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Abstract
Most of the current complex networks that are of interest to practitioners possess a certain community
structure that plays an important role in understanding the properties of these networks. For instance,
a closely connected social communities exhibit faster rate of transmission of information in compari-
son to loosely connected communities. Moreover, many machine learning algorithms and tools that are
developed for complex networks try to take advantage of the existence of communities to improve their
performance or speed. As a result, there are many competing algorithms for detecting communities in
large networks. Unfortunately, these algorithms are often quite sensitive and so they cannot be fine-tuned
for a given, but a constantly changing, real-world network at hand. It is therefore important to test these
algorithms for various scenarios that can only be done using synthetic graphs that have built-in commu-
nity structure, power law degree distribution, and other typical properties observed in complex networks.
The standard and extensively used method for generating artificial networks is the LFR graph generator.
Unfortunately, this model has some scalability limitations and it is challenging to analyze it theoretically.
Finally, the mixing parameter μ, the main parameter of the model guiding the strength of the commu-
nities, has a non-obvious interpretation and so can lead to unnaturally defined networks. In this paper,
we provide an alternative random graph model with community structure and power law distribution for
both degrees and community sizes, the Artificial Benchmark for Community Detection (ABCD graph).
The model generates graphs with similar properties as the LFR one, and its main parameter ξ can be tuned
to mimic its counterpart in the LFR model, the mixing parameter μ. We show that the new model solves
the three issues identified above and more. In particular, we test the speed of our algorithm and do a
number of experiments comparing basic properties of both ABCD and LFR. The conclusion is that these
models produce graphs with comparable properties but ABCD is fast, simple, and can be easily tuned to
allow the user to make a smooth transition between the two extremes: pure (independent) communities
and random graph with no community structure.

Keywords: community detection algorithms; synthetic models; random graphs

1. Introduction
An important property of complex networks is their community structure, that is, the organiza-
tion of vertices in clusters, with many edges joining vertices of the same cluster and comparatively
few edges joining vertices of different clusters (Fortunato, 2010; Girvan & Newman, 2002). In
social networks, communities may represent groups by interest (practical applications include
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collaborative tagging), in citation networks they correspond to related papers, similarly in the web
communities are formed by pages on related topics, etc. Being able to identify communities in
a network helps to exploit it more effectively. For example, clusters in citation graphs may help
to find similar scientific papers, discovering users with similar interests is important for targeted
advertisement, and clustering can also be used for network compression and visualization. Finally,
many machine learning algorithms and tools use clustering as an unsupervised pre-processing
step and then try to take advantage of the community structure to improve their performance or
speed.

The goal of community detection algorithms is to partition the vertex set of a graph into sub-
sets of vertices called communities such that there are more edges present within communities
in comparison to the global density of the graph. The key ingredient for many clustering algo-
rithms is modularity. Modularity for graphs was introduced by Newman and Girvan (2004) and
it is based on the comparison between the actual density of edges inside a community and the
density one would expect to have if the vertices of the graph were attached at random regardless
of community structure, while respecting the vertices degree on average. There are many variants
allowing, in particular, overlapping or hierarchical communities. Moreover, it is also possible to
generalize modularity for hypergraphs (Kaminski et al., 2019, 2021).

Unfortunately, detecting communities in networks is a challenging problem. Many algorithms
and methods have been developed over the last few years—see, for example, Dao et al. (2020) for
a recent review. It is important to point out that these algorithms are often quite sensitive and
so they cannot be fine-tuned for a given family of networks we want these algorithms to work
on. Some algorithms perform well on networks with strong communities but perform poorly on
graphs with weak communities. The degree distribution and other properties of networks may
also drastically affect the performance of these algorithms in terms of accuracy or computational
complexity. Because of that, it is important to test these algorithms for various scenarios that can
only be done using synthetic graphs that have built-in community structure, power law degree
distribution, and other typical properties observed in complex networks.

In order to compare algorithms, one can use some quality measure, for example, the above-
mentioned modularity (Newman & Girvan, 2004). Indeed, modularity is not only a global
criterion to define communities and a way to measure the presence of community structure in a
network but, at the same time, it is often used as a quality function of community detection algo-
rithms. However, it is not a fair benchmark, especially for comparing algorithms (such as Louvain
and Ensemble Clustering) that find communities by trying to optimize the very same modu-
larity function! In order to evaluate algorithms in a fair and rigorous way, one should compare
algorithm solutions to a synthetic network with an engineered ground truth.

The standard and extensively used method for generating artificial networks is the LFR
(Lancichinetti, Fortunato, Radicchi) graph generator (Lancichinetti et al., 2008; Lancichinetti &
Fortunato, 2009). This algorithm generates benchmark networks (i.e., artificial networks that
resemble real-world networks) with communities. The main advantage of this benchmark over
other methods is that it allows for the heterogeneity in the distributions of both vertex degrees and
of community sizes. As a result, in the past decade, the LFR benchmark has become a standard
benchmark for experimental studies, both for disjoint and for overlapping communities (Emmons
et al., 2016). Some other benchmarks, including BTER and ReCoN—another well-known models,
are discussed in the next section.

In order to generate a random graph following a given, previously computed, degree sequence,
the LFR benchmark uses the fixed degree sequence model (also known as edge switching Markov
chain algorithm) to obtain the desired community structure once the stationary distribution
is reached. Unfortunately, the convergence process can be slow and so this model has some
scalability limitations. Despite the need for experiments on large networks, the standard LFR
implementation1 can only be used to generate medium size networks (e.g., Figure 3 shows that
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the graph on 500,000 nodes already takes several minutes to be generated). Moreover, due to its
complexity and the fact that many fast implementations stop the switching before the stationary
distribution is reached, it is challenging to analyze the model theoretically. Finally, the mixing
parameter μ, the main parameter of the model guiding the strength of the communities, has a
non-obvious interpretation and so can lead to unnaturally defined networks. We discuss these
issues at length in the next section.

In this paper, we provide an alternative random graph model with community structure and
power law distribution for both degrees and community sizes, the Artificial Benchmark for
Community Detection (ABCD graph). We show that the new model solves the three issues iden-
tified above. In particular, we test the speed of our algorithm and do a number of experiments
comparing basic properties of both ABCD and LFR. The conclusion is that these models produce
graphs with comparable properties but ABCD is fast, simple, and can be easily tuned between the
two extremes: random graph with no community structure and independent communities. The
Julia package providing an application programming interface (API) for the generation of ABCD
graphs can be accessed at GitHub repository.2 The repository also provides instructions how to set
up R and Python to use the package directly from these environments. (For reference purposes,
if requested, we can also provide a Python implementation of ABCD.) Moreover, a command
line interface to the library is provided that allows users to generate ABCD graphs without using
an API. Finally, let us mention that we currently work on parallel implementation of the model,
ABCDe (enhanced implementation) that should be available at GitHub repository soon.

The paper is structured as follows. In the next section, Section 2, we justify the need for a new
benchmark network model. Section 3 provides a detailed description of the model. In order to
compare ABCD and LFR, one needs to tune the two mixing parameters to make the correspond-
ing graphs comparable. We explain this process in Section 4. Section 5 presents experiments for
comparison of the two models (both the speed and basic properties). Brief conclusion and direc-
tions for future work are presented in Section 6. Finally, pseudo-codes of our ABCD generator are
presented in the Appendix.

2. Motivation
In the introduction, we already highlighted a few issues with the existing LFR benchmark. In this
section, we provide more detailed justification for the need of a new benchmark model. This is
not to say that we dislike the LFR model and propose an alternative that is substantially different.
In fact, our ABCD model may be easily tuned such that its properties mimic the one of LFR but
is faster than its competitor (Subsection 2.1). Hence, it seems that ABCD is a natural alternative
for practitioners that already use and like the LFR benchmark. On the other hand, ABCD is easier
to analyze theoretically (Subsection 2.2); research in that direction might be beneficial for a bet-
ter understanding of networks with community structure and algorithms that are performed on
them. ABCD has, arguably, more natural main parameter which prevents the user from generat-
ing graphs with “anti-communities” (Subsection 2.3). Finally, we challenge the “local” property in
the LFR model that is insisted to be satisfied by communities and propose a “global” counterpart
that is, arguably, more natural (Subsection 2.4).

2.1 Problemwith scalability
In the big data era, there are many massive networks that need to be mined and analyzed. Since
such networks cannot be handled in the memory of a single computer, new clustering methods
have been introduced for advanced models of computation (Buzun et al., 2014; Zeng & Yu, 2016).
These algorithms use hierarchical input representations which implies that the experiments per-
formed on small or medium size benchmark graphs cannot be used to predict the performance on
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much larger instances (Emmons et al., 2016). Unfortunately, many graph clustering benchmark
generators currently available are not able to generate the graphs of necessary size (Bae & Howe,
2015; Buzun et al., 2014).

