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Abstract

Objectives:Wildfire smoke causes respiratory health concerns. The study estimates respiratory
hospitalization risk from wildfires, determines distance to a hospital, and identifies concentra-
tions of smoke-sensitive groups far from a hospital to facilitate public health and emergency
preparedness in Oregon using spatial analysis.
Methods: Statistically significant environmental factors were identified with regression and used
with wildfire and pollution concentrations to predict respiratory hospitalizations. A weighted
overlay of the significant factors formed a statewide risk layer. Proximity to the hospital nearest
to each Census block was determined by driving distance. Clusters of smoke-sensitive groups,
determined by relevant Census demographics, were identified through a Hot Spot Analysis.
Results: This process allowed for highlighting locations of smoke-sensitive groups in areas at
high risk for respiratory hospitalization from wildfire smoke who were far from a hospital. The
results allow local officials to identify the type and magnitude of needs they can expect in the
event of a wildfire.
Conclusions: The results demonstrate a process to facilitate wildfire preparedness in Oregon.
This process could be adapted to inform wildfire resilience strategies in other regions facing
similar challenges, such as California. Understanding local needs allows officials to target
communications more effectively, stage resources more efficiently, and identify gaps that can
be addressed before a disaster strikes.

Wildfire risk is growing globally, from continental Europe, to Africa, Australia, and South
America and the diverse landscapes of India, Canada, and the US, including the Pacific North-
west region.1–6 The urgency of this issue is highlighted by the devastating January 2025 wildfires
in Los Angeles County - an unprecedented winter fire event that demonstrates how climate
change is extending fire seasons and expanding fire risk into unexpected times and places.

Fine particulate matter, PM2.5, is a main pollutant of concern from wildfire smoke. PM2.5

creates respiratory health risks.7,8 A previous study shows an increase of 10micrograms per cubic
meter of PM2.5 pollution from wildfire smoke is associated with an 8% increase in emergency
department visits for asthma across the state of Oregon.9 Some people are more susceptible than
others to impacts.4 Health impacts are strongest in people with existing chronic diseases, in
children, and in older adults.10 Having a low income and working outdoors present further
unique wildfire smoke exposure concerns. Hazard communications need to be tailored differ-
ently in areas with residents who have Limited English Proficiency.11

The wildfire smoke hazard is increasing along with wildfires in the Pacific Northwest.
Identifying both the degree of exposure expected across the landscape and the vulnerability of
the population can help target risk-reduction efforts most effectively.12 Quantifying these risks
can inform health and emergency service providers so they will be prepared to accommodate
needs and provide adequate care to affected populations. Communities most at risk can be
targeted for development of smoke management plans to improve community resilience to the
effects of wildfire smoke.13 Community vulnerability to wildfire smoke has previously been
explored at the county level across the continental US.13 Taking a more granular approach, our
study examines vulnerability at a finer spatial resolution by analyzing block-level data within the
state of Oregon.

The current study identifies the locations of Oregonians most susceptible to wildfire smoke
impacts who live further than 40 km from a hospital. The risk of respiratory hospitalization from
wildfire smoke was modeled across the state using a geographic information system (GIS). A
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proximity analysis was used to determine hospital access. A cluster
analysis relied on demographic data to highlight vulnerable mem-
bers of the population in the high-risk zone far from a hospital.
Identifying the locations of these vulnerable populations will facili-
tate public health and disaster preparedness by focusing attention
on areas of greatest concern.

Methods

Environmental characteristics and human exposure and vulner-
ability influence the risks fromwildfire smoke.12,14 Considering this
range of factors through a socio-ecological perspective can high-
light areas ill-equipped for wildfire response.15 This study explores
factors related to the natural environment, the built environment,
and socio-demographic characteristics to quantify risks from
smoke exposure through a socio-ecological perspective.

