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CHARACTERIZATIONS FOR PRIME SEMILATTICES
K. P. SHUM, M. W. CHAN, C. K. LAIAND K. Y. SO

1. Introduction. Throughout this paper when we refer to a semilattice S
we shall mean that S is a meet semilattice. We shall denote the infimum of
two elements a, b of S by a /A b, and the supremum, if it exists, by a V b. A
prime semilattice is a meet semilattice such that the infimum distributes
over all existing finite suprema, in the sense that if x; V x, ...V x, exists
then (x N\ x)) V(x N x)) ...V (x N\ x,) exists for any x and equals
x N\ (x; Vx,...V x,). Such semilattices were first studied by Balbes [1]
and we use his terminology.

A non-empty subset F of S is a filter provided that x N\ y € F if
and only if x € Fand y € F. A proper filter F is prime if, whenever
X,V x,...Vx, exists and is an element of F then x; € F for some i € {1,
2,...,n}. A semi-ideal of S is a non-empty subset I of S such thatif b € I
and a = b then a € I. We call I an ideal if, further, when x; Vx, V...V
x, exists such that x; € I foralli € {1, 2,...,n}, then

x1Vx,V...Vx, €L

An ideal P is called prime if a A b € P impliesa € Porb € P.

Prime semilattices were first characterized by Balbes [1]. Recently,
several characterizations for prime semilattices were also obtained by Y. S.
Pawar and N. K. Thakare [6]. Unfortunately, some of the proofs given in
their paper [6] were wrong. In this paper, we shall correct all these
mistakes. Several new characterizations for prime semilattices are
obtained. Maximal filters, maximal ideals, prime filters and prime ideals
in prime semilattices are studied. We then consider primeness for finite
semilattices. We prove that a finite semilattice S is D, if and only if S is
prime. As B. M. Schein claimed that D, is not equivalent to D, in general,
our theorem shows that such counter-example cannot be found in finite
semilattices.

2. Ideal extensions.

Definition 2.1. Let I be a semi-ideal of S. An extension of I by x is
defined to be the set

(x,I) = {a € SlaN\xel}
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where x is an arbitrary element in S.

This terminology comes from the fact that I € (x, I) for all x € S. It
should be noted that (x, I) need not be an ideal of S, but it is always a
semi-ideal of S.

Definition 2.2. Let I be an ideal of S. If (x, I is also an ideal of S for
some x € S, then (x, I) is called the extended ideal of I by x. For
simplicity, we denote (x, (y] ) by {(x, y).

PROPOSITION 2.3. Any extension of a prime ideal in S is a prime ideal.

Proof. Let P be a prime ideal of S. If x € P, then (x, P) = S and there
is nothing to prove. Assume x &€ P, and let y € (x, P). Because P is
prime, y /A x € P implies y € P. Thus (x, P) = P is a prime ideal.

COROLLARY 2.4. Let I be a non-empty subset of a semilattice S. If

I = P or I = N P,
iel’

U
ier !
where P/s are prime ideals, T is an index set, then (x, Iy is an ideal.

Proof. Let I = N, . P. Then
1) = iQI‘ Py = iQF x, By = iQI" x By = iQF’ F
where I = {i € I''x & P,;} since x € P, implies (x, P,y = S. Trivially,
non-empty intersection of ideals is an ideal, thus (x, I) is an ideal.
Similarly for I = U,cp P,

Remark 2.5. The converse of Proposition 2.3 is not generally true, that is
in a semilattice, an ideal with a prime extension need not be prime. For
example, let S be the semilattice {0, a, b, ¢} with Hasse diagram shown
below

0

Then I = {0, a} is an ideal of S but not prime. It is clear that
(¢, 1) ={0,a,b},{b,I) ={0,a,c}, {(aI)=S8,{0,I) =S areall prime
ideals.

PROPOSITION 2.6. Let I be a subset of S. If for all x € S, (x, Iy is an ideal
of S, then I must be an ideal.

Proof. Let y = z and z € I. Consider (z, I). {z, I) is an ideal
and z € (z, I), hencey € {(z,I) and soy = y /\ z € I. Now suppose
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x3Vx,V...Vx,existsinSandx; € I (i = 1,2,...,n). Consider
(x; Vx,...Vx,, I). Clearly,

x; Nx;Vx,V...Vx,)=x, €1,
therefore

x; € (5 Vxy...Vx, D).