Let us briefly discuss the reason for the leading benchmark not to be scalable. Switching edges
in LFR can be viewed as a transition in an irreducible, symmetric, and aperiodic Markov chain.
As a result, it converges to the uniform (stationary) distribution. More importantly, if the maxi-
mum degree is not too large compared to the number of edges, then it converges in polynomial
time (Greenhill & Sfragara, 2018). However, despite the fact that these bounds on the mixing time
are of theoretical importance, they are not practical even for small graphs. The convergence pro-
cess is inherently slow and so the model has clear scalability limitations that are known to both
academics and practitioners. The fastest published variant of the model that is able to generate
large graphs is the external memory algorithm proposed by Hamann et al. (2018).

In order to generate huge graphs, practitioners typically use computationally inexpensive
random graph models such as R-MAT (Chakrabarti et al., 2004) or the generator of Funke et
al. (2018). These models might create communities. In fact, it is known that many random
graph models naturally create community structure, especially the ones that are geometric in
nature (Prokhorenkova et al., 2017). However, they are not suitable for benchmarking purposes
as there is no ground truth community structure to compare against. Hence, it is difficult to use
them to evaluate clustering algorithms.

Another alternative, based on the scalable Block Two-Level Erdős–Rényi (BTER) graph gener-
ator (Seshadhri et al., 2012), was recently proposed by Slota et al. (2019). The original model takes
into account the desired degree distribution and per-degree clustering coefficient. Since it does
not explicitly aim to create communities, its edge generation process is more direct, simpler, and
as a result faster than LFR’s. Indeed, the scalability of BTER is impressive. The model aims to pre-
serve a given degree distribution (similarly to LFR and ABCD that generate graphs with a given
power law degree distribution) and a given clustering coefficient per degree. The latter objective
is different than the one in LFR and ABCD; in these two models, the internal degree of commu-
nity members can vary a lot. Hence, BTER generates graphs that are quite different from LFR or
ABCD. The authors of Slota et al. (2019) try to twist the original model to create a graph that
resembles the fLFR benchmark. However, due to inherent properties of BTER, they were unable
to generate graphs that perfectly match the desired community structure. On the other hand, sim-
ilarly as it is done in BTER, ABCD independently generates graphs induced by communities and
the global graph but it generates “LFR-like” graphs. That is the main reason why both BTER and
ABCD can be generated fast.

Finally, let us mention about the ReCoN (Replication of Complex Networks) model that was
recently proposed in Staudt et al. (2017). This interestingmodel is very different than other bench-
marks, including the ones we focus on in this paper. It uses a small reference graph to seed the
process of generating large graph. Its main idea behind construction of the large output graph
is similar to the LFR algorithm, and the performance of its implementation using NetworKit is
about five times faster than that in the corresponding NetworKit implementation of LFR.

The proposed ABCD model is fast. The experiments we performed imply that ABCD is
40–100 times faster than the reference C++ implementation of LFR and over 10 times faster than
the NetworKit implementation (see Subsection 5.2 for more details). In particular, a graph on
10 million vertices with an average vertex degree of 25 can be generated on a standard desktop
computer in several minutes (see Table 1 for example timing reports; LFR algorithm implemen-
tation we used would take several hours to generate graphs of similar size). In this paper, we
concentrate on single-threaded ABCD and LFR implementations in order to focus on the theo-
retical concepts behind ABCD. However, as an outlook for further work, it is possible to design a
distributed out-of-core implementation of ABCD to generate huge graphs having billions of ver-
tices, similarly like it is done in Hamann et al. (2018) for LFR. Indeed, for example, generation of
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edges within communities can be performed using perfectly parallel approach, as each community
is processed independently (see Section 3 for details).

2.2 Many variants and lack of theoretical foundations
The most computationally expensive part of the LFR benchmark is edge switching. In each step of
this part of the algorithm, two edges are chosen uniformly at random and two of the endpoints are
swapped if it removes the loop or parallel edge without introducing new ones. As already men-
tioned, the process converges to the stationary distribution but it does not converge fast enough
for large graphs to be produced. Experimental results on the occurrence of certain motifs in net-
works (Milo et al., 2003), the average and maximum path length and link load (Gkantsidis et al.,
2003) suggest that �(m) swaps are enough to get close to the desired distribution, where m is
the number of edges in the graph. (See also Ray et al., 2012 for further theoretical arguments and
experiments.) The constant hidden in the asymptotic notation varies from experiment to experi-
ment and is between 2 and 100. There are also some other heuristic arguments that justify more
simplifications of the original algorithm.

There are at least two negative implications of this situation. First of all, there are many variants
of this benchmark model and various implementations further modify some steps, either as an
attempt to simplify the algorithm or to gain on speed. As a result, one can only create “LFR-type”
graphs, and graphs generated by different implementations can have different properties. In fact,
even the original formulation of the model leaves some ingredients not rigorously defined. This is
certainly not desired for benchmark graphs that should provide a rigorous and fair comparison.
Moreover, it creates challenges with reproducing experiments, something that is expected, if not
required, when reporting scientific results.

The lack of a simple and clear description of the algorithm has another negative aspect. Despite
the fact that the initial work on Erdős–Rényi model did not aim to realistically model real-world
networks, the number of papers on random graphs and their applications to model complex net-
works is currently exploding. Indeed, in the period after 1999, due to the fact that data sets of
real-world networks became abundantly available, their structure has attracted enormous atten-
tion in mathematics as well as various applied domains. For example, one of the first articles of
Albert and Barabási (1999) in the field is cited more than 35,000 times. There are many papers
investigating models of complex networks starting with a natural generalization of the Erdős–
Rényi model to a random graph with a given expected degree distribution (Chung & Lu, 2006)
to more challenging models such as random hyperbolic graphs (Krioukov et al., 2010) or spa-
tial preferential attachment graphs (Aiello et al., 2008). These results are not only interesting
from theoretical point of view; they help us better understand the properties and the dynamics
of these models by investigating local mechanisms that shape global statistics of the produced net-
work. Despite this fact, there are very few results on theoretical properties of the LFR graphs. It
is unfortunate, as more research on models with community structure might shed light on how
communities are formed and help us design better and faster clustering algorithms.

As described in Section 3, the proposed ABCD model can be seen as a union of indepen-
dent random graphs. As a result, its asymptotic behavior can be studied with the existing tools
in random graph theory. Moreover, ABCD model is natural, relatively easy and straightforward
to implement that limits a problem with reproducibility. Nevertheless, for those that look for
“out-of-the-box” tool, wemade it available as GitHub repository with a reference implementation.

2.3 Communities are unnaturally defined for large mixing parameters
One of the parameters of the LFR benchmark is the mixing parameter μ ∈ [0, 1] which controls
the desired “community tightness.” The goal is to keep the fraction of inter-community edges to
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Figure 1. Examples of graphs generated by the LFR algorithm (top) and by the ABCD algorithm (bottom). All graphs have
the same degree distribution and community sizes. The three LFR graphs correspond to values of the mixing parameter
μ ∈ {0.1, 0.3, 0.95}, whereas for the ABCD graphs the plots correspond to ξ ∈ {0.1, 0.3, 0.95}. Edges that fall between vertices
in the same community are colored accordingly. We see strong communities for the leftmost plots, and noisy yet still coher-
ent communities for the middle plots. The rightmost plots, where μ = ξ = 0.95, illustrate our point regarding one of the
main differences between LFR and ABCD. For LFR, in the top right plot, we see almost no edges within each community so
the model generates “anti-communities.” With ABCD, we see a random looking graph, where the number of edges within
each “community” is proportional to the number of vertices that belong to it, as expected in a random graph.

be approximately μ. In one of the two extremes, when μ = 0, all edges are within communities.
On the other hand, when μ = 1, LFR generates pure “anti-communities” with no edge present
in any of the communities. We believe that this is undesired and leads to unnaturally defined
communities. The threshold value of μ that produces pure random graphs that are community
agnostic is “hidden” somewhere in the interval [0, 1]. It is possible to compute this threshold value
(see Section 3.4 where we actually do it), but the formula is quite involved and not widely known.
Indeed, many different values are reported in the literature (e.g., μ = 0.7 is mentioned in Slota
et al., 2019) and so many experiments are performed on unnaturally defined networks and might
lead to false conclusions. The influence of the parameter μ on the LFR graph is presented in
Figure 1 (top).