The analytic hierarchy process leverages multiple factors to
analyze complex problems and facilitate decision-making.16

Applying this process allows researchers to identify the most
general and easily controlled factors, then rank and assign
weights to the factors based on importance. GIS is a suitable tool
for applying the analytic hierarchy process to facilitate multiple-
criteria decision-making. Geoprocessing tools can integrate
diverse environmental hazard variables as well as measures of
social vulnerability.14,17 This study relied on ArcGIS Pro 3.1.0 for
geoprocessing.18 The data and analysis techniques described in
this section are shown in Figure 1.

Data

A 2-county sample area including Josephine and Jackson Counties
in southwestern Oregon was used to derive model parameters for
the risk of respiratory hospitalizations. The sample covered fire
season during the years 2016-2019. Fire season for this study is

defined as June-September.19 The sample area was limited by
available hospitalization data.

Health impacts from increased PM2.5 during wildfire smoke
events were measured through hospital and emergency room
admissions for respiratory conditions at 3 hospitals in the study
area. The data was subset to admissions during fire season and to
patients with home addresses in the sample area, focusing on times
when wildfire smoke would be a main driver of air quality concerns
and on people who were exposed to the local air quality conditions.
Patient home data was reported at the zip code level. A previous
analysis with the data demonstrated a positive relationship between
the PM2.5 monitor values and hospital admissions during the 2018
fire season.20

Air quality monitor data was used to assign estimates of the
respiratory patients’ exposure to PM2.5 from wildfire smoke.21 Six
air qualitymonitors, locations shown in the SupplementalMaterials,
provided daily average PM2.5 concentration measurements in the
sample area during the study period. Exposure estimates were
assigned to patients based on the monitor nearest to each patient’s
home zip code. Missing air quality data was estimated using the
average values from the nearest monitor with recorded data. Daily
averages were used to generate average annual exposure.

Acreage burned and proximity to wildfires have been useful
metrics for identifying risk in previous research.12,22,23 Perimeters
of reported wildfires were downloaded from the National Inter-
agency Fire Center and subset to the study area.24 The area covered
by these perimeters each year was apportioned to each intersecting
zip code to generate the annual area burned by wildfire. The Near
geoprocessing tool was then used to calculate the distance to the
nearest fire for each zip code for each year. Two years, 2017 and
2018, had relatively high fire activity in the sample area, while 2016
and 2019 had relatively low fire activity, shown in the Distance to
Fire maps in the Supplemental Materials.

Topographical, meteorological, and fuels data can be used to
identify areas at risk for wildfires and smoke exposure.17,25 Factors

Figure 1. Factors and analysis techniques used to identify smoke-sensitive people in areas far from a hospital that are at high-risk for respiratory hospitalizations from wildfire
smoke.
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identified by previous researchers and explored in this study
include terrain variables like elevation; weather factors like relative
humidity and temperature; and fuel biomass metrics, such as those
derived from indices like the Leaf Area Index (LAI) andNormalized
Difference Vegetation Index (NDVI).

A 10 m resolution Digital Elevation Model (DEM) was down-
loaded from the USGS National Map and clipped to the State of
Oregon.26 The Summarize Elevation geoprocessing tool captured
the minimum, average, and maximum elevation value per zip code.
The elevation range was calculated by subtracting the minimum
from the maximum.

Annual temperature and dew point data for 2016-2019 were
downloaded from Oregon State University’s PRISM Climate
Group.27 The data were provided as continuous surfaces with
4 km resolution. The mean and maximum temperature and dew
point data were clipped to the Oregon boundary. These were used
to calculate mean and maximum relative humidity (RH) using the
Magnus-Tetens formula.28 The Zonal Statistics geoprocessing tool
was used to capture the average of each of these weather metrics per
zip code per year in the sample area.

