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Abstract

The problem of planning the annual intakes to a university course, in
which there are capacity constraints on the total enrolment, so as to produce a
steady transition into an eventual no-growth situation is formulated as a linear
program. The special structure of the problem is exploited to find a particular,
optimal solution and to show that the addition of integrality constraints on the
intakes poses no additional difficulty. The usefulness of the proposed methods
is illustrated with an example from the University of Adelaide.

1. Introduction

The problems of modelling university student enrolments and flows
between enrolment states have been studied by a number of authors, for
example Gani [3] and Marshall and Oliver [4,5], with a view to forecasting total
enrolments. The theory of planning enrolments, when there are maximum or
desired capacities to be taken into account, has also been developed, as
instanced by the control theory approach of Alper, Armitage and Smith [1].
However, the acceptance of these models by university administrators has
been slow, because, almost invariably, detailed data on student flows have not
been kept in the past and the effort required to collect them from available
records may be considerable. The forecasting which is of necessity carried out
makes use of whatever data are available.

If one can estimate the fraction of students from a given entering cohort
who will subsequently attend each year after initial enrolment, then one may
easily forecast total enrolments given the size of each cohort. A method of this
type is in use at the University of Adelaide and other Australian universities. It
is commonly observed that these fractions are largely invariant with cohort, a
stability which has also been observed at the University of California,
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Berkeley, by Marshall, Oliver and Suslow [6]. Although in theory there is no
reason why it should be so, these fractions, which we shall call retention rates,
are always non-increasing with time, at least for the first ten years after initial
enrolment.

In this paper, we consider that each student enrols for a course, which may
be identified by the type of qualification received or the curriculum to be
followed, and progresses through this course over several years. (The unit time
interval of a year is used here although one may think of semesters or terms or
some other convenient unit.) We assume that retention-rate data are known for
each course for which a plan is required; we take all students who first enter the
course in the same year to be in the same cohort. We consider the problem of
planning the enrolments for a course, given a maximum possible enrolment in
each future year and using the retention rates to estimate the enrolments from
each cohort. In particular, we are interested in planning for eventual constant
enrolments and seek to control the intake to the course of new students in such
a way that the transition to the "no-growth" phase occurs smoothly. By
smoothly, we mean that the number of new students should not decrease from
one year to the next.

After formulating the linear-programming model in Section 2, we examine,
in Section 3, the properties of a particular optimal solution which we show can
be easily calculated. The equivalent results in the case where integrality
constraints are added to the basic linear program are noted in the succeeding
section. A numerical example taken from the University of Adelaide is
discussed in Section 5.

2. Formulation of the model

We shall take the present calendar year as year / = 0, with plans to be
formulated for years t = 1 to t = T. By cohort j , we will mean those students
who first enter the course in year t = j . The total enrolment in the course each
year consists of students from cohorts which entered in the same or previous
years. For each cohort / from which students will be enrolled in at least one of
the years t = ],-••,T, define the following retention rates:

R 0'» 0 = proportion of students in cohort / who are enrolled in the course in
y e a r t,t = l,--,T, t g / .

These retention rates need to be estimated from past data. In this paper, we will
assume that, for each future cohort/ = \,--,T, the estimates are the same; that
is, for / = \,--,T,
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Further, it is assumed that

P ( O ) = 1 and P(k)^P(k + l), (2.1)

k =0,1, • • - , 7 - 1 .

For each year t = 1,--,T, let K(t) be the maximum number of students
which can be accommodated in the course and let e(j) be the number of
students in cohort j . Then, for each of the years t = 1, • • •, T, we can define a net
capacity, C(t), by

C(t) = K(t)- 2i?(j,OeO).
/so

We assume that each C(t) is non-negative.
The variables whose values we wish to prescribe are the sizes, e(j), of the

cohorts for j = 1, • • •, T. They are constrained firstly by the requirement that the
net capacities should not be exceeded; thus

i (2.2)

foreach t = l,--,T.

Further, the criterion that there should be no reduction in new enrolments each
year is specified by

+ \), (2.3)

for each j = 1, • • •, T — 1,

together with the constraint that the intake in the last year should be no greater
than some maximum e:

e. (2.4)

Normally, e would be the constant intake which, if repeated indefinitely, would
produce the desired constant total enrolment, C, say. Then

2
1-0

Various objective functions may be formulated, depending upon the priorities
attached to particular aspects of course development; one may desire, for
example, to place emphasis on achieving total enrolments close to the
capacities in the earlier years rather than in the later ones, or one may consider
that there is a cost associated with a change in cohort-size from one year to the
next. However, in this paper, we choose to consider minimizing the oversupply
of capacity over all the years t = 1,--,T; thus we wish to
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minimize £ f C(t)- £ P(t -j)e(j)}. (2.6)

Then, the required cohort sizes, e(j),j = 1,- • -,T, are those which solve the
following linear program:

minimize 2J

subject to ^tP(t-j)e(j)^C(t), t = \,•••,T,

(2.7)

It may be shown, using the methods of Section 3, that all feasible solutions
which minimize (2.6) also maximize the total intake to the course over the T
planning years.