In contrast, the parameter ξ ∈ [0, 1] in the ABCD model (counterpart of μ in LFR introduced
in Section 3) has a natural and important interpretation. As in LFR, if ξ = 0, then all edges are
generated exclusively within communities. More importantly, ξ = 1 yields pure random graph
in which communities do not affect the process of generating edges. Values of ξ ∈ (0, 1) produce
graphs with additional signal coming from communities; the smaller the parameter, the more
pronounced the communities are. One can easily move between ξ and μ (again, see Section 3.4
for more details), but there is no risk to create unnaturally defined benchmark networks with
“anti-communities.” The influence of the parameter ξ on the ABCD graph is presented in Figure 1
(bottom).

Finally, let us mention that here we only claim that large values μ generate LFR graphs in
which communities locally induce sparser graphs in comparison to global density, something that
is not expected to happen in networks with community structure. Of course, there are many other
properties that might be desired and, indeed, generating realistic networks is one of the major
issues in most of the existing methods. In order to validate whether the model produces a realistic
network, one needs to compare various properties measured on the real networks as it is done, for
example, in ReCoN (Staudt et al., 2017) that we already discussed in Section 2.1.
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2.4 Densities of communities
The LFR model aims to generate a graph in which (1− μ) fraction of edges adjacent to a
given vertex stays within the community of that vertex. This property should hold for all
vertices regardless whether this vertex belongs to large or small community. As a result, small
communities will become much denser comparing to large ones. It is not clear that this property
is desirable, especially in the case of unbalanced community sizes which the model is aiming
for. Indeed, it seems to us that larger clusters should capture a proportionally larger fraction of
edges—see Subsection 4.3 for a detailed discussion.

The approach used in LFR (which we call a local variant) seems to be inherited from the def-
inition of the community in the classical book of Barabási (2016). We challenge it and propose
another approach (that we call a global variant), although we do respect this point of view. For
those researchers and practitioners who prefer the original approach, we describe two variants of
the ABCD model, one for each approach, and both variants are available on GitHub repository.

3. Proposedmodel
3.1 Parameters of the model
We assume that the following parameters are provided as the input for the algorithm (for each
input, we specify a general approach and a proposed default specification):

(1) The number of vertices, n.
(Notation: We label vertices with numbers from V = [n]:= {1, . . . , n}.)

(2) The exact (or expected) degree distribution w= (w1, . . . ,wn). The user can decide if the
degree distribution has to follow a given distribution exactly (the configuration model will
be used in this case) or only to follow it in expectation (the Chung-Lu model will be used
instead).
(Remark: Note that the user does not have to provide vector w explicitly; it could be gen-
erated at random. In particular, it could follow a power law distribution with parameter γ

and extreme values wmin, wmax. Alternatively, the average value w̄ can be supplied instead
of wmin, which can then be computed, as it is done in the original LFR model.)

(3) The number of clusters, k, and the sequence of cluster sizes s= (s1, . . . , sk) satisfying∑k
i=1 si = n.

(Remark: In particular, s could be a random sequence following the power law distribu-
tion with parameter β and extremes smin and smax, as it is done in LFR. If not specified, by
default LFR sets smin and smax to the minimum and the maximum degree, respectively.)
(Notation:We label clusters with numbers from [k]. We will use f (σ (i)) ∈ [k] to denote the
cluster of vertex i ∈ [n], see Subsection 3.5 for a formal definition of this mapping.)

(4) The mixing parameter ξ .
(Remark: As already mentioned, at one extreme case when ξ = 0, all links are within
clusters. On the other hand, if ξ = 1, then communities do not influence distribution of
edges. Moreover, to add more flexibility, one may introduce different parameters ξ for
each cluster—see Subsection 4.3 for more on that.)

3.2 Sampling w and s
At the very beginning, we sample the exact/expected degree distributionw, the number of clusters,
and the cluster sizes s (unless they are given as deterministic parameters of the model). The algo-
rithms used to generate them are presented in Appendix. Let us stress the fact that if w and s are
sampled, then they are random variables. However, for fair comparison purposes, the same values
of w and s are used when experiments on LFR and ABCD models are performed in Section 5.

https://doi.org/10.1017/nws.2020.45 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2020.45


160 B. Kamiński et al.

3.3 Background and cluster graphs
Our model can be viewed as a union of k+ 1 independent random graphs Gi (i ∈ [k]∪ {0})—one
for each cluster and one for the whole graph. As a result, one can view it as a generalization of
the double round exposure method (also known in the literature as “sprinkling”). We start with
the background graph G0 and “sprinkle” additional edges within communities that come from
graphs Gi (i ∈ [k]); the smaller the value of ξ , the stronger the ties between members of the same
cluster are. As these graphs are generated independently, one can alternatively start with the clus-
ter graphs and then “sprinkle” the background graph on top of it that can be seen as adding the
“noise”; the larger the value of ξ , the larger the level of noise is.

First, we need to split the weight vector w into y and z; z will be responsible for the background
graph and y will affect additional edges within communities. The process of splitting the weight
is discussed in Section 3.4. Then, for a given cluster i ∈ [k], we restrict ourselves to Vi ⊆V = [n],
the set of vertices that belong to cluster i. We discuss the process of assigning vertices into clusters
in Section 3.5. Let yi be the subsequence of y restricted to terms corresponding to vertices from
Vi. Let Gi = (Vi, Ei) be a random graph G(yi) guided by the sequence yi—the exact model will be
specified in Section 3.6. Finally, let G0 = (V , E0) be a random graph G(z) guided by the sequence
z. We call graph G0 the background graph and the remaining graphs Gi (for i ∈ [k]) are called
the cluster graphs. The model is defined as the union of these graphs, that is, G= (V , E), where
E= ⋃k

i=0 Ei.
Note that G allows loops and multiple edges. Indeed, they can occur both in any of the gener-

ated graphs Gi (i ∈ [k]∪ {0}) or after taking a union of their edge sets. In general, however, there
will not be very many of them, especially for sparse graphs. If one wants to study this random
graph theoretically, one option is to work with multi-graphs or condition onG to be simple. From
a practical point of view, one can still work with multi-graphs or do some minor adjustments to
the graph such as rewiring, re-sampling, or simply delete parallel edges. We will come back to
this practical issue and provide a specific solution in Section 3.6. However, note that the proposed
model ofG is important as it can be rigorously analyzed theoretically as all its components are well
studied in graph theory literature and we take a union of independent graphs—see Subsection 2.2
for motivation for theoretical results.

3.4 Distribution of weights
Parameter ξ ∈ [0, 1] controls the fraction of edges that are between communities, that is, it reflects
the amount of noise in the network. Its role is similar to the role of the mixing parameter μ in the
original LFR model. We split weights w into y and z as follows, keeping the same value of ξ for
each vertex (recall that y will be associated with clusters and z will be associated with the noise):

y= (y1, . . . , yn) = (1− ξ )w= ((1− ξ ) ·w1, . . . , (1− ξ ) ·wn)

z= (z1, . . . , zn) = ξw= (ξ ·w1, . . . , ξ ·wn)

However, in order to add more flexibility, one may allow different coefficients ξ for each cluster.
Let (ξ1, . . . , ξk) ∈ [0, 1]k. In the next subsection, vertices will be assigned into clusters: vertex i ∈
[n] will be assigned to cluster f (σ (i)) ∈ [k]. Then,

y= (y1, . . . , yn) = ((1− ξf (σ (1))) ·w1, . . . , (1− ξf (σ (n))) ·wn)

z= (z1, . . . , zn) = (ξf (σ (1)) ·w1, . . . , ξf (σ (n)) ·wn)

This variant is important if one wants to mimic the original LFR model as closely as possible, that
is, to try to keep the fraction of internal edges for each cluster equal; otherwise, using the same ξ

for all vertices suffice—see Subsection 4.3 for more discussion.
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3.5 Assigning vertices into clusters
Our task now is to assign vertices into clusters, that is, to define the mapping f :[n]→ [k] from
vertices to clusters. Our goal is to design the fast algorithm that produces an assignment selected
uniformly at random from some natural class of admissible assignments (formal definition is
provided below).

The main problem is that vertices of large degree cannot be assigned to small clusters, as we
aim to generate simple graphs for some applications of the proposed model. Recall that the weight
vector w will be split into y and z that will guide the process of generating cluster graphs and,
respectively, the background graph. All edges within cluster graphs will end up between vertices
of the same community. On the other hand, only some fraction of the background edges will be
present within communities as an effect of the random sampling. Unfortunately, the number of
such edges depends on the mapping f we are about to create, and so it is not known at this point.
So how can we decide which vertex can be assigned to a given cluster leaving enough room for
not only edges from the cluster graph but also for additional edges coming from the background
graph? Fortunately, this “chicken and egg” problem can be solved as there exists a universal upper
bound xi for yi that leaves enough room for the edges coming from the background graphs that
works for all i ∈ [n], namely,

xi:=
⌈
(1− ξφ)wi

⌉
, (1)

where φ:= 1− ∑
�∈[k] (s�/n)2. The reason for this choice of xi is as follows. In Subsection 4.1, we

will show that the expected number of edges between communities is equal to ξμ0, where μ0 =
1− ∑

�∈[k] (W�/W)2 (W� is the volume of cluster � and W is the volume of the whole graph).
If vertices are assigned to clusters randomly, then the expected value of W� is s�W. It follows
that φ is a good approximation of μ0 that is not known at this point. In any case, since φ < 1,
we observe that xi ≥ (1− ξφ)wi ≥ (1− ξ )wi = yi and so there is definitely room for edges of the
cluster graphs.