Since (x; V x5 ...V x,, I)is an ideal and x; V x, ... V x, exists in S,
so

x;Vxy...Vx, € (x; Vxy...Vx,,I).
Hence
X1 Vx,V...Vx, =(x;Vx,V...VXx),)
NxVx,...Vx,) el
and [/ is indeed an ideal of S.

We observe that the ordering of elements in S is also related to the
reverse set inclusion of their corresponding ideal extensions. In fact, we
have the following proposition.

PROPOSITION 2.7. Let x, y be elements of S. Then x = y if and only if
(x, Iy 2 {y, I) for all ideals I of S.

Proof. (=) Letz € {y, I). Thenz N\ y € I. Since x = y and I is an
ideal, we have z A x € I. This implies that z € (x, I). Thus (y, I) €
(x, I}.

(¢) Consider (y], the principal ideal generated by y. Obviously,
x Ny € (y] so

x € y) <%y
by hypothesis. Hence x = x A x € (y], that is, x = y.

In fact, Proposition 2.7 holds when .the word “ideal” is replaced by
“semi-ideal”.

3. Characterizations for prime semilattices by ideals. In this section, we
shall characterize prime semilattices by ideals.

The following theorem was obtained by Y. S. Pawar and N. K. Thakare
in [6, Theorem 6, p. 294].

THEOREM 3.1. For any semilattice S the following are equivalent.
(1) S is prime.

(2) {a, b) is an ideal for all a, b in S.

(3) {a, b) is an ideal for all b = a.

It should be noted that the proof of this theorem is wrong. Pawar and
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Thakare assumed the existence of (a N\ x,) V(@ AN xp)) V... V(a N x,) at
the first instance and then proved that

(@aNx)V@Nx)V...V@NAx,)=alNxVx,...Vx,).

In fact, there is no way of being sure that (@ N\ x)) V (@ N\ x;) ...
V (a N\ x,) exists in a semilattice.

We now give a new characterization for prime semilattices which
includes Pawar and Thakare’s result as its trivial corollary. Their result is
therefore true in spite of the mistake in their proof.

THEOREM 3.2. For any semilattice S the following are equivalent.
(i) S is prime.
(i1) {a, Iy is an ideal for any ideal I and a € S.
(ii) {a, I) is an ideal for any ideal I such that I is bounded by a, i.e.,
i=aforanyi € L
(iv) {a, b) is an ideal for any b = a.
(v) {a, b) is an ideal for any a, b € 8.
Proof. (i) = (ii). If x = y € (a, I), then
xNa=yANac€l
This implies that x /A @ € I and hence x € {a, I).
Now assume x; € {(a,I) foralli € {1,2,...,n}andx;Vx,V... Vx,
exists in S. Then
x;Vx,V..Vx)Na=x Na)V...V(x, Na) el
asx; Na € Iforalli € {1,2,...,n}. Hence,
x;Vx,V...Vx,) € (a ).
(i1) = (ii1). This is obvious.
(ii1) = (iv). Since b = a, the principal ideal (b] is bounded by a. So
by (iii), {a, b) is an ideal.
(iv) = (v). Since {a, b) = (a, a /\ b), {a, b) is an ideal by (iv).
(v) = (i). Assume x; Vx, V...V x, exists in S and a € S. For any
yZaANx,i=12...,n wehavex, € (a,y).
By (v), {a, y) is an ideal of S, so
x,Vx,V...Vx, € {a,y).
Thus,
alNx;Vx,V...Vx,) € (y]
and
a/\N(x;Vxy...Vx,) =y

Clearly,a A (x; V x, V...V x,)is an upper bound of {a A x;};c (12, )
This means that a A\ (x; V x, V...V x,) is the least upper bound of
{a N\ x;}icqi2,. ) Hence,
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aNx;Vx;V...Vx,))=(@ANx)V@@aNx)V...V(aN x,).
S is therefore a prime semilattice.

The following lemma, which has certain interest of its own, is necessary
for the characterization of prime semilattice in Section 4.

LEMMA 3.3. A4 filter F of a semilattice S is prime if and only if F¢, the set
complement of F in S, is a prime ideal.

The proof of this lemma is easy and therefore it is omitted.