In Section 4, we consider the above linear program with the additional
constraints:

e(j) i n t e g e r , j = \,-,T. (2.8)

3. An optimal solution of the linear program

We show in this section that a feasible solution e'(j), j = 1,- • -,T of the
linear program satisfying the following criterion, which we shall the Linked-
Constraint Property (LCP), is an optimal solution.

THE LINKED-CONSTRAINT PROPERTY (LCP).

For each t = 1, • • •, T - 1, either

i,P(t-»e'(j) = C(t), or (3.1)

e'{t) = e\t + \ ) , (3.2)

and for t-= T, either

i , or (3.3)

e'(T) = e. (3.4)

According to (3.2), a solution with the LCP has successive cohort-sizes
equal until the capacity of the course is reached in a particular year; then, when
(3.1) is satisfied, an increase in the size of the entering cohorts may occur in the

https://doi.org/10.1017/S0334270000000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000928


34 L. H. Campbell [5]

following year. The critical property of this solution is given in the following
easy lemma.

LEMMA 1. Let e'(j),j = 1,--,T, be a feasible solution with the LCP and
let e(j),j = 1,- ••, T, be any other feasible solution of the linear program. Let k be
the smallest j for which e'(j)^ e(j). Then

e'(k)>e(k). (3.5)

COROLLARY. The feasible solution e'(j),j = 1,- • - ,T, with the LCP is

unique.

T H E O R E M 1. The feasible solution e'(j),j = 1 , - , T , with the LCP is an

optimal solution of the linear program.

PROOF. Consider an optimal solution e*(j),j = 1,- • -,T, different from
e'(i),j = h',T. Let Z * and Z ' be their respective objective values.

1. Choose k. Let k be the smallest value of / for which e'Q) ^ e*(j). Then, by
Lemma 1, e'(k) > e*(k). Now,

l P(t - j)) (e*(j)~ «'(/)). (3.6)

U k = T, then Z' < Z* which contradicts optimality of Z*. Thus k < T.

2. Choose m. Further, if e*(j) ^e'(j) for / = k + 1,- ••, T, then again Z ' < Z*
from (3.6). Therefore, there must be some /, k <j g T, for which

e'{j)<e*(j). (3.7)

Let m be the smallest such /.

3. Choose 1. Let / be the smallest j ^ k for which

e*(l)<e'(l) while e*(l + 1) i? e'(l + 1). (3.8)

W e n o t e t h a t k^l <m.

4 . Define a new optimal solution. Let

e =mm{e'(l)-e*(l),e*(m)-e'(m)}, (3.9)

a n d def ine a n e w s o l u t i o n e**(j),j = \,--,T, b y

e**(m) = e*(m) — e,

e**(D = e*{l) + e, (3.10)

and e**(j) = e*(j), for all other /.
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This new solution clearly satisfies the constraints (2.3), (2.4) and (2.7), while the
capacity constraints (2.2) also hold since, for t <m,

t, P(t -j)e**(j)^i, P(t -j)e'(j)£C(t),

and for t^m, S;=, P(t -j)e**(j)

= 2 Pit -i)e*U) + e {P(t - /) - P(t - m))

t

^'Z P(t -j)e*(j), since P(t - l)^P(t - m),

This solution is optimal for, if Z** is its objective value, then

Z**-Z*=el J P(r-m)-2 P(t-l)}^0. (3.11)

Hence, since Z* is optimal, Z** = Z*, which occurs only if

% t ) = 0. (3.12)

5. Compare the solutions. Thus we have generated a new optimal solution
e **(/),/ = 1, • • •, T, which satisfies e **(fc) S e '(it). If in fact e **(k) < e *(k), we
may replace e*(j) by e**(j) for each j = 1,- • •, T and go to 2.

6. Termination. After each transformation of the optimal solution, either /
decreases by 1 or m increases by at least 1. Eventually, then, we stop in Step 5
when / = k and hence e**{k) = e\k). Thus we generate a new optimal solution
satisfying e**(j) = e'(j),j = 1,- -,/c, from an optimal solution satisfying only
e*(j) = e'(j), j<k. Hence, we start again in Step 1 with this new optimal
solution and transform it until we can no longer choose a new k. Then
e*(j) = e'(/),/ = 1,--,T, and hence the solution with the LCP is optimal.

A simple necessary condition for the existence of multiple optima, which
is proved by considering equation (3.12), is the following result.