Let us call an assignment of vertices into clusters admissible if each vertex i ∈ [n] is assigned
to cluster j ∈ [k] with xi ≤ sj − 1. Recall that our goal is to select one admissible assignment uni-
formly at random. This condition is a necessary condition for the existence of a simple graph that
this cluster induces. Note that it is only a necessary condition; in fact, the corresponding degree
sequence has to be graphic. (A graphic sequence is a sequence of numbers which can be the degree
sequence of some graph; see, e.g., West, 2001 or any other textbook on graph theory for more.)We
use this slightly weaker condition because it is much simpler and more convenient to use which
gives us an easier framework to work with. Finally, let us stress that for the final graph G to be
able to be simple, we get some additional constraints on admissible assignments of vertices into
clusters. Not only z and all yi’s must be graphic, but the union of all graphs needs to be simple as
well. However, in practice, this causes no issue as we usually deal with sparse graphs that leave a
lot of room for graphs to be fit.

Indeed, in practice, the probability that a non-graphic degree sequence is obtained for some
cluster graph is extremely low. However, in order to deal with such potential problematic situa-
tions, the algorithm tries to assign as many edges as possible to stay within the cluster graph and
move the remaining ones to the background graphs. See the end of Subsection 3.6 for more details.

A formal definition is slightly technical. Suppose that vertices are sorted according to their
bounds on the expected/exact internal degree, that is, x1 ≥ x2 ≥ . . . ≥ xn. Similarly, suppose that
cluster sizes are sorted, that is, s1 ≥ s2 ≥ . . . ≥ sk. In order to define the assignment of vertices into
clusters, we need the following auxiliary sequence s≤�. For each � ∈ [k]∪ {0}, let

s≤�:=
�∑

i=1
si
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In particular, s≤0 = 0 and s≤k = n. Function f :[n]→ [k], that we informally introduced earlier, is
defined as follows. For each i ∈ [n] and j ∈ [k], we fix

f (i)= j if and only if s≤j−1 < i≤ s≤j

The assignment now can be viewed as a permutation σ :[n]→ [n]—vertex i ∈ [n] is assigned to
cluster f (σ (i)) ∈ [k]. Such assignments guarantee that the right number of vertices is assigned to
each cluster, but vertices of large degree could be assigned to small clusters. Let A be the set of
admissible assignments defined as follows:

A:=
{
σ :[n]→ [n]:xi ≤ sf (σ (i)) − 1 for all i ∈ [n]

}
In other words, no vertex in an admissible assignment gets assigned to a cluster of size smaller than
or equal to its expected/exact degree. Our goal is to select one member of the family A uniformly
at random.

Sampling with uniform distribution is often a difficult task. Of course, generating one permu-
tation with uniform distribution on the set of all permutations is easy and can be done in many
different ways. If such permutation falls into A, then we could accept it; otherwise, we repeat the
process until we get one that does it. Unfortunately, the size ofA comparing to n!, the number of
all possible permutations, can be very small so this rejection sampling process is not feasible from
a practical point of view. However, this point of view does have theoretical implications andmight
be useful in the future for analyzing the model.

Fortunately, sampling uniformly from A turns out to be relatively easy. To that end, we will
use the following natural algorithm. (See also a pseudo-code in the Appendix.) Recall that ver-
tices are sorted according to their bounds on internal degrees, that is, sequence x= (x1, . . . , xn) is
non-increasing. Consider vertices, one by one, starting with vertices that are associated with large
values of xi and assign them randomly to a cluster that has size larger than the corresponding
bound and still has some “free spots”; that is, a cluster of size sj is considered for a vertex of degree
xi if xi ≤ sj − 1 and the number of vertices already assigned to it is less than sj. The probability
that a given vertex is assigned to a given cluster is proportional to the number of “free spots” that
remain in that cluster.

The reason why this algorithm produces an admissible assignment uniformly at random comes
from the fact that clusters that are assigned to earlier vertices could also be assigned to vertices con-
sidered later. In other words, it is not the case that vertices considered earlier couldmake decisions
that create more (or less) choices for vertices considered later. They need to be assigned some-
where and, regardless of where they get assigned, the number of choices left for future vertices is
not affected. In particular, the algorithm always terminates, unlessA= ∅.

To see a formal argument, let

ti:=max{s≤�:xi ≤ s� − 1}
It is straightforward to see that σ ∈A if and only if σ (i) ∈ [ti] for all i ∈ [n]. Note that, for any
given admissible permutation σ ∈A, our algorithm produces it with probability p that is only a
function of ti but does not depend on σ . Indeed, it is easy to see that:

p=
n∏
i=1

1
ti − i+ 1

as there are ti − (i− 1) available “free spots” for a vertex i ∈ [n]. Clearly, the algorithm does
not produce any permutation that is not admissible. Hence, indeed, the algorithm generates a
permutation fromA uniformly at random. As mentioned above, the algorithm fails only ifA= ∅.
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3.6 Exact versus expected degree distribution—Two variants of the model
Wewill consider two variants of themodel: the first one generates graphs with the expected degree
distribution w (related to the well-known Chung-Lu model) and the second one with the exact
degree distribution w (related to another well-known model, the configuration model). We will
start with the description of the first variant, as it is slightly easier. However, it is presumably
the case that the practitioners prefer the second variant. (In particular, a potential appearance of
isolated vertices in sparse Chung-Lu models might not be desirable for practical purposes.)

Recall that at this point, we have vertices assigned to clusters: vertex i ∈ [n] belongs to cluster
f (σ (i)). Moreover, the weight vector w is split into two vectors y and z that will guide the cre-
ation of cluster graphs Gi (i ∈ [k]) and, respectively, the background graph G0. We need to specify
how we actually do it and how we deal with potential problems after taking the union of these
graphs.

3.6.1 The expected degree distribution
In this variant of the model, we use the Chung-Lu model that produces a random graph with
expected degree sequence following a given sequence.

Chung-Lu model
Let w= (w1, . . . ,wn) be any vector of n real numbers and let W = ∑n

i=1 wi. We define C(w)=
([n], E) to be the probability distribution of graphs on the vertex set [n] following the well-known
Chung-Lumodel (Chung& Lu, 2006; Seshadhri et al., 2012; Kolda et al., 2014;Winlaw et al., 2015).
In this model, each set e= {i, j}, i, j ∈ [n], is independently sampled as an edge with probability
given by:

P(i, j)=

⎧⎪⎪⎨
⎪⎪⎩
wiwj

W
, i 
= j

(wi)2

2W
, i= j

(Let us mention about one technical assumption. Note that it might happen that P(i, j) is greater
than one and so it should really be regarded as the expected number of edges between i and j,
e.g., as suggested in Newman, 2010, one can introduce a Poisson-distributed number of edges
with mean P(i, j) between each pair of vertices i, j. However, since typically the maximum degree
	 satisfies 	2 ≤ 2|E|, it rarely creates a problem and so we may assume that P(i, j)≤ 1 for all
pairs.)

One desired property of this random model is that it yields a distribution that preserves the
expected degree for each vertex, namely: for any i ∈ [n],

E[ deg (i)]=
∑

j∈[n]\{i}

wiwj

W
+ 2 · (wi)2

2W
= wi

W
∑
j∈[n]

wj =wi

Theoretical approach
The original Chung-Lu model is a multi-graph, so it is natural and convenient to stay with multi-
graphs in ourmodel too.We simply takeGi =G(yi)= C(yi) for each i ∈ [k], andG0 =G(z)= C(z).

