easy. Let v be an equilibrium state of —tg¢ on
(R, T|R), which exists since T is expanding. It means that 0 = p(tg) = h, — tg\,. As
T is expanding, we get A, > 0 and the above result implies HD(v) = h,/ \,. Hence
HD(R) > HD(v) = tg\, / A\, = tg, the desired result.

2. The Hausdorff dimension. In this section we prepare some results about the
Hausdorff dimension. Let A4 be a subset of the set of all subintervals of [0, 1] and define
a diameter of the intervals in 4. For X C [0, 1] let C(A4,6,X) be the set of all finite or
countable covers of X by elements of 4 with diameter less than § . Set

H =inf{a :lim inf Al*=0
a(X) { 5—*0REC(J4,6,X)A§{| | }
Let U be the set of all open subintervals of [0, 1] and define the diameter of an interval
in U as the length of the interval. Then H¢;(X) is the Hausdorff dimension of X.

LEMMA2. IfX, C [0, 1]fork > 1and X = U2 Xy, then Ha(X) = sup;>; Ha(Xx).

PROOF. Since X; C X, we get Hg(Xy) < Hg(X) for all k. On the other hand,
choose & > sup;>; Ha(X) arbitrary. Then for every 6 > 0 and n > O there is an
Ry € C(A,6,X;) with Tpcg, |[A]* < k. Set R = U2, K. Then R € C(A4,6,X) and
Taer |Al* < T2, Taer, |A|* < n. Hence Ha(X) < a. By the choice of o we get
Ha(X) < sup;>; Ha(Xk). "

Let T be a piecewise monotonic map with respect to Z and let ¥ be a p-partition of
[0, 1], which refines Z. Remember that 9, = V=) T and Ey = N{2, Uyeo; Y. We
have p(Ey) = 1. Furthermore set ¥ = U322, 9. For Y € V' we define the diameter
as follows. The diameter of Y is less than or equal to § if and only if Y € 9, for some
n > 4 If X C Ey, then C(V,6,X) # @ forall§ > 0 and Hy(X) is defined. In
order to prove an equality of this dimension and the Hausdorff dimension, we need the
following result. Recall that, if x € Eq, then Y,(x) denotes the unique element of Vs
which contains x. Throughout the paper we fix v € (0,\,). For a p-partition 9" set
My = {x € Ey : thereis a c(x) > 0 with |Y,(x)| < c(x)e”"" foralln > 1}.

LEMMA 3. Fixe € (0,\, —7)and let Y be a p-partition such that (1.5) holds for
allx € Eyy. Then p(My) = 1.

PROOF. By the ergodic theorem we have lim, %S,,q)(x) = A, for almost every x.
Hence the set G := {x: Im(x) € N with %S,,cp(x) > Y +e Vn > m(x)} has u-measure
one, since Y +€ < A,. Thenforx € GN Eo and n > m(x) one has

1 - — X)+n —yn
5] = (g @7 D) 1] S e5erm < e
n n

since T"Y,(x) is a subinterval of [0, 1]. This shows GN Ey CMy. As u(G) = u(Ey) =
1 we get u(My) = 1. n
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LEMMA4. Fixe € (0, A\, —7). Let Y be a p-partition, such that (1.5) for all x € Ey
and (1.2) hold. Then HD(p) = inf Hq/(X) the infimum taken over all measurable subsets
X of My with p(X) = 1.

PROOF. We show first, that for every measurable X C [0, 1] and for every 4 > 0
there is an X C M+ with

@.1) XcX,pX\ X) =0and Hy(X) — 9 <HauX) < Hey(X)

To this end set By = —logu(¥) € R*U {oo} forY € & and W, ={Y € Y : By <
i97} fori > 1. Then W, C Wy and U2, W, = F := {Y € 9 : u(Y) > 0}. Set
Mo = P andfori > 1setdy =i,if Y € W\ W_,. Then we have dy — 1 < 3-8y <
dy. This implies that =2, Syzqy u(Y) = Tyeq(dy — Dp(V) < g5 Tyeq Bru() =

m Tyey p(Y)logu(Y) < oo by (1.2). Funhermore we get 32 le"”’card W. =
zYe?’ E: dy € e = 1Ae—07 EYe?’ et < l—e-'” Z:Ye9’ e < 0o, since
EYGD’e r = =Zyeyp¥)=1.