Vegetationmetrics derived fromMODIS data were downloaded
from the USGS EarthExplorer site.29 One metric explored prod-
uctivity and vegetation coverage: the 500m resolutionMCD15A2H
Version 6.1 Combined Fraction of Photosynthetically Active Radi-
ation (FPAR) and LAI product. The eMODISNDVI v6 dataset with
250m resolution captured vegetation density and health. Data with
minimal cloud cover over the study area near the 1st of June was
downloaded for each year for both metrics. The Zonal Statistics
geoprocessing tool was used to capture the average and majority
values within each zip code for each metric each year. Land cover
was considered, but the temporal resolution of available data was
insufficient for the 4-year study period.

Socioeconomic status, occupation, and individual health status
can place some people at a higher risk for adverse health effects
fromwildfire smoke. This includes people under 18 or over 65 years
old, people with preexisting respiratory or cardiovascular condi-
tions, people with low incomes, and outdoor workers.10 Language
barriers can also increase risks through ineffective emergency
communications.11 Census data have been shown effective for
identifying social vulnerability to wildfire smoke.15,22,30 The Enrich
geoprocessing tool was used to capture Census counts of people in
these sensitive groups at the block level. The tool provided 2022
data for individual characteristics and 2021 data for household
characteristics. Children and elderly people were reported as counts
of the population under 18 years old and 65 years and older,
respectively. A metric for people with chronic health conditions
was not available but counts of households with 1 or more persons
with a reported disability were used as a substitute population with
notable health concerns. The federal poverty level was adopted as
the metric for low socioeconomic status. Primary language was not
available so counts of Hispanic people were used to identify areas
where Spanish may be more commonly spoken in the home. To
identify outdoor workers, counts of people working in farming,
fishing, forestry, construction, and extraction were captured. This
does not capture the full range of outdoor professions but can
highlight workplace concerns from wildfire smoke for these indus-
tries.

Access to health care is another vulnerability people face, par-
ticularly the rural areas. Health care access was defined based on
proximity to a hospital. The locations of acute care facilities were
downloaded from the Oregon Spatial Data Library.31 The Generate

Drive Time geoprocessing tool generated 8, 16, 40, and 80 km (5, 10,
25, and 50 mi) driving distance zones for each hospital.

These health outcome, air quality, wildfire, topographical,
meteorological, fuels, sociodemographic, and health care access
datasets were used to identify populations within Oregon most
vulnerable to respiratory hospitalization from wildfire smoke and
with limitations on health care access. The factors most influential
for predicting respiratory patient counts were derived from wild-
fire, PM2.5, and environmental data.

Variable Selection

The ArcGIS Forest-based Regression geoprocessing tool identified
key factors for predicting patient counts. Candidate Factors
included PM2.5 annual average and cumulativemeasurements from
the nearest air qualitymonitor, the acreage burned per zip code, and
distance to nearest fire; mean elevation, maximum elevation, and
elevation range per zip code; mean and maximum temperature,
mean and maximum dew point, mean and maximum relative
humidity; mean and majority NDVI and FPAR/LAI values per
zip code. The tool generates a summary of the variables most
important for predicting the outcome. Variables identified as not
important in this summary, including maximum elevation, max-
imum relative humidity, and majority FPAR/LAI, were excluded
from further study, and are shown in Table 1.

The Generalized Linear Regression geoprocessing tool was used
to explore the impact of varying combinations of the remaining
variables. The log of patient counts generates a distribution close to
normal, appropriate for a linear regression, based on a skewness
value of 0.47, less than the absolute value of 2, and a kurtosis value of
2.72, less than the absolute value of 7.32 Some variables, like
humidity and dew point, were strongly correlated with each other,

Table 1. List of variables considered for the risk analysis, with variables
excluded based on Forest-based Regression stricken through and final
variables chosen through Generalized Linear Regression in bold italics

Variable list

Average air quality measurements

Cumulative air quality measurements

Acreage burned by wildfire

Distance to nearest wildfire

Mean elevation

Maximum elevation

Elevation range

Mean temperature

Maximum temperature

Mean dew point

Maximum dew point

Mean relative humidity

Maximum relative humidity

Mean NDVI

Majority NDVI

Mean FPAR/LAI

Majority FPAR/LAI
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so this process allowed us to find a balance between parsimony and
model significance. The final model was chosen based on minim-
izing the sum of the standardized residuals. The final zip code level
variables, shown in Table 1, include mean elevation, mean tem-
perature, mean NDVI, average annual PM2.5 concentrations, and
distance to the nearest fire.