Practical approach—Insisting on simple graphs
From practical point of view, it is desired to generate a simple graph and use the fast algorithm
that does it. In order to achieve both things, we use a version of the (fast) Chung-Lu model that
produces the graph with a given number of edges. As a result, we need to round some numbers to
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integers. We use the following randomized way that is also used in the original LFR model. For a
given integer k ∈Z and real number � ∈ [0, 1), let⌊

k+ �
⌉

=
{
k with probability 1− �

k+ 1 with probability �

(Note that the expected value of random variable �k+ �� is equal to k+ �.)
We independently generate cluster graphs Gi (i ∈ [k]) as follows. Note that

∑
v∈Vi yv/2 is the

expected number of edges in C(yi). We fix

ei:=
⎢⎢⎢⎣1
2

∑
v∈Vi

yv

⎤
⎥⎥⎥ ∈N∪ {0}

and then we generate the Chung-Lu graph C(yi) conditioning on not having parallel edges or
loops, and having exactly ei edges. This can be done in a fast way. We independently sample two
vertices i and j with probabilities proportional to their weights. If i 
= j and adding an edge {i, j}
does not create a parallel edge, then we accept it. We continue this process until ei edges are
created.

Once all cluster graphs are created, we move to the background graph. In order to keep the
total number of edges as desired, we fix

e:= 1
2

∑
v∈V

wv −
k∑

i=1
ei

Note that
∑

v∈V wv is usually an even integer (since vector w corresponds to the degree sequence)
so e ∈N∪ {0}. (If not, wemay replace

∑
v∈V wv/2 with �∑v∈V wv/2�.) Note also that the expected

value of e is equal to
∑

v∈V zv/2, the expected number of edges in C(z). We generate the Chung-
Lu graph C(z) conditioning on not having loops, not creating parallel edges (in the union of all
cluster graphs and the background edges created so far!), and having exactly e edges. To that end,
we use the same fast algorithm as before. Note that, as long as the whole graph is sparse (which is
typically the case), the second step is fast since not too many collisions occur, even if some of the
cluster graphs Gi (i ∈ [k]) are dense.

3.6.2 The exact degree distribution
This variant of the model uses the configuration model (instead of the Chung-Lu model) that
produces a random graph with a given degree sequence. However, this change brings a few small
issues that need to be dealt with.

Configuration model
Let w= (w1, . . . ,wn) be any vector of n nonnegative integers such that W:= ∑n

i=1 wi is even.
We define a random miuti-graph M(w) with a given degree sequence known as the configura-
tion model (sometimes called the pairing model), which was first introduced by Bollobás (1980).
(See Bender & Canfield, 1978; Wormald, 1984 for related models and results.)

Let us considerW configuration points partitioned into n labeled buckets v1, . . . , vn; bucket vi
consists of wi points. A pairing of these points is a perfect matching into W/2 pairs. (There are
W!/((W/2)!2W) such pairings.) Given a pairing P, we may construct a multi-graph G(P), with
loops and parallel edges allowed, as follows: the vertices are the buckets v1, . . . , vn, and a pair
{x, y} in P corresponds to an edge {vi, vj} in G(P), if x and y are contained in the buckets vi and vj,
respectively. We take a pairing P uniformly at random from the family of all pairings ofW points
and setM(w)=G(P).

It is an easy but a fundamental fact that the probability of a random pairing corresponding to
a given simple graph G is independent of the graph. Indeed, an easy calculation shows that every
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simple graph corresponds to exactly
∏n

i=1 wi! pairings. Hence, the restriction of the probability
space of random pairings to simple graphs is precisely S(w), the uniform probability space of all
simple graphs with a given degree sequence. Moreover, it is well known that if

n∑
i=1

wi = �(n) and
n∑
i=1

w2
i =O(n)

then the expected number of loops and multiple edges that are present inM(w) isO(1) and so the
probability thatM(w) is simple tends to δ = δ(w)> 0 which depends onw but is always separated
from zero. As a result, event holding a.a.s. (i.e., with probability tending to 1 as n→ ∞) over
the probability space M(w) also holds a.a.s. over the corresponding space S(w). For this reason,
asymptotic results over random pairings immediately transfer to S(w). One of the advantages
of using this model is that the pairs may be chosen sequentially, so that the next pair is chosen
uniformly at random over the remaining (unchosen) points.

Distribution of weights
We assume that integer-valued vectorw is such that

∑
i wi is even, so that a given degree sequence

is feasible. (As mentioned earlier, it is only a trivial, necessary condition—in fact, w should be
a graphic sequence.) Recall that the weight, vector w, is split into real-valued vectors y and z.
However, since we deal with exact degree sequences not expected ones, this time we have two
additional constraints that we need to satisfy, namely, that (a) all involved weights are integers,
and (b) for each of the k clusters, the corresponding sum of weights is even. Note that once these
conditions are satisfied for all cluster graphs, the background graph immediately has them too—all
degrees are integers and the sum of weights is even.

We splitw into integer-valued vectors ŷ= (ŷ1, . . . , ŷn) and ẑ= (ẑ1, . . . , ẑn) as follows. For each
cluster i ∈ [k], we identify the leader, vertex of the largest weight in cluster i. (If more than one ver-
tex has the largest weight, we select one of them to be the leader, arbitrarily.) In order to deal with
non-integer values, for all vertices i ∈ [n] that are not leaders, we set ŷi = �yi�. For the remaining k
vertices, the leaders, we round yi up or down so that the sum of weights in each cluster is even. (If
some leader has the weight yi ∈ n and the sum of weights in its cluster is odd, then we randomly
make a decision whether subtract or add 1 to make the sum to be even.)

Theoretical approach
We takeGi =G(ŷi)=M(ŷi) for each i ∈ [k], andG0 =G(ẑ)=M(ẑ). Some of the involved graphs
might not be simple but the expected number of loops and parallel edges is small, especially
for sparse graphs. We have a few options how to deal with them. The first option is the easi-
est: we could do nothing and work with multi-graphs. Alternatively, we could condition on all
Gi (i ∈ [k]∪ {0}) to be simple. From theoretical point of view, this model is equally easy to ana-
lyze, provided that for each Gi, the probability of getting a simple graph tends to a constant as
n→ ∞ (does not matter how small it is and could be different for each i ∈ [k]∪ {0}). It is known
that under some mild assumptions, this is the case (in particular, the order of each cluster graph
should tend to infinity with n, etc.)—see above for the discussion around the configuration model.
Let us remark that even though all Gi’s are simple, it is not guaranteed that the final graph, G, is
simple as edges from G0 can overlap with edges of Gi for some i ∈ [k]. Hence, we could condi-
tion on G to be simple. Unfortunately, this model might be more challenging to analyze (as it
introduces some dependencies between the background graph and the cluster graphs), but this is
certainly worth investigating in the future work.

Practical approach—Insisting on simple graphs
Before we discuss how we apply these observations to our problem, let us discuss a general
approach and some theoretical, asymptotic results. Let us generate a random graph with a given
degree sequence using the configuration model. If it happens that it is a simple graph, it is a
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uniformly distributed random graph from the family of simple graphs with this degree sequence.
Suppose then that it is not simple. It is known that after performing some kind of “switching,” we
get a random graph that is very close to the uniform distribution and we should solve all problems
in O(1) time. Indeed, in Janson (2020), it is proved that, assuming essentially a bounded second
moment of the degree distribution, the configuration model with the simplest types of switchings
yields a simple random graph with an almost uniform distribution, in the sense that the total vari-
ation distance is o(1). For each parallel edge uv, one needs to choose a random edge xy, remove uv
and xy, and with probability 1/2 add ux and vy; otherwise, add uy and vx.

Let us now explain how we actually apply switchings to our problem. We start with the con-
figuration model to generate cluster multi-graphs Gi (i ∈ [k]). We then apply switchings to get a
family of simple graphs. After that, we use the configuration model to generate the background
graph G0 and use switchings to remove loops and parallel edges. After taking the union, more
parallel edges could be created. As usual, we use switchings to remove them. However, this time
we restrict ourselves to edges in the background graph and switch only those. This can be done
since all graphs Gi are simple at this point and so collisions must involve at least one edge from
the background graph. During switching, more collisions can be created but each collision again
involves at least one edge from the background graph (after switching the resulting edges are kept
in the background graph). We do this to preserve the number of internal edges within cluster; the
cluster graphs are not affected by this final round of switchings.

In order for our algorithm to be fast in all potential situations, we have implemented a proce-
dure that controls the process of fixing multiple edges and self-loops, so that it is not extremely
slow (and, in particular, to be robust against a mentioned earlier rare possibility of obtaining a
non-graphic degree sequence). If some cluster graph Gi is extremely dense, it might be compu-
tationally expensive (or simply impossible for non-graphic degree sequence) to sample a correct
replacement that maintains all the desired constraints. This situation is extremely rare but if it
happens, then we retry it only for a limited number of times. This creates a small bias for the
number of edges captured within that community, but we have empirically found that it happens
less than 1 per 1,000,000 edges for typical tight configurations of the model so the bias should
not be noticeable in practice. It is possible to resolve all conflicts exactly (unless, of course, a non-
graphic degree sequence is obtained, which is rare), so this is simply a trade-of between the speed
and the quality of the implementation.