Set My = {x € Ey : |Y,(x)| < ke™"" forn > 1}. Then My, C My, and U2, M =
M.y . Lemma 3 implies y1(My) — 1 for k — oo. Furthermoreset %,f = {2 T™'Y; # 0 :
Y, € ‘l/l/,+k} whichis a subset of 9, and set E; = N2, Uyeax Y, which is a subset of Eq.
Since pu(Uyey ¥) = 1, which implies p(Uyeqy; ¥) = 1 for all n, we get u([0, 1] \ Ex) <
Y20 g, BT Y) = T2 Tygan u(Y). Since T2 Tyay p(Y) < 00, as shown
above, we get u([0, 1]\ Ex) — 0 for k — o0o. Set Xy = X N Ex N My and X = U2 .
Then X C My, X C X and u(X \ X) = 0.

Since YN My # @ for Y € ¢, implies | Y| < ke™’, we get from X; C M, that
v, %,Xk) C C(U, ke ", X). Hence Hy(Xx) < Ho(Xk)- As this holds for all &, and
as U, Xi = X, by Lemma 2 we get Hy(X) < HfV(f() which is one half of (2.1).

Now set d(r,k,9) = k%™ card V% + 2k% T2 ., e7 %" card Wy, which is finite
ford > 0,as 2, € ~9% card W, < oo is shown above. Choose p > Hy;(X) arbitrary.
Since X; C X, we have Hy(Xx) < o for all k. Fix r € N arbitrary. As o > Hq(Xx), for
alld > 0, forallp > 0 andforalld > O, thereisan R € C(‘U,d,X;) with

Q

2.2) Ag(l #< d(r, k 19)

Fixan A € X. For x € AN X, let m(x) > r be minimal, such that Y,,;(x) C A. We
set B(x) = Yux(x). Such an m(x) exists, since X C M. As x € B(x) N X, we have
B(x) € Y,y because YN E = Pfor Y € Vpy \ Fpmyy- Set Xy = {B(x) : x €
AN X;}. Since every x € AN X is in B(x), we get X4 € C(V,1,AN X;). We show
that card{ B(x) : m(x) = I} < 2card Wiy forl > r.If B(x) € ¥, then there is a unique
G € 9}, with B(x) C G. Suppose that, for 1 < i < 3, there are different G; € 9}, and
xi € AN Xi with m(x;) = [ and B(x;) C G;. Suppose that G; is between G, and G3 in
[0,1]. As x; € G; and x3 € G3 are both in A and as A is an interval, we have G, C A,
which contradicts m(x,) = I. Hence there are at most two G, G, € 9}_, which contain
all B(x) with m(x) = [ and all B(x) satisfy B(x) = G; N T~'Y with i = 1 or 2 and with
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Y € Wy This implies card{ B(x) : m(x) = I} < 2card W)y for I > r. As B(x) € V¥,
if m(x) = r, we get card{ B(x) : m(x) = r} < card ¥*. Because of B(x) C A we have
|B(x)| < |Al. Since B(x) = Yp(x) and x € My we have |B(x)] < ke "™¥. These
assertions give

> Bl < 3 [BI?|B|” <|A]° 3 |B|?
BeXy BeX,y BeX,

o0
< |A|9<k" e card Y+ 3 ke 2 card W+k)
[=r+l1

= |A|%d(r,k,¥)

Now set X = Ugeg Xa- Then X € v, lr,Xk). The above estimate and (2.2) imply
Teex |B|?* <d(r,k,9) Taeq |Al¢ < n. As rand n were arbitrary, we get Hy/(Xy) <
o +7.As o > Hy(X) was arbitrary, we get Hy(Xx) < Hy(X) + 9. Lemma 2 implies
Hy(X) — 9 < HuX).

Hence we have shown that for all measurable X C [0, 1] and for all 4 > O there is
anX C Moy such that (2.1) holds. This implies that inf Hg/(X) — 9 < infHy(X) :=
HD(p) < inf Hq/(X) where the first and third infimum is taken over all X C My with
1(X) = 1 and the second infimum is taken over all X C [0, 1] with p(X) = 1. As ¥ was
arbitrary, we get the desired result. ]

The following result is similar to Proposition 2.2 of [6].