Weighted Overlay Analysis

The weighted overlay analysis requires data to be formatted as
a continuous surface.33 Each of the datasets downloaded as dis-
crete locations were converted to continuous surfaces. Inverse
distance weighting was applied to the yearly PM2.5 averages for
the 6 monitors to generate the continuous exposure surfaces
shown in the Supplemental Materials. The surfaces were reclassi-
fied from 1-5 using an equal distribution of values at 20% inter-
vals. The PM2.5 concentrations had a positive relationship with
patient counts, so higher pollution values were associated with a
higher hospitalization risk; PM2.5 coded as a 1 is associated with
the smallest concentrations and a code of 5 is associated with the
largest concentrations.

The Distance Accumulation geoprocessing tool was used to
generate a continuous surface for distance to the nearest fire across
the 2-county sample area (SupplementalMaterials). The distance to
a fire was then reclassified from 1-5, using equal 20% intervals.
Distance to a fire was reverse coded, as lower values were associated
with a higher risk, so 1 shows the lowest risk furthest from a fire and
a 5 shows the highest risk when close to a fire.

The environmental layers were all continuous surfaces natively,
so to prepare for them for the weighted overlay analysis, they were
reclassified from 1-5 using equal 20% intervals. Higher temperat-
ures were associated with higher risk, so the layer was coded with
1 for the smallest values and 5 for the largest values. Elevation and
NDVI were reverse coded as lower values were associated with a
higher risk. Examples of the recoded layers are provided in the
Supplemental Materials.

Layer weights were generated from the correlation values
between each variable and the patient counts. The correlations were
normalized by summing, dividing by the number of layers, and
multiplying by 10. This generated a list of weights that sum to
100, as shown in Table 2.

These weights were used in theWeightedOverlay geoprocessing
tool to generate a final layer representing the risk, 1-5, of respiratory
hospitalization during a wildfire. To validate the final layer, it was
compared to the patient counts during fire season for each of the
study years. The Tabulate geoprocessing tool was used to determine
the number of patients in each risk category. Most patients are
associated with the highest risk categories as shown in the
Supplemental Materials. These weights were then applied to each

of the input layers to create a single layer representing the risk of
respiratory hospitalization from wildfire smoke statewide.

To explore the risk of respiratory hospitalizations in the event
people experience a wildfire nearby, the fire distance and daily
average PM2.5 exposure were set to the greatest risk level. That is,
both layers were set to a risk level of 5 to explore the impacts of
wildfires creating concerning levels of particulate matter pollution
if smoke occurs nearby. The risk statewide was then estimated using
these layers along with the mean elevation, NDVI, and temperature
layers. Because fire distance and PM concentrations were set at the
highest risk, no area of the state has a respiratory hospitalization
risk category under 2 in the results, as shown in Figure 2. The largest
proportion of the state, approximately 56 750 km2, was in risk
category 4.

Hospital Proximity Analysis

Access to care was determined by how far people need to drive to
reach the nearest hospital. The Generate Drive Time geoprocessing
tool, with generalized polygon outputs, created approximately 8, 16,
40, and 80 km buffers for each hospital across the state
(Supplemental Materials). A 40 km minimum distance from the
nearest hospital defined the measure for access concerns.

The distance to the nearest hospital and the risk category for
respiratory hospitalization from smoke if a wildfire occurs nearby
were joined to Census blocks that have at least 1 person living there.
The join captured the majority distance values that occurred per
block. This data (Figure 3) highlights locations of populations that
may have difficulty accessing health care in a timely manner.
Hospitals are symbolized proportionally by number of available
beds; bigger circles are bigger hospitals. In the southeastern part of
the state, people are a long way from a hospital and the hospitals
nearest to them are small and less equipped to meet patient surges.