In summary, the conflict resolution algorithmwe use for each cluster graphGi works as follows:

1. perform a standard configuration model on Gi but put all self-loops and multiple edges in
a recycle list assigned to this graph;

2. iteratively, remove one edge from the recycle list and try to rewire it with randomly selected
edge from Gi including those from the recycle list; this process is tried as many times as the
target number of edges in Gi (so, in expectation, each edge is tried for rewiring once); if
we successfully do the switching, then we move forward; otherwise, we return the chosen
edge back to the recycle list;

3. the whole process is repeated as long as we are able to find a good rewiring for an edge in
recycle until recycle becomes empty or the number of times we were unable to reduce the
recycle list size is equal to the size of recycle, that is, we unsuccessfully tried to recycle all
edges in recycle; in such a case, we give up and move the remaining degrees of the vertices
forming those unmatched edges from Gi to the global graph, so that the final degree of
all vertices in the union graph follows w—as noted above, this action is extremely rare—
approximately less frequent than once per 1,000,000 edges.

For the background graph, we follow the same procedure. However, we do not “give up” recycling
and follow the process until all required edges are created. As the background graph is sparse, this
process is very fast in practice.
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4. Comparing ABCD and LFR
The role of parameter ξ in ABCD is similar to the one of the parameters μ in LFR; however,
they are not the same! If ξ = μ = 0, then in both models all edges are within communities, but
if ξ = μ = 1, then ABCD is a random graph and so is substantially different than LFR which
produces “anti-communities.” As a result, in order to compare the two models, one needs to tune
the parameters such that the corresponding densities of communities are comparable.

The are two natural ways of distributing the weight w—the first one preserves the densities
globally, whereas the second one preserves it locally for each vertex in the graph. We will inde-
pendently consider both approaches. After that, we will discuss the difference between the two
and their implications. However, before that let us recall one subtle caveat we already discussed in
Section 3.5 when we assigned vertices into clusters.

If one creates a pure ABCD graph, then ξ is known upfront and there is no issue. Now, we try to
find ξ for ABCD that matches given μ for LFR. The problem is that we cannot compute ξ before
vertices are assigned to clusters. On the other hand, to do the assignment, we need to bound the
number of neighbors of each vertex that belong to its own cluster graph that is a function of ξ—
recall Equation (1). To overcome this “chicken and egg” problem, we apply some universal upper
bound xi for yi, namely xi:= �(1− μ)wi� to do the assignment, and then compute ξ . Hence, in
what follows, we may assume that the assignment is given to us and we simply tune ξ to match
given μ.

4.1 Recovering the mixing parameterµ (Globally)
In this scenario, we start with a fixed ξ that will be applied for all vertices regardless to which
cluster they belong to. Recall that V� = {t ∈V :f (σ (t))= �} (� ∈ [k]) is the set of vertices assigned
to cluster �. Let W = ∑

t∈V wt be the volume of G and let W� = ∑
t∈V�

wt be the expected/exact
volume of vertices of cluster �. Clearly,W = ∑

�∈[k] W�.
There are two models (namely, Chung-Lu and configuration model) used to generate multi-

graphs Gi (i ∈ [k]∪ {0}), but both of them have the property that edges occur with probability
proportional to the product of the weights of the two endpoints. Consider two vertices i and j
with weights wi and wj, respectively. If they are in different clusters (f (σ (i)) 
= f (σ (j))), then the
probability that they are adjacent is equal to

zizj∑
t∈V zt

= ξwi · ξwj∑
t∈V ξwt

= ξ
wiwj∑
t∈V wt

= ξ
wiwj

W

(In fact, for multi-graphs, it is the expected number of edges as the value above could potentially
exceed 1. However, it is a rare situation in practice.) It follows that the fraction of edges that are
between communities is equal to:

1
W

∑
i∈V

∑
j∈V\Vf (σ (i))

ξ
wiwj

W
= ξ

W2

∑
i∈V

wi
∑

j∈V\Vf (σ (i))

wj = ξ

W2

∑
i∈V

wi(W −Wf (σ (i)))

= ξ

W2

∑
�∈[k]

W�(W −W�)= ξ

W2

⎛
⎝W2 −

∑
�∈[k]

W2
�

⎞
⎠

= ξ

⎛
⎝1−

∑
�∈[k]

(W�/W)2
⎞
⎠ = ξ μ0
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where μ0:= 1− ∑
�∈[k] (W�/W)2. Hence, in order to mimic the structure of the LFR graph, one

should consider

ξ = μ

μ0
= μ

⎛
⎝1−

∑
�∈[k]

(W�/W)2
⎞
⎠

−1

(2)

On the other hand, if vertices i and j are in the same cluster �, the probability is equal to:
zizj∑
t∈V zt

+ yiyj∑
t∈V�

yt
= ξ

wiwj∑
t∈V wt

+ (1− ξ )
wiwj∑
t∈V�

wt

= ξwiwj

W
+ (1− ξ )wiwj

Wl
= wiwj

W
+ (1− ξ )wiwj

(
W −W�

W ·Wl

)
The expected number of neighbors of i that are in cluster � then equal to:∑
j∈V�

(
ξwiwj

W
+ (1− ξ )wiwj

Wl

)
= wi

(
ξ
W�

W
+ (1− ξ )

)
=wi

(
W�

W
+ (1− ξ )

W −W�

W

)
. (3)

Let us make one remark. Note that if μ > μ0, then the corresponding value of ξ is greater than
1. As a result, we cannot generate our random graph. One can see it as a potential problem but,
in fact, it is the opposite. Such values of μ correspond to models in which the density between
clusters is larger than the internal density. As discussed in Subsection 2.3, we should not be ever
concerned with such networks with “anti-communities.”

4.2 Recovering the mixing parameterµ for each vertex (locally)
In this scenario, we consider a sequence of parameters ξi (i ∈ [k]), one per each cluster. In the
original LFR model, once the degree sequence w= (w1, . . . ,wn) is fixed, the algorithm tries to re-
wire the edges such that for each vertex i, the internal degree is close to (1− μ)wi. There is some
variability in the final “local” mixing parameters but mainly due to the presence of low degree
vertices which clearly must deviate from the desired ratio.

It is not clear if matching local parameters is what we want (see the discussion in the introduc-
tion and in Subsection 4.3) but here is a possible way to modify the approach presented above in
order to have local mixing parameters close to μ. Instead of using the same ratio ξ for splitting
weights into background and cluster portions, one can carefully tune it and use different values
of ξ for different clusters. Consider vertex i with degree wi that belongs to a cluster with the total
weight equal toWf (σ (i)). For the background graph G0 =G(z), let zi = ξf (σ (i)) ·wi be such that:

zi
(W −Wf (σ (i))

W

)
=wi · μ

Indeed, this is desired as only the (W −Wf (σ (i)))/W fraction of the background edges are expected
to be present between the communities. It follows that the ratio for cluster � ∈ [k] should be
defined as follows:

ξ� = μ

(
W

W −W�

)
(4)

As a result, for the cluster graph Gf (σ (i)) =G(yf (σ (i))) corresponding to the cluster of vertex i, we
let yi =wi − zi = (1− ξf (σ (i))) ·wi.

As before, there exists a threshold μ1 such that if μ > μ1, then some value of ξ� is greater than
1 and so the model cannot be applied. This time

μ1 = min
�∈[k]

W −W�

W
= 1− max�∈[k] W�

W
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4.3 The comparison between the two variants (global vs. local)
Let us summarize the difference between the two approaches discussed above. Both of them pre-
serve the same number of edges between clusters: μ fraction of all edges are of this type (global
property). The difference is how we split the degree of each vertex into internal degree and exter-
nal one (local property). The original LFR model insists on each vertex keeping the same fraction
of internal neighbors and the local version of our model (with k parameters ξi) does this too. As
a result, small clusters will be much denser than large clusters. Is it what we expect to happen in
complex networks?

Suppose that two researchers have the same number of friends (say, 100) but belong to different
communities. The first one, Bob, belongs to a small community (say, he is a mathematician doing
some esoteric part of mathematics), the second one, Alice, is part of a large community (say, she
is a data scientist). Suppose that 30% of friends of Alice do data science. Should we expect 30% of
friends of Bob to be in his field?We believe the answer is no. It might be the case that there are less
than 30 people around the world working on this subject! Coming back to the model, it seems that
it makes more sense for the number of internal neighbors of a given vertex to be a function of the
size of the cluster this vertex belongs to. As long as the probability that a given vertex is connected
to another member of its cluster is larger than the probability of being adjacent to a random vertex
in the whole graph, this vertex is a legit member of this cluster. This is what we propose in our
first variant, the global version of our model (with only one parameter ξ ).