LEMMAS. Let Y be a p-partitionand X a measurable subset of Moy with j1(X) > 0.
Suppose that, for all x € X, we have
log 1 (Ya(x)) -t log 1 (Ya(x))

(2.3) & < liminf <

<é
n—oo  log|Y,(x)] n—ooo  10g | Ya(x)|

Then§ < Hy(X) <6.

lo Yo(x
PROOF. Letd¥ > Obe arbitrary andset X; = {x € X : § — ¢ < %2 <

8 +9 Vn > k}.Then X; C X;4y and X = U2 Xk. In particular, p(Xy) — p(X) > 0. By
definition of X; we get

(2.4) Bec U9 andBN X, #0=|B|2" > u®B) >|B**

n>k
Let X € C(V, 1,X,) be arbitrary. By (2.4), we get Zpex |B|2™ > Spex p(B) > p(Xp)
for r > k. If k is large enough, such that ;1(X;) > 0, this implies that§ — 9 < Hp(Xk)
and hence § — 9 < Hq/(X). Since ¥ was arbitrary, this gives § < Hg/(X).

Now set My = {x € Ey : |Y,(x)| < ke™"" forn > 1} and choose n > Oand r € N
arbitrary. Set X, = { B € 9 : BN X, N\ M; # 0} . Then X, € C(V, 1, X, N M,). By (2.4)
we get Tpex |BI®™*" < supgex |B|" Tpex w(B) < supgex |B|", since the elements
of X, are pairwise disjoint. As BN My # @, if B € X, this implies Ypcx [B[‘?"‘“" <
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k"¢~ which tends to zero for r — oo. Hence Hy/(Xs N\ M) <6 +9 +n. As My =
Ug2; M and as X C M.y, this and Lemma 2 imply Hq/(X) < 6 + 4 +17. Since 9 > 0
and n > 0 were arbitrary, we get Hy/(X) < 5. n

3. Proof of the formula for the Hausdorff dimension. In this section we put the
lemmas together in order to get the proof of Theorem 1. One step is still missing. It will
need results about a Markov extension of piecewise monotonic maps. We introduce it in
Section 4 and show first, how the proof of Theorem 1 follows.

LEMMA 6. Suppose that T is piecewise monotonic with respect to Z and that T has
a bounded derivative (defined in the same way as derivative of bounded variation). Set
Wz = {x : x € T(Z) for infinitelymany Z € Z} and suppose that W 7, is at most
countable. Suppose further that yi is an ergodic T-invariant measure on E z with h, > 0.
Let Y be a p-partition refining Z which satisfies (1.2). For x € Ey let ry(x) be the
distance of T"(x) € T"’(Y,,+1(x)) to the nearer endpoint of the interval T"(Y,,+1(x)) (to
one of the endpoints, if both have the same distance). Then lim,_, % log r,(x) = 0 for
w-almost all x € [0, 1].

PROOF. As 9 refines Z, T is also piecewise monotonic with respect to 9" and as 9
is a p-partition, u is concentrated on Ery . Since T is strictly monotone on each interval in
2, we get Wor C Wy, Hence the desired result follows immediately from Proposition 2
in Section 4. L

LEMMA 7. Suppose that the assumptions about T in Lemma 6 hold and that y is an
ergodic T-invariant measure on Ez. Fixe € (0,\, — 7). Let Y be a p-partition, which
refines 2, such that (1.5) for all x € Ecy and (1.2) hold. Then there is a set L C My with
w(L) = 1, such that (2.3) holds for all x € L with$ = T’E’i—e and withd = ;\—:—'E—

€
PROOF. By (1.2) and the Shannon-McMillan-Breiman-Theorem there is a set L; C
Ey with p(L1) = 1, such that for all x € L, the sequence ——% log u(Y,,(x)) converges to
hu(T, ). This equals h, since, by Lemma 3, 9 is a generator for .
Now consider —! log |¥,(x)| = Llog m Jra €7°9 dy — Llog| T"Y,(x)]. Let L,
be the set of all x € Ey, for which lim,,_o, %S,,cp(x) = M, holds. Since w(Ey) =1, the
ergodic theorem implies u(Ly) = 1. By (1.5) we have

1
S0 g <
¥, o <

forx € Ly C Ey and n > 1. This gives for x € L, that the sequence

1 1
|=Snp(x) — = log
n n

1 ! Snp()
(n log IYn(xﬂ /Y,,(x) € dy)n>1

has its limit pointsin [A, — e, A, +€].
Because of T"(Y,,(x)) C [0,1], we get that —}7 10g|T"(Y,,(x))| > 0, and for x €