Cluster Analysis

Concentrations of smoke-sensitive groups were identified using the
fixed distance band with Euclidian distances in the geoprocessing
Hot Spot Analysis tool based on theGetis-OrdGi* statistic.34 The z-
score output from this tool identifies statistically significant local
clusters with high values, such as a Census block with a high
proportion of a sensitive group surrounded by blocks with high
proportions. Identification of statistically significant clusters is
useful for social and emergency services planning.35,36

While counts of sensitive populations are important for prepar-
ing for themagnitude of potential health concerns during awildfire,
proportions can highlight areas where a high proportion of resi-
dents have extra needs. The sensitive conditions in each block were
summed to generate total counts. Some people are counted within
multiple sensitive groups, such as a senior person with a disability,
so the count of sensitive conditions can be greater than the total
number of people in the block. Clusters of sensitive conditions were
calculated with the Hot Spot geoprocessing tool, allowing us to
explore the relative intensity of each high-risk population across the
state. Counts and clusters together can highlight differential inten-
sities of need across geographies with different population magni-
tudes.

Human Subjects Review

This is a secondary analysis that relies on de-identified data. The
Southern Oregon Institutional Review Board determined this

Table 2. Final weight values in percent for the layers used to generate the risk
of respiratory hospitalizations during a wildfire

Layer Weight (%)

Distance to fire 3

Daily average PM2.5 18

Mean elevation 23

Mean NDVI 23

Mean temperature 33

4 Anita Lee Mitchell et al.

https://doi.org/10.1017/dmp.2025.131 Published online by Cambridge University Press

http://doi.org/10.1017/dmp.2025.131
http://doi.org/10.1017/dmp.2025.131
http://doi.org/10.1017/dmp.2025.131
http://doi.org/10.1017/dmp.2025.131
http://doi.org/10.1017/dmp.2025.131
https://doi.org/10.1017/dmp.2025.131


research, described through the “Air Quality and Respiratory
Admissions” questionnaire, was exempt from IRB oversight on
May 1, 2019.

Results

The analysis generated maps of locations of people with smoke-
sensitive conditions in areas far from emergency medical care who
are at high risk for respiratory hospitalizations from wildfire smoke
exposure. This allows us to identify areas within Oregon at the
greatest risk environmentally and socially, a socio-ecological per-
spective that can be useful for prioritizing hazard response and
mitigation efforts in an environmentally just way.15

The final dataset provides block level data on the risk of respira-
tory hospitalization during a wildfire, the distance to the nearest
hospital, and counts of smoke-sensitive groups. Themap on the left
of Figure 4 shows the count of sensitive conditions, indicating the
magnitude of the problem. The western part of the state shows the
highest concentrations but also has the highest total population. As
shown in the map on the right side of Figure 4, clusters with high
concentrations of sensitive conditions are more prominent in the
southwest and northeastern parts of the state. Clusters identified at
a 99% confidence level are shown in redwhile clusters identified at a
90% confidence level are shown in yellow. This perspective indi-
cates the intensity of potential concerns. Taken together, planners
can explore both the magnitude of resources that may be required
and the intensity of need across the landscape. For example, south-
western areas of the state have both high counts and clusters of
sensitive needs, highlighting a priority area for disaster planning.

Each smoke sensitive group has unique needs. To understand
differential public health and disaster preparedness needs across the
state, the magnitude and intensity of each group across the land-
scape should be considered. Maps in the Supplemental Materials
show clusters for each sensitive group in areas at highest risk for
respiratory hospitalization during wildfires over 40 km from hos-
pital.