5. Experimental results
In this section, we compare ABCD and LFR benchmarks with respect to their respective mixing
parameters (Subsection 5.1), the efficiency of the algorithms (Subsection 5.2), and properties of
the graphs they generate (Subsection 5.3). In order to perform fair comparisons, we fix the LFR
mixing parameter μ and then derive the corresponding parameters for ABCD: ξ via Equation (2)
for the global model, or ξi’s via Equation (4) for the local model.

Instructions how to reproduce Figures 2 and 4 can be found online.3 We do not make the codes
for producing the exact results given in Section 5.2 public, as they required some technical changes
in comparison to publicly available implementations of the algorithms; in particular, we wanted to
measure only the graph generation time without saving it to disk. Using the instructions presented
on GitHub, that are based on end user versions of codes, allow to reproduce the presented results
with high accuracy while minimizing complexity of execution of the experiments. Moreover, for
Figures 2 and 4, we performed a slightly more exact comparison than presented onGitHub; that is,
the same vertex degrees and community sizes are provided to all algorithms rather than generating
them independently each time to make sure that the corresponding graph generation processes
are compared on exactly the same data. However, the results are very similar to what is obtained
with the simplified approach available online. The modified implementations that were used to
generate figures in this paper can be made available upon request.

5.1 Global vs. local mixing parameters
We showed above that in the ABCDmodel (global variant), we expect a larger proportion of inter-
nal edges for larger communities. This implies a negative correlation between the community-wise
mixing parameters μi (i.e., the proportion of external edges for a given community) and the com-
munity sizes si. This is slightly different from the LFR model which tries to preserve the same
community-wise μi for each community. We showed that the ABCD model can be easily modi-
fied to mimic this property by defining community-wise parameters ξi, which we refer to as the
local variant of the model.

In Figure 2, we illustrate this behavior for graphs with n= 250,000 vertices and the same degree
and community sizes distributions. We plot the mixing parameter μi for each community as a
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Figure 2. Comparing the behavior of graphs with n= 250, 000 vertices generated from three models: LFR, ABCD (with the
configuration model), and its local variant. We used the same degree and community sizes distributions obtained with
parameters: w̄= 25, wmax = 1 500, and γ = 2.5 for the degrees, and cmin = 50, cmax = 2 500, and β = 1.5 for the community
sizes. We see that with LFR and ABCD (local variant), the expected community-wise mixing parameter μi is constant while
for the ABCDmodel, it decreases as a function of the community size.

function of its size. For comparison purpose, the dashed black horizontal line corresponds to the
constant value μ = 0.2. For the global variant of the ABCD model, we also display the regression
line obtained by fitting the expected values for the μi using the formula (3). In each case, due
to rounding issue, we see more variability for small communities, as expected. For LFR, we see
that the average value stays close to μ = 0.2, while with the global variant of the ABCD, the value
decreases with the community size matching the expected behavior quite well. Using the local
version of ABCD, we see that we get similar behavior to the LFR model.

5.2 Efficiency comparison
In this subsection, we compare efficiency of the generating algorithms. All the results were
obtained on a single thread of Intel Core i7-8550U CPU @ 1.80GHz, run under Microsoft
Windows 10 Pro, and performing all computations in RAM. The computations for LFR were
performed using the C++ language implementation4 for smaller graphs (as it is a reference) and
NetworKit5 for larger graphs (as it is faster). For ABCD, the Julia 1.3 language implementation
was used (Bezanson et al., 2017) in order to ensure high performance of graph generation, while
keeping the size of the code base small. We tested all four combinations of the ABCD model
(Chung-Lu vs. configuration model, and global vs. local variant).

In order for comparison to be fair, we first generated the degree distribution and the distri-
bution of cluster sizes and then used it for all five algorithms tested (LFR and four combinations
of ABCD). Only, the times to generate the corresponding graphs (single threaded, in memory,
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Figure 3. Generation times in seconds of the C++ LFR implementation and the ABCD models; CL indicates the Chung-Lu
model and CM indicates the configuration model.

without storing the outcome on a hard drive) were measured, assuming the degree distribution
and the distribution of cluster sizes are given—these steps are fast anyway.

The models were generated for μ = 0.2 (and its counterparts for ξ ’s for ABCD—see
Equations (2) and (4)), vertex average degree of 25 with maximum of 500, and community
sizes varying between 50 and 1,000. Three different configurations of (γ , β) guiding the
degree distribution and the distribution of cluster sizes are presented in Figure 3 ((γ , β) ∈
{(3, 2), (2.5, 1.5), (2, 1)}). The number of vertices, n, spans from 8,192 to 472,392 and the tim-
ings are presented on the log-log scale. We present the results for one run of the reference C++
LFRmodel, whereas averages over five runs of the ABCDmodel are reported. The reason for run-
ning the ABCD generator more than once was that in most cases one run took less than a second,
and so there was some non-negligible variability between run times due to external noise when
performing the computing.

The conclusion is that the reference C++ LFR algorithm is of the order of 100 times slower than
the one for the ABCD model; the largest ABCD was generated in a similar time to the smallest
LFR. The worst scenario for ABCD is when the configuration model is used with low exponents
of the two distributions (namely, γ = 2 and β = 1); in this case, ABCD is roughly 40 times faster.

In order to test an influence of various distributions of (γ , β) on the generation times of ABCD
for larger networks, we performed benchmark tests for 10,000,000 vertices and switched the LFR
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172 B. Kamiński et al.

Figure 4. Comparing some properties for graphs generated with the LFR and ABCD benchmarks, using the same degree and
community size distributions.

generator used to NetworKit implementation. As before, the mixing parameter is fixed toμ = 0.2,
vertex average degree is 25 with maximum of 500, and community sizes vary between 500 and
10,000 (we increased the community sizes in comparison to the earlier test, as we now consider
much larger number of vertices).

The time to generate the graphs using ABCD is of order of several minutes—see Table 1 where
we vary parameters γ and β . In general, configuration model variant of ABCD is faster when
local communities are not very dense. (See the rightmost plot in Figure 3 where we presented the
case of very dense communities where Chung-Lu-based generator is faster.) Also we note that
an increase in parameter β leads to longer run times. This is associated with the fact that small
values of β produce several very large communities that attract heavy vertices. In such scenarios,
the generators do not have to resolve too many collisions (multiple edges or self-loops), and so
the algorithm terminates quickly. Each row in Table 1 is produced for the same of vectors w and s
(but they vary across rows). The high variability of the results between rows indicates that the run
time is quite sensitive to specific sampled values of w and s. Specifically, we have checked that the
longest run times are to be expected, if there is a lot of heavy vertices sampled in w and at the
same time not many large clusters sampled in s. Based on the results reported in Table 1, we also
observe that for larger graphs, the NetworKit implementation of the LFR generator is faster than
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Table 1. Generation times in seconds of the ABCDmodel—four variants with n= 10,000,000 vertices; CL indicates the Chung-
Lu model and CM indicates the configuration model. Generation time of comparable graphs with LFR is presented using
NetworKit package

(γ , β) CL local CL global CM local CM global LFR NetworKit

(3.0, 2.0) 170 169 86 94 926
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3.0, 1.5) 141 184 81 74 922
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3.0, 1.0) 143 155 85 83 930
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2.5, 2.0) 228 203 105 118 1,072
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2.5, 1.5) 153 132 74 73 1,013
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2.5, 1.0) 116 116 67 67 1,099
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2.0, 2.0) 167 160 91 91 1,130
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2.0, 1.5) 132 132 79 77 1,114
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2.0, 1.0) 129 125 72 71 1,198

the reference C++ implementation of LFR but still over 10 times slower than the ABCD generator
based on the configuration model.

In all the tests that we report in this paper, we concentrated on a single-threaded implemen-
tation of all the generators that run in RAM. We made this choice as our objective was to get a
fair comparison of the time complexities of graph generation processes, unaffected by potential
approaches to their parallelizations. Indeed, there are many architectures that could be used here,
and the approach taken significantly affects timing (the three major options are multi-threading
on a single machine, out of core distributed computing, and moving the graph generation to
Graphical Processing Unit (GPU)/Tensor Processing Unit (TPU)). However, we would like to
highlight that parallelization of ABCD generator is conceptually relatively straightforward. The
major steps are the following. Cluster graphs Gi (i ∈ [k]) can be generated completely indepen-
dently, so their generation can be distributed with a large degree of flexibility to a given number
of processors. This can be done using a dynamic load balancing of assigning jobs to workers.
Generation of the background graph G0 can be achieved using standard procedures for parallel
generation of Chung-Lu or configuration model graphs, as described, for example, in Section 6.1
and Section 6.2, respectively, in Penschuck et al. (2020). We currently work on various imple-
mentations of parallelization options that should be available at GitHub repository.6 These are
relatively straightforward adjustments, as the Julia language provides a native multi-threading
and distributed computing support, and the code can be compiled to a GPU/TPU target.