. I Y(x) .
Ly N L, that limsup,_,, %éﬁ < f_LE Since u(Y,,(x)) < 1 and |Y,(x)| < 1 for
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logugmx)} >0= % ifh, = 0.1f h, > 0, it follows from
X H s

00 Jog | Ya(x))| +€
Lemma 6, that there is a set L3y C Ey with p(L3) = 1, such that lim, % logr,(x) =0
for x € Ly. As T"(x) € T*(Yn1(x)) C T"(¥,(x)) and hence r,(x) < |T"(Y,(x))| < 1, we

n > 1 we have liminf,

Ly . .. I Yn(x)
get —% log | T"(Y,,(x))| — 0 for all x € L3, which implies liminf,,_, %ﬁ) > A—:’ﬁ;

forx € Ly N L, N L3. Hence the desired result follows for L = Ly N Ly N L3 N Moy
Using also Lemma 3, we get u(L) = 1. n

Now we can give the proof of Theorem 1 and the Remark following it.

PROOF. Lete € (0,A, —7) be arbitrary. By Corollary 1 there is a p-partition 9
refining 2, such that (1.5) for all x € Ey and (1.2) hold. Lemma 4 says that HD(u) =
inf Hq/(X), where the infimum is taken over all X C My with u(X) = 1. By Lemmas 5
and 7 there is a set L C Moy with p(L) = 1 and Hy/(L) < ,\fis. Hence HD(p) < Afig.

On the other hand, if X C My is arbitrary such that 4 (X) = 1, and if L is as in Lemma 7,
then u(XMN L) = 1 and (2.3) holds forall x € XN L with§ = " Hence Hy(X) >

Aute ”

Hy(XNL) > )\:'is by Lemma 5. This implies HD(p) > A:";E. As e was arbitrary, we
get HD(pu) = hy,/ A, "

4. Markov extensions. This section is independent of the previous part of the pa-
per. We introduce a Markov extension of piecewise monotonic maps, an important tool
for their investigation. We use it to prove a result, namely Proposition 2 and Corollary 2
below, which is needed to show Lemma 6, but which might also be of independent in-
terest. First we give the definition of the Markov extension, as it is done in [3] and de-
scribe its basic properties. Let Z be the collection of intervals, with respect to which T’
is piecewise monotonic. Recall that Z = V&-J T7Z. The map T*! is strictly mono-
tone on each Z € Zy and T!(Z) is an open subinterval of some element of Z for
Z€ Zy.Set Dy = Z,fork >2set Dy = Doy U {T"1(2) : Z € 2} and finally set
D = UR, Di. For D € D define D' = {(x,D) : x € D} so that the sets D' are disjoint
copies of the sets D € D. Now define X = Upegp D and two projections 7: X — [0, 1]
by m(x,D) = xand ¢: X—D by v (x, D) = D. Since each DY is canonically isomorphic
to the open interval D, and since X is the disjoint union of the sets I, X is in a natural
way a locally compact, o -compact, metric space, on which 7 is continuous. Furthermore
set Ex = Ugez, Z. We have E, = N}-} T7!(E}). For x € Ej, remember that Z,(x) is the
unique element of Z, which contains x. Define i: E; — X by i(x) = (x, VA (x)), which is
in X, since Z(x) € Z C D for all x € E,. Finally set T(x,D) = (Tx, T(D) N Z(Tx)).
Since T is defined on E| and since Z;(7x) exists only for Tx € E|, 7 is defined only on
w"(T_‘(El) N E1) = m~'(E,). We show that T is well defined. Since D = T*!(Z)
for some k > 1 and some Z € Z, we get T(D)N Zi(Tx) = T*(ZN T7*(Z(Tx))) and
ZN T"‘(Z;(Tx)) € Zyy1. Hence T(D)N Zi(Tx) € D and Tx € T(D) N Z,(Tx) follows
trivially from x € D, such that (Tx, T(D) N Z(Tx)) € X. The definition of T implies
Torn = moT. As T is defined on 7~ (E;), this implies that 77 is defined on 7~ (Ej;).
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Hence all iterates of T are defined on 7~ (E 7). We compute ﬁ(i(x)). As i is defined on

E}, the above implies that 79 0 i is defined on Ej,1. We have i(x) = (x, YA (x)). It follows
by induction that

@.1) 7(ix)) = (Px, T (Zn1(v))) forx € Ej

since T(T"1(2i(x))) N Zi(T'x) = T'(Zx) N T7/(Z1(T'x))) = T'(Zw1(x)). The defini-
tions in [2] and in [3] are slightly different. But the results we shall use from these two
papers are not affected by these differences.