Seniors comprise the largest group of individual people sensitive
to wildfire smoke in this risk zone, even though children are the
largest group overall in the state. Over 28 000 seniors live greater
than 40 km from a hospital in an area at high risk for respiratory
hospitalization from wildfire smoke, as shown in Table 3. Approxi-
mately 4%ofOregon’s seniors live in this risk zone, spread through-
out the state. The highest counts of seniors are in the west and
north, though clusters of high proportions spread from the south-
west to the northeast.

Children are the second largest group, with over 16 000 in the
highest risk areas far from a hospital. Approximately 2% of Ore-
gon’s children can be found distributed across the state in this risk
zone, though the highest counts are in the western half of the state.
Clusters of high concentrations of children appear in the central
part of the state.

Almost 15 000 households in this risk zone have at least 1 dis-
abled person. Approximately 3% of all households with at least
1 disabled person live within the risk zone. The southwest and
northeastern parts of the state have the highest concentrations of
clusters of disabled people.

Over 5500 households living in poverty, approximately 3% of
the total, are in this risk zone. Clusters of these households appear in

Figure 2. The risk of respiratory hospitalization during wildfire in Oregon.
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Figure 4. Counts and clusters of sensitive conditions per Census block in areas at greatest risk from respiratory hospitalizations from wildfire smoke greater than 40 km from a
hospital.

Figure 3. Populated Census blocks in areas at greatest risk from respiratory hospitalizations from wildfire smoke greater than 40 km from a hospital with the proportional size of
hospitals.
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the southwest and, to a lesser extent, in the north central parts of the
state.

While the thirdmost populous group statewide, lower only than
seniors and children, only 6000 Hispanic persons, about 1% of the
state’s Hispanic population, live in this high-risk zone. Clusters
with high concentrations of Hispanic persons appear most prom-
inently in the north-central and south-central parts of the state.

The smallest smoke sensitive group overall, outdoor workers in
the Farm/Fish/Forestry and Construction/Extraction industries,
have over 3000 people living in this high-risk zone. This corres-
ponds with about 2% of outdoor workers in these industries.
Clusters of high concentrations of these workers are spread
throughout the state.

Limitations

The study has several limitations that could be addressed in future
research. Pre-defined Census categories do not always align well
with definitions of groups sensitive to wildfire smoke. The effect-
iveness of using specific demographic variables to represent smoke-
sensitive populations should be explored.

PM2.5 measurements taken from fixed monitors do not cap-
ture the full range of exposures across the landscape. The
community-based PurpleAir air monitoring program may pro-
vide more widespread coverage of pollution concentrations. Set-
ting up targeted programs using low-cost monitors could also
minimize measurement gaps.

Zip code resolution for patient data may not provide accurate
exposure estimates. Opportunities for a finer resolution, such as
block level, would improve exposure estimates; however, increasing
spatial resolution requires careful consideration of data privacy and
security. Future research should explore analytical methods that
enhance geographic precision while also protecting private health
information.

This analysis was also restricted by areas where we had access to
patient data and records for determining the relationship between
prediction factors and health outcomes, potentially biasing the
results by not capturing the full range of Oregon’s landscapes.
While we used health outcome data from 3 of the 4 hospitals in
the region to develop the risk model, missing data from the 1 hos-
pital could have resulted in patient sampling bias.

This initial estimate of risk of hospitalization from wildfire
smoke provides a foundation for a method to directly compare
risks and needs. Iterative assessment and improvement cycles are
needed for the method to become a reliable planning tool.