COROLLARY. If P(T— l ) > 0 then the only optimal solution of the linear
program is that one with the LCP.

In order to find the feasible solution with the LCP, an algorithm which
exploits the special structure of the linear program may be used. The following
algorithm finds, on each pass, the value a (it) which is the maximum value the
remaining intakes may attain if they are all set equal. Then all the remaining
intakes up to the last year in which this solution achieves the net capacity are
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set equal to this value. That the final solution is in fact that with the LCP is
easily shown.

ALGORITHM.

Define S(t) = 2 J . , P(t -j), t = \,---,T.

Step 0. Set k = 0 , ro = 0 , C(0;t) = C(t),t = \,---,T.

Step 1. Replace k by k + 1. Define s as the largest integer > rk-, for which

C(k - l;s)IS(s - r*_,) = min{C(fc -\;t)IS(t - r*_,); t = r»_, + 1,- • -,T}.

Step 2. If C(k - l;s)IS(s-rk-l)>e, set rk = T and a(k) = e. Otherwise, set
rk = s and a(fc)= C(k - l

Step 3. For f ^r*_, (if any), put C(k;t) = C(k - l;t). For < = r*_, + \,--,rk,
put C(/c;/)=C(fc - l ; O - S ( r - r * . , ) a ( k ) and e'(t) = a(k). If rk = T, go to
Step 4. Otherwise, for / = rk + 1,- • •, T, put

and go to Step 1.

Step 4. Put Z' = 2?-, C(/c;O- Stop with optimal value Z' and optimal solu-
tion e'(\),---,e'(T).

This algorithm performs better with this problem than the simplex
algorithm in the sense that, if the problem is started with a basis of slack
variables, the simplex algorithm will perform at least T pivots in order that all
the e(j)'s enter the basis whereas, after the row-sums, S(t), are produced, this
algorithm will take no more than T iterations; this is so since rk-, < rk for each
km 1.

4. The program with integrality constraints

Although in real-life planning situations, one may be satisfied with
rounding-off the optimal cohort sizes of the solution to the linear program, one
may ask what happens if the additional constraints that each e(j) should be
integral are added to the program. In this section, we show that the special
structure of the problem may be exploited to find a particular optimal, integer
solution.

The algorithm given in Section 3 requires only minor modification for it to
be used to find a feasible solution in which all the intakes are integral. The
necessary modification is to replace Step 2 by the following:
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S t e p 2 ' . L e t A = C ( k - 1 ; s ) / S ( s - r t _ , ) . If A g c , s e t rk = T and a ( k ) = [ e ] ,
where [•••] means integer part of. Otherwise, if A is integer, set rk = s and
a(k) = A, and, if A is non-integer, set rk = rk_, + 1 and a(k) = [A].

The integer solution, e"(j), j = 1,--,T, say, produced in this way satisfies an
equivalent condition to that of Lemma 1, namely that, if e(j), j = 1,- • •, T, is any
other integer, feasible solution and k is the smallest / for which e"(j)^ e(j),
then e"(k) > e(k). In fact, e"(j), j = 1,- • -,T, is an optimal integer solution; the
proof is exactly the same as that for Theorem 1 since, if e*(j), j = 1,- ••, T, is
chosen to be an integer optimum, (3.9) and (3.10) imply each new solution
produced will also be integer. Hence, the introduction of integrality constraints
on the intakes imposes only a little extra work in the solution of the resultant
mathematical program.

5. Numerical example

At the University of Adelaide, the B.Sc-degree course is taught jointly by
the Faculties of Science and Mathematical Sciences. The average retention
rates for students in this course are given on the left of the table; these data do
not differentiate between pass-degree and honours-degree candidates. Column
(ii) of the table gives the estimated totals of students enrolled in each future
year from cohorts which entered before 1975, found by applying the average
retention rates to the known cohort sizes. For the years 1975 to 1978, the
University's plans have already been formulated; hence the capacities in the
course up to 1978 are known and are shown in the first four rows of columns
(iii) and (vi). After 1978, various building and staff-development programs are
possible which affect the number of students which can be accommodated.

The table lists two cases which differ in the capacities after 1978. Case 1
postulates a ceiling of 1,600 students, as shown in column (iii). The value of e,
425, was calculated using (2.5) and rounding the result to the nearest multiple of
5. The net capacities, C(t), and the optimal intakes, e(t), found using the
algorithm in Section 3, are shown in columns (iv) and (v) respectively. The
same calculations were performed for Case 2 which uses a constant capacity of
1,650 students after 1978, and the results listed in columns (vi) to (viii). The
intakes are the same up to 1978, when the capacity constraint holds with
equality.