What we have to do, is to lift the ergodic T-invariant measure p with o, > 0 to
(X, T) as it is done in [3] for maps with finitely many monotonic pieces. To this end set
fir = poi'and g, = L 591 i o 7%, Then fi, is a well defined probability measure
on X, since 7% o i is defined on Ey,,, which is a set of ;-measure one.

LEMMA 8. Suppose that T is piecewise monotonic with respect to Z and that i is
an ergodic T-invariant measure on Ez with h, > 0 and — ¥ ;¢ 7 1(Z) log u(Z) < oo. If
forallk € N and all € > O there is a finite subset J of Dy with p(Upep,\ 7 D) < &,
then the zero-measure is not a weak limit point of (fin)n>1.

PROOF. We assume that the zero-measure is a weak limit point of (£i,),>; and shall
arrive at a contradiction. To this end define f: E; — [1,00) by f(x) = —log (21 (x)) +1.
As ,u(E,) = 1, f is defined p-almost everythere By assumption we have [fdp < oo.
Set Xi = Upep, D’ C X and define fi: X — [1,00) by fi = 15 (f o ). Remark that
7r(X) E,. First we show that for all k > 1 and forall§ > 0 there is an infinite subset
I(6) of N such that

4.2) [Fedfin < 6, Vn € 16).

To this end, fix a finite F C D, such that u(G) is so small that [;fdu < %, where
G = Upep,\ 7 D- Set N = card F. For D € ¥ choose fp: Ey — R*, such that fp < f,
such that suppfp is a compact subset of D and such that [pf — fpdp < %,. Set g =
laf + Xpes(f —fp). Then g > Oand [ gom dji, = Ly fgoTdp = fgdu < § for
all n. Furthermore fk < YpeF fD+ gom where fD = 1 D(fD ow). Assuppfpisa compact
subset of D and as w|D/: ' — D is a homeomorphism, f has compact support in X.
As we assume that the zero-measure is a weak limit point of (f,),>1, a subsequence
of (f peg fD dfi,)n>1 converges to zero. As [g o wdf, < % for all n, the sequence
(ff‘k dfi)n>1 has a limit point in [0, %]. This implies (4.2).
There is amap 9 : [0,1] — [0, 1] with 4 (r) | O for r | O such that

4.3) sup /Afo Tdu <9 (,u(A)) for all measurable A C [0, 1]
j>0
This holds with 9 (r) = /r + pu({x : f(x) > \%}) since

. 1 : 1 1
[foTdu < -ﬁu(A)ﬂt({x L f(T(x) > \[}) ﬁu(A)Ht({x f) > ﬁ})
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for r = p(A).

Fix k € N and ¢ > 0. Choose n > O such that 9(n) < €. Set I = I(en) and
fixn € I.Set B, = {Z € 2, : %S,kai < eonZ} and 4, = Z,\ B, As
1S.fc o i is constant on each element of Z,, we get 1S,k 0i > £ on A, = Ugzeg, Z.
Since n € I = I(en), we get f,l‘S,fk oidy < en by (4.2) and hence p(4,) < 7.
This, the definition of n and (4.3) imply [, %Snfdu < €. As S,f is constant on el-
ements of Z,, for Z € Z, we can define 8z = S§,f(x), where x € Z is arbitrary.
By (1.4) we get — Y zcq, p(Z)logu(Z) < Yzea, Bzp(Z2) + ézzg,qﬂ e P2 Furthermore
Szea, €7 < (Szez €8F@1)" = e < land L Szeq, Bzp(2) < fu, LSfdp < e.
Hence —1Yzez p(@)logu(Z) < —1¥eq p(Z)logu(Z) + L + e. Set x :=
Szes, 1(2).1x > 0,we get — Teq, p(Z) log p(Z) = —x Tzen, L2 log U2 —y log x
< logcard B, + 1. This implies

“4.4) ! > u(Z)logu(Z)Sllogcardﬂ,+£+5 forne I
n ez, n en
If x = 0, (4.4) holds without the first term in its right hand side. Then one needs no
estimate of card B, and the last paragraph of this proof with a(e,k) = 0 leads to the
desired contradiction. If y > 0, it remains to estimate card B, forn € I.