Discussion

Themethods presented here demonstrate a process bywhich health
risks among vulnerable populations can be better understood and
supported at a local level, while also producing a statewide perspec-
tive for identifying and addressing service gaps. This can help
ensure environmentally just interventions by foregrounding
inequitable risks.37

Results from this study can be used in conjunction with other
published research to enhance the decision-support potential and
generate actionable guidance for local and regional public health and
emergency preparedness activities. For example, older adults are
more susceptible to negative health impacts from wildfire smoke
and may face additional challenges when preparing for a disaster or
evacuating compared to younger adults.10,38 Public health and dis-
aster preparedness personnel in areas with clusters of seniors may
find television is the most effective channel for communications
regarding smoke information and protective actions.11

Areas with clusters of children face an increased need for indoor
spaces with clean air where children can be active.10 Public health and
disaster preparation officials in these areas should also be aware of the
uncertainty of the long-term health impacts of wildfire smoke expos-
ure on children, particularly in areas with repeated exposure events.39

Additional assistance with disaster preparation and evacuation
may be required in the areas of the state with clusters of persons
with a disability. Oregon officials in these areas may benefit from
targeted training on how best to communicate and assist with
different types of disabilities during a disaster.40

Areas with clusters of low-income householdsmay find clean air
shelters and financial assistance programs to adopt protective
measures are effective strategies for mitigating harm from wildfire
smoke.11,41 This is particularly important due to findings that
suggest lower-income Oregonians are less likely to report avoiding
going outside or using masks or respirators to protect themselves
(Coughlan et al 2022).

In areas with clusters of Hispanic persons, communications
should be tailored to ensure health advisories are clearly con-
veyed.42 Clean air shelters and programs providing access to per-
sonal protective equipment may be effective mitigation activities in
these areas (Coughlan et al. 2022).

Outdoor workers face increased exposure to wildfire smoke.37

OSHA-compliant respirator programs should be implemented in
the areas of Oregon with clusters of outdoor workers.10

To address identified health care gaps, local officials could
consider staging mobile health units in areas facing active wildfire
threats, with community health workers available in areas with

Table 3. Count of sensitive groups in areas at highest risk for respiratory hospitalizations greater than 40 km from a hospital

Risk 4 Risk 5

40 - 80 km 80 - 400 km 40 - 80 km 80 - 400 km High risk total Statewide total

Seniors 22 600 1770 4058 238 28 666 823 731

Children 13 000 893 2325 132 16 350 866 604

Disabled 11 773 925 2158 103 14 959 462 253

Low income 4457 424 734 37 5 652 193 680

Hispanic 5071 283 958 68 6 380 588 757

Outdoor Workers 2443 155 517 28 3 143 122 562

Total 59 344 4450 10 750 606 75 150 3 057 587
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limited hospital access. Telehealth technologies could be useful
tools for addressing access gaps. Regional collaborations could
foster mutual aid agreements for sharing health care resources as
well as coordinating emergency response data and efforts.

The next step will be to validate the risk model with a retro-
spective analysis comparing predicted risk areas with actual hospi-
talization rates from recent wildfires. After validation, the model
can be piloted in select counties to assess the practical utility for
informing public health and disaster preparedness officials in Ore-
gon. Once validated, the methodology could inform wildfire resili-
ence strategies in other places by targeting resource allocation and
health communications for at-risk populations.

While this analysis focused on Oregon’s predominantly rural
landscape, the approach of combining wildfire risk and vulnerability
assessments may be adapted for other regions and settings, including
major metropolitan areas like Los Angeles. Though population
density and health care access patterns differ between rural Oregon
and urban California, the core challenge of protecting vulnerable
populations from smoke exposure remains constant. Considering
the recent wildfires in Los Angeles, service agencies could use the
method presented here to make important decisions not only in the
response to fire events, but in the planning of response efforts. The
method and framework presented here are particularly relevant
across the western US and British Columbia, where both rural and
urban communities need enhanced smoke preparedness strategies.

Conclusions

Results from this study contribute to a better understanding of
wildfire smoke risks inOregon. This information is critical for public
health and disaster planning. By focusing on the most vulnerable
populations, officials can enhance preparedness, improve public
health outcomes, and increase community resilience. Knowing areas
with the most severe concerns can help target and maximize the
impact from limited preparedness resources. The method presented
here for identifying vulnerable populations at high risk can be
replicated in other jurisdictions. The analysis has implications for
research related to disaster communications and behavior analysis.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/dmp.2025.131.
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