5.3 Comparing graph properties
In this subsection, we compare graphs generated with the LFR and the ABCD benchmarks via
some topology-based measures. We investigate the following graph statistics: clustering coeffi-
cient (the average vertex transitivity), eigenvector centrality, the global transitivity, and the average
shortest paths length (approximated via sampling).

We generated graphs with 100,000 vertices, average degree 25, maximum degree 500, and
power law exponent γ = 2.5; for the community sizes, we used power law exponent β = 1.5 with
sizes between 50 and 2,000. The mixing parameter for LFR is set to μ = 0.2 and, in order to com-
pare similar graphs, for the ABCD algorithm, we derive ξ from (2) and the ξi’s from (4) (for the
local model). In Figure 4, we report the distribution of the graph properties obtained by generating
30 graphs each using LFR as well as 4 variations of ABCD, namely:

• CMg: configuration model with global ξ ,
• CMl: configuration model with local ξi’s,
• CLg: Chung-Lu model with global ξ ,
• CLl: Chung-Lu model with local ξi’s.
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The results of these experiments show high similarity of graphs generated with LFR and ABCD,
in particular, when the configuration model is used. Indeed, some graph parameters that are sen-
sitive with respect to the degree distribution (such as clustering coefficient) are not well preserved
for the Chung-Lu variant of the model, which is natural and should be expected. Having said that,
all graph parameters we evaluated are relatively well aligned.

6. Conclusion and future work
The paper has two interrelated angles, theoretical and practical. We tried to define the model in
as easy and natural way as possible. As a result, from the theoretical point of view, using abundant
tools from the theory of random graphs, we plan to investigate an asymptotic behavior of the
ABCDmodel. As explained in Subsection 2.2, this is not only interesting from pure math point of
view but also might be important for practitioners. Finally, we plan to generalize the model and
add geometry into the model. This would allow, for example, for overlapping and hierarchical
communities.

From practical point of view, the implementation we propose in this paper is single-threaded
which we believe is sufficient for generating small to medium size graphs. Indeed, it usually takes
under 1 minute to generate a graph consisting of several millions of vertices; in fact, the timing of
the process of generating an ABCD graph is of comparable magnitude as the time needed to save it
to the hard drive later (on a typical server). However, in order to deal with enormous graphs con-
taining billions of vertices, users might need out-of-core distributed implementation of the ABCD
algorithm. In Section 2.1, we have commented on how this could be achieved in future work.
Independently, it would be interesting to perform more extensive experiments with ABCD (and,
in particular, compare it to LFR) when the generated graphs are used to test algorithms that require
knowledge of ground truth community structure (such as clustering algorithms). We think that
performing such experimental comparison is an important follow-up to this theoretical paper.
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Notes
1 https://github.com/eXascaleInfolab/LFR-Benchmark_UndirWeightOvp/.
2 https://github.com/bkamins/ABCDGraphGenerator.jl/.
3 https://github.com/bkamins/ABCDGraphGenerator.jl/tree/master/instructions.
4 https://github.com/eXascaleInfolab/LFR-Benchmark_UndirWeightOvp/.
5 https://networkit.github.io/.
6 https://github.com/bkamins/ABCDGraphGenerator.jl.
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Appendix: Algorithm Pseudo-Code

Algorithm 1: Generation of the community sizes
1 INPUT: n: number of nodes, β : community sizes power law exponent, cmin: min community
size and cmax: max community size; Imax (optional, default to 100);

2 let sbest := ∞ and I:= 0;
3 initialize empty list Sbest ;
4 repeat
5 check if it is possible to generate the required cluster sizes; throw an error if it is not

possible;
6 let s:= 0;
7 initialize empty list X;
8 repeat
9 Sample value x from truncated discrete power law distribution with parameter β ,

restricted to the interval [cmin, cmax] and store in x in X;
10 let s:= s+ x;
11 until s≥ n;
12 if s= n then
13 OUTPUT: list of community sizes X;
14 exit;
15 else
16 if s< sbest then
17 let sbest := s and Sbest := X;
18 end
19 end
20 I = I + 1
21 until I > Imax;
22 Truncate Sbest and update sbest accordingly if needed (it might be impossible to find

corrections that produce admissible community sizes in corner cases; this may lead to
sbest < n case).;

23 repeat
24 In random order cyclically precess elements of Sbest ;
25 If sbest > n decrease values sequentially by 1 unless some element is cmin; decrease sbest by

one.;
26 If sbest < n increase values sequentially by 1 unless some element is cmax; increase sbest by

one.;
27 until sbest = n;
28 OUTPUT: list of community sizes Sbest ;
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Algorithm 2: Generation of the degree sequence
1 INPUT: n: number of nodes, wmin: min degree, wmax: max degree, γ : degree power law
exponent; Imax (optional, default to 100);

2 initialize empty listW;
3 let I:= 0;
4 repeat
5 repeat
6 sample value w from truncated discrete power law distribution with parameter γ ,

restricted to the interval [wmin,wmax] and add w toW;
7 until |W| = n;
8 if sum of degrees in W is even then
9 OUTPUT: list of degreesW

10 end
11 let I:= I + 1
12 until I > Imax;
13 decrease the largest value inW by 1 to make the sum of degrees even;
14 OUTPUT: list of degreesW

Algorithm 3: Assign nodes with degree sequenceW to communities with sizes S. Algorithm
given for global ABCD. For local version of ABCD, use cluster-local ξi’s instead of ξ
1 INPUT: Degree sequenceW on n nodes, community sizes S with |S| = k and parameter ξ

(LFR-style μ can be supplied instead);
2 sort nodes from largest to smallest degrees in W: w1 ≥ . . . ≥wn;
3 sort communities from largest to smallest sizes in S: s1 ≥ . . . ≥ sk;
4 initialize number of free spots in each community: fi:= si, 1≤ i≤ k;
5 initialize empty lists S1, . . . , Sk;
6 for 1≤ i≤ n do
7 find max value in 1≤ t ≤ k s.t. wi < (1− ξφ)st where φ is defined in (1)a;
8 pick random 1≤ j≤ t proportional to f1, . . . , ft ;
9 assign vertex i to community j by adding it to Sj;

10 let fj:= fj − 1;
11 end
12 OUTPUT: community assignment of vertices: S1, . . . , Sk;
aif μ is specified instead of (1− ξφ)st , we use (1− μ)st .
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Algorithm 4: ABCD with Chung-Lu Model. Algorithm given for global ABCD. For local
version of ABCD, use cluster-local ξi’s instead of ξ
1 INPUT: Community assignment S1, . . . , Sl from Algorithm 3 for n vertices, degree sequence
W from Algorithm 2, and parameter ξ (LFR-style μ can be supplied instead);

2 if μ was given, compute ξ ;
3 for 1≤ i≤ k do
4 letWi, the sum of the degrees of all vertices in Si;
5 randomly sample �(1− ξ )Wi/2� edges within Si where each vertex is selected

proportionally to its internal degree; duplicate edges and self-loops are skipped;
6 end
7 let s:= (sum(W) - sum(∀i:Wi))/2; sample s edges randomly where each vertex is selected
proportionally to its external degree; duplicate edges and self-loops are skipped;

8 OUTPUT: ABCD graph (list of edges generated);

Algorithm 5: ABCD with configuration model. Algorithm given for global ABCD. For local
version of ABCD, use cluster-local ξi’s instead of ξ
1 INPUT: Community assignment S1, . . . , Sl from Algorithm 3 for n vertices, degree sequence
W from Algorithm 2, and parameter ξ (LFR-style μ can be supplied instead);

2 if μ was given, compute ξ ;
3 for 1≤ i≤ k do
4 for each vertex in Si, given its degree w, assign internal wint := �(1− ξ ) ·w�;
5 if the sum of all wint is odd, adjust highest degree node randomly to make it even;
6 wire the vertices in Si randomly according to their values wa

int ;
7 re-wire duplicated edges and self-loops;
8 if re-wiring fails update the wint to achieved values
9 end

10 compute the external degree for each vertex as wext = :w−wint ;
11 wire the vertices randomly according to their values wext (global model);
12 re-wire duplicated edges and self-loops only considering edges in the global model;
13 OUTPUT: ABCD graph (list of edges generated);
aother methods can be used here; for example, high degree nodes can be wired first to limit the collisions, or algorithms such
as Viger & Lapaty Viger & Latapy (2005) which yields simple graphs can be used
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