To this end remember that the map f is constant on each element of Z and let 3; €
[l,o0)beits valueonZ € Z.Forl > lset X;, = {Z € Z:1 < Bz < 1+1}.
Then Y>1e'card X; = Y1 Yzex e < Tzeze P! = 3,07 1(Z) = 1 and hence
card X; < ¢ for I > 1. Let P(e, n) be the set of all partitions (M;);>o of {0, 1,...,n — 1}
with 0 & My and Y >0l card M; < en. We define a map Q : B, — P(e,n) as follows.
Fix Z € B, and let Z,, € Z be such that Z = ('}, T™"Z,. For0 < m < n — 1 set
Dy, = TNy T7Z) € D. Now define Q(Z) = (M));»o where My = {m : D, & D}
and M, = {m: Dy, € Di,Z,, € X;} forl > 1.As Dy = Zy € D, we get 0 & M,.
By definition of M; and X; we get ¥;>0 I card M; < Y51 Smem, | < Sigu, B2,- By (4.1)
we have 7"(i(x)) € D), for all x € Z. As Dy C Zn, we get fi 0 T"(i(x)) = Bg,. if
m & My which means D,, € Dy. This implies ¥ ngn, Bz, < S,fk (i(x)) for x € Z. Hence
the definition of B, implies that 3"/ [ card M; < ne showing Q(Z) = (M));> € P(e,n).

Having defined Q: B, — P(e, n) we get

4.5) card B, < card P(e, n) sup card Q"(M;);zo
P(e,n)

We begin with the estimation of card Q' ((M;);>0) for a fixed (M;);>o € P(¢,n). We have
tofill {0,1,...,n—1} withZ, € Z according to the definitionof Q. Let I, I, ..., I, be
the maximal disjoint intervalsin {0, 1,...,n— 1}, such that szl Ii = My. As O & My we
gets < card(Ui>1 M) < Y1 Icard M; < ne. Remember that Zy, Z,, . .., Z; determine
Dj = Tj(l"lf,:o T79Z,) and that Z; can be recovered from Dj as it is the unique element of Z
which contains D;. Consider some I, with 1 < r <. Suppose thatl, = {u,u+1,...,u+
v — 1} and that Z,, and hence also D,, are already chosen for 0 < m < u. As 0 & My,
we have u > 0. We have to find Z,, for u < m < u + v, such that D,, & D,. Theorem 9
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of [2] implies the following foru < m < u+v. If D, is already determined then there
are at most two possibilities for D,,, and if there are two possibilities for D,,, then there
is only one possibility for Dy,,; with 1 < j < min{ k,u + v — m}. As Z, is uniquely
determined by D,,,, there are at most 2i*! possibilitiesto fill I, = {u, u+1,...,u+v—1 }
with sets Z,,. Furthermore, if m € M; and [ > 1 then Z,, has to be in X;. Hence we get
card Q' (M))i0) < (IT>1 Tmen, card X;) (I, 22544/ 0+1) | Because of card X; < ¢/
we get

log [T Il card X; =) cardM;logcard X; < )" IcardM; < ne

I>1 meM, >1 >1

as (M));>0 € P(e, n). Because of s < ne we get

s 1
log [1 e/l < 10g2 + p card Mglog?2 < ne + %
=

Hence we have shown that

4.6) logcard Q' ((Mpi>0) < 2ne + - for all (Miizo € P(e.n)

In addition to this, (4.5) requires the estimation of card P(e, n).
To this end set R = {(nj)jz() Don; >0, Yj>onj = n, ijojnj < en}. Then
card P(e,n) < Yn))s0er !/ Tlj>0 n;!. We have for every (n))j>0 € R that n; < 5]—" and

max{j : nj # 0} < en.Hence cardR < en? where [en] = max{m € N :m < en}.