In evaluating which intake strategy to adopt, the University must also
consider the rate of expansion required to accommodate the increased numbers
of students. In case 2, the optimal intakes produce a total of 1,602 students in
1979; thus a capacity of about 1,600 students would be sufficient in that year.
During the 1979-81 financial triennium, a modest increase of 15 places per year
would be required, until the total of 1,650 places is reached at the beginning of
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Possible Strategies for B.Sc. — Degree Course,
University of Adelaide

[9]

Average
Retention

(

1
2
3
4
5
6
7
8
9
10
11

g 12

Rates
P(t-l)

1.000
.8454
.7521
.5916
.2219
.0898
.0601
.0572
.0428
.0250
.0206
.0686

(i)

1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

(ii)

1113
777
481
242
153
116
91
68
51
42
35

(iii)

1553
1565
1577
1582
1600
1600
1600
1600
1600
1600
1600

Case 1.
c ~ 425
(iv)

440
788
1096
1340
1447
1484
1509
1532
1549
1558
1565

(v)

420.2
420.2
420.2
420.2
422.3
422.3
422.3
422.3
422.3
422.3
422.3

(vi)

1553
1565
1577
1582
1650
1650
1650
1650
1650
1650
1650

Case 2.
e =4-10
(vii)

440
788
1096
1340
1497
1534
1559
1582
1599
1608
1615

(viii)

420.2
420.2
420.2
420.2
436.4
436.4
436.4
436.4
436.4
436.4
436.4

(i) Year.
(ii) Number of students enrolled from cohorts entering before 1975.
(iii) & (vi) Possible maximum total enrolments.
(iv) & (vii) Corresponding maximum enrolments from cohorts from 1975.
(v) & (viii) Corresponding optimum intakes (Algorithm 1).

the following triennium. The strategy actually chosen will depend on the
availability of external funding and the University's internal priorities. How-
ever, it is clear that the University can control the enrolments in B.Sc.-degree
course to produce an eventual steady-state situation by suitably fixing intake
quotas over a period of years.

6. Discussion

The structured model of this paper, with its accompanying solution
procedures, addresses itself to the problems of planning gross enrolments given
little information on student flows and a long-term aim of no growth. The
structure of the constraints is critical for the proposed solution procedures. The
non-increasing nature of the retention rates apparently occurs with almost all
student cohorts, while the specification that the intakes should be non-
decreasing is applicable particularly to the smooth transition into a no-growth
phase; in the absence of this criterion, the capacities could be met exactly for a
wide class of problems.
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The algorithms given here find that unique optimal strategy which takes
students into the course as early as possible in the planning years. If it is
desired to find other optimal strategies, for example that which delays
development for as long as possible, then the algorithmic proof of Theorem 1
may be adapted to the purpose. However, only a necessary condition for the
existence of multiple optima has been given.

If desired total enrolments, rather than capacities, are known, then a
goal-programming approach, like that used by Schroeder [7] in other areas of
university management, may be adopted. Indeed, goal-programming methods
may be useful for the short-term control of intakes once the desired totals have
been produced by the methods of this paper. If more information about the
distributions of the retention rates were available, one could specify the
capacity constraints in the form of chance constraints which could be con-
verted to linear inequality constraints using methods suggested by Charnes and
Cooper [2]; in this process, of course, the structure required of the problem for
the use of the methods of this paper most likely would be destroyed.

7. Acknowledgements

The author gratefully acknowledges the financial support of General
Motors-Holden's through their South Australian Postgraduate Research Fel-
lowship and also would like to thank his supervisors, Professor R. B. Potts and
Dr. R. J. Aust, and Mr. H. E. Wesley-Smith and Mr. R. E. Smith of the
University administration.

References

[1] P. Alper, P. H. Armitage and C. S. Smith, 'Educational models, manpower, planning and
control", Operational Res. Quart. 18 (1967), 93-103.

[2] A. Charnes and W. W. Cooper, 'Deterministic equivalents for optimizing and satisfying under
chance constraints', Opns. Res. II (1963), 18-39.

[3] J. Gani, 'Formulae for projecting enrolments and degrees awarded in universities', J. Roy.
Statist. Soc. A126 (1963), 400-409.

[4] K. T. Marshall, 'A comparison of two personnel prediction models', Opns. Res. 21 (1973),
810-822.

[5] K. T. Marshall and R. M. Oliver, 'A constant-work model for student attendance and
enrollment', Opns. Res. 18 (1970), 193-206.

[6] K. T. Marshall, R. M. Oliver and S. S. Suslow, 'Undergraduate enrollments and attendance
patterns', Report No. 4 (March, 1970), Administrative Studies Project in Higher Educa-
tion, University of California, Berkeley.

[7] R. G. Schroeder, 'Resource planning in university management by goal programming', Opns.
Res. 22 (1974), 700-710.

The University of Adelaide
Adelaide, South Australia.

https://doi.org/10.1017/S0334270000000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000928