fenl! *
By Stirling’s formula we get the existence of ac; > 0 and a c; < oo with cn™iem <
n!' < czn'”%e“" forall n € N, which implies logcard R < d;+en for some constant d; <
0o. It implies also that log(n!/ [Ii>o ;") < logcy—log ¢y +(n+ %) log n—':) +(n—np) logno—
Y(logcy + n;logn;), where the sum is taken over all j > 1 with n; # 0. For (n);>0 € R
we estimate the right hand side of this inequality in three steps The definition of R gives
n—ny < Yy>1jn; < enand ;- < —, which implies (n+ Yog = < (n+ )log(1—e).
Ascard{j: n; # 0} <en we get E,,ﬂéo loge < —-z»:nlog c. Flnally using (1.4), the
definition of Rand Yj>1nj = n—ng < enimply (n — ng)logng — Lj>1 n; logn, =
—no Yy>1 plog 2 < g Yy»1( — loge) it + ™ Ty>) e 718 < ne — neloge + 2e g

€ e—
Setting d, = logcy —logc; andd; = 1 + ——— — logcy, these three inequalities imply

e(e 1)
log(n!/ Mson) <do— (n+ i)log(l — €) + dsne — neloge forall (n);>0 € R. As
logcard R < d; +ne we getlogcard P(e,n) < d,+dy —(n+ %) log(1 —e)+(1+d3)ne —
ne loge.

This estimate of P(e,n), (4.5) and (4.6) imply that all limit points of the sequence
(% logcard B,),c are in an interval [0, a (e, k)], where a(e, k) tends to zero, if ¢ — 0
and k — oo and where [ is the infinite subset of N introduced above. Together with (4.4)
we get that liminf,,_,oo(-% Yzez, M(Z) logu(Z)) € [0,a(e,k) + €]. Since ¢ > 0 and
k € N were arbitrary, we get h, (T, Z) = 0. We show that Z is a generator for x, which
then implies #, = 0, the desired contradiction. To this end we show

4.7 p) =0forall I € Zy, := §7r'z
i=0
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Suppose that p(I) > 0 for some I € Z,. As p is T-invariant, this implies T*(H) N I #
for some k > 1. As T*(I) C J for some J € Z, and as the elements of Z, are pairwise
disjoint, this gives T*(1) C 1. As p is ergodic, we get p(U'—g T'(1)) = 1. But T|T'(I) is
monotone for 0 < i < k — 1, which implies that 4, = 0, a contradiction. Hence (4.7)
holds and Z is a generator. n

PROPOSITION 1.  Suppose that T is piecewise monotonic with respect to Z and that i
is an ergodic T-invariant measure on Ez with hy, > 0 and — ¥ z¢ 7 u(Z) log u(2) < oo.
If the set Wy = {x x € T(Z) for infinitely many Z € Z} is at most countable then
there is an ergodic T—lnvarlantprobabtllty measure [1 on X satisfying ion™" = pu.

PROOF. We apply Theorem 2 of [3]. The first one of the two assumptions of this
theorem is that for A C [0, 1] the measurability of 77!(A) modulo a set 7~'(N) with
w(N) = 0 implies the measurability of A up to a u-nullset. This follows since i~!
7 YA) = AN E, and w(E}) = 1. The second one is the existence of a set N of u-
measure zero such that

o

(4.8) £,9€ X\ 7 '(N) and (%) = 7(§) = T"(x) = T"($) for some n

It follows from (ii) of Theorem 1 in [2], that N can be chosen as the union of those sets
of Zo, 1= V&, T7'Z, which contain an endpoint of some D € D. This is a countable
union of sets, each of which has p-measure zero by (4.7). Hence p(N) = 0 and (4.8)
follows. Furthermore, since T is defined only on )?\ ! (E»), in order to make the proof
of Theorem 2 in [3] work, we have to show the following continuity result. Consider
some D € D. As D is a subset of some Z € Z, T maps D N w~'(E,) monotonically and
bijectively to Uccqr C', where H is a finite or countable subset of D. If K is a compact
subset of some C’ with C € # , this implies that 7~'(K)N D' is compact and contained in
D’ N w~1(E,). This fact shows the following. If g : X — R has compact support, extend
g o Ttoall of X, setting it equal to zero outside w ~'(E;), which is the set, on which 7 is
not defined. Using the above result for K = supp g C’ for all C € H, we get that the
extended g o T is continuous on [ and hence on all of X. Now Theorem 2 of [3] implies
that (fi,).>1 has a weak limit point /. Furthermore, if i is not the zero-measure, it has
the desired properties. In order to show this, we check that the zero-measure is not a limit
point of (fi,),>| using Lemma 8.

To thisend set Vy = {x: x € D for infinitely many D € D, } . We show by induction
that V; is at most countable. As D; = Z, we have V| = (. Hence suppose that the
assertion is shown for k = / — 1. Choose x € V, \ Vi—1. This means that there is a
sequence (D;);>1 in Dy \ D, with x € D;. By definition of D, there are A; € Z; with
D; = T"Y(A)). Since A; = B; N T~4"1(Z,) for some B; € Z;_, and Z; € Z, we get
D; = T(E) N Z;, where E; = T"%(B;) € D,_,. For each E; there is a unique Y; € 2
with E; C Y;. We consider two cases. The first case is that there is a Y € 2 and an
infinite subset / of N with Y; = Yforalli € I. Asx € D; C T(E;)) C T(Y) fori € I,
there isay € Y with T(y) = x. As T|Y is strictly monotone and continuous, x € T(E;)
implies y € E; fori € I. Hence y € V,_; and x € T(V,—;). The second case is that each
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Y € Z occurs only finitely many times in (Y;);>1. Hence (Y¥;);>; contains infinitely many
different elements of Z. As x € T(Y;) for all i, we get x € W. We have shown that
x € T(Vi—1) U Wz, which gives V; C Vi_; U T(V,_;) U W. This implies that V; is at
most countable, finishing the induction. For all k we have N Uped\ ¥ D = V;, where the
intersection is taken over all finite subsets F of D;. As p is ergodic and h, > 0 and
hence p has no atoms, we get (Vi) = 0. This implies the condition in Lemma 8. The
zero-measure is not a weak limit point of (fip),>1. ]

Now we can show

PROPOSITION 2.  Suppose that T is piecewise monotonic with respect to Z and has a
bounded derivative. Suppose further that the set W 7 := {x : x € T(Z) for infinitely many
Z € Z} is at most countable. For x € E z let ry(x) be the distance of T"(x) € T" (Z,,+1 (x))
to the nearer endpoint of the interval T" (Z,,+| (x)). If u is an ergodic T-invariant measure
onEzwithh, > 0and — Y ;¢ 7 p(Z)log u(Z) < oo, we have that lim,_. % logr,(x) =
0 for pu-almost all x € E .

PROOF. Let /i be as in Proposition 1. Since X = Upep I, there is an E € D with
A(E') > 0 and an interval C C E with i(C’) > 0 where C' = E' N\ 7~ !(C), such that
the distance from C to the endpoints of E is greater than or equal to some d > 0. All
iterates of T are defined on the set 7~'(E), whose ji-measure equals u(Ez) = 1. Set
L={ten N EZ\N):limio + 22 10(T'(%) = 4(C)}, where Nis as in (4.8). As
/i is ergodic and as (7~ '(N)) = u(N) = 0, the ergodic theorem implies that ﬁ(I:) =1.
By (4.8), % € L and 7(%) = 7(®) imply that § € L. Hence the set L := m(L) satisfies
L = n%L). We have p(L) = (L) = 1.

Fix x € L. Let nj,ny,... be the succesive integers, such that ™ o i(x) € C for
k> 1.Asi(x) € L, this sequence is infinite and lim_, ,f—k = [(C) > 0, which implies
limy oo ;- = 1. Forj > 0 set D; = ¢ (T 0 i(x)), which is T/(Z;1(x)) by (4.1). For
k > 0 we have r,, (x) > d, as ™ o i(x) € C' and D,, = E. Choose ¢ € (1,00), such
that ¢ > sup,co|T’|. Suppose that a is an endpoint of D; with r;(x) = |T/(x) — a.
As Dj, is a subinterval of the interval T(D;), which can be seen from the definition of
T, we get that rj,1 (x) < |T*(x) — T(a)| < ¢|T(x) — a| < crj(x). For fixed j let k be
minimal, such that ny > j. Then we get rj(x) > ¢~ ™ r, (x) > ¢~ ™-d. This implies
Hogri(x) > —"=l logc + ; logd. As x € L, we have limy_.oo ;- = 1 and hence the
right hand side of the above inequality tends to zero for j — oo. As log rj(x) < O, this
implies that Jl log rj(x) — O for j — oo. This holds for all x € L and (L) = 1. [

COROLLARY 2. Set C = [0,1]\ Ugzez Z. Under the conditions of Proposition 2 we
have lim,_, 1 log dist(T"(x), C) = O for p-almost all x.

n

PROOF. This follows, since 7"'(Z,,+|(x)) is a subinterval of some interval in 2 and
hence r,(x) < dist(T"(x),C) < 1. .
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