4. Applications of Balbes-Stone theorem. A modified version of Balbes
Theorem has already been obtained by C. S. Hoo and K. P. Shum in [8].
The corrected version of Balbes’ result (Theorem 2.2. of [8]) is as
follows.

THEOREM 4.1. (Balbes) In a semilattice S, the following are equivalent.

(1) S is a prime semilattice.

(it) If F is a filter in S and I is a non-empty subset of S, disjoint from F
and such that x; NV x, V ...V x, exists in I whenever x,, x5, ...,x, € I,
then there exists a prime filter F' such that F C F and F N I = 0.

(iii) If F is a filter in S and I is an ideal of S disjoint from F, then there
exists a prime filter F' such that F C F and F N I = 0.

(iv) If x £ y, then there exists a prime filter F' such that x € F and
y & F.

Hoo and Shum [8] added the equivalent condition (iii) to Balbes’
original statements. In [6], Pawar and Thakare tried to produce a proof for
(1) = (iii) (Theorem 1 [6], p. 292). Unfortunately, the proof supplied by
them was wrong. In their proof, they stated the following sentence:

“Further iy Niy N ... N, Z (@ NG N...Ng) N Vx,V...
V x,)” where i, i,, . . ., i, are elements of an ideal / and q;, g,, . . ., g,, are
elements of a filter Q disjoint from /. [Theorem 1 [6], p. 292, line 19].

The above statement is not correct as can be seen from the following
counter example.

Example 4.2. Let S = {0, x|, x5, a, 1} with Hasse diagram shown
below.

X X
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It is easily checked that S is a prime semilattice. Clearly I = {0, x,,
Xy, a} is an ideal, Q = {1} is a filter disjoint from I. Take i} = x,
i2 = X3, ql = 1, qz = l, then l] = ql N\ xl, 12 = q2 A\ x2. Blit
Thus the statement given by Pawar and Thakare is incorrect.

We now correct their proof.

We shall call (i) <> (iii) Stone’s Theorem because such theorem was first
obtained by M. H. Stone in distributive lattice [3, p. 74, Theorem 15].
THEOREM 4.3. (1) < (iii).

Proof. (i) = (iii). Let S be a prime semilattice. Then by Zorn’s lemma,
there exists a filter Q maximal with the property that it contains F and is
disjoint from 1. Suppose x; V x, V... V x, exists in Q with x, & Q for

k=12 ...,nThen[Q U {x;}).[Q U {x,}),...[Q U {x,}) have a
non-empty intersection with I. Hence, there exists iy € I, q, € 0,
k =1,2,...,nsuch that

= PRVANS P FVANY NV ANNRVANY BAVANS 78
Because I is an ideal,
g NgpN...N\Ng, \Nx, €L
Also, by the primeness of S,
@G ANGpN...Ng) NV, V...VXx,)
=g NgN...q, Nx)V ...
Vg Ng N...N\Ng, \x,) €1,

as I is an ideal. Thus I N Q # 6 which contradicts the choice of Q. Hence
Q is a prime filter. The proof is completed.

(111) = (i). This follows as in [6].

We now call Theorem 4.3 as Balbes-Stone theorem and apply this
theorem to give two new characterizations for prime semilattices.

THEOREM 4.4. A semilattice S is prime if and only if {x, P) 2 {y, P) for
any prime ideal P of S = x = y.

Proof. (=) Suppose that x £ y. Since S is prime, by Balbes-Stone
Theorem (iv), there is a prime filter F such that x € F but y ¢ F. By
Lemma 3.3 I = F‘is a prime ideal such that x € Iandy € I. Asy € I,
SO

S =W, Iy S{x, I).
Then x € (x, I) implies x € I = F°. This contradicts x € F. Thus
x = y.
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(<) Suppose that x £ y. Then there is a prime ideal I such that
{x, Iy 2{y, I). Hence, there is an element z such that z A x & I and z N\
y € I. Therefore x & (z,I) and y € (z, I'). By Proposition 2.3, (z, [} is a
prime ideal. Let F = (z, I)‘ be the set complement of (z, Iy in S. Then, by
Lemma 3.3, F is a prime filter of S. Thus, x € F and y & F. Apply
Balbes-Stone Theorem (iv), S is a prime semilattice. The proof is
completed.

THEOREM 4.5. A semilattice S is prime if and only if for any ideal I in S,
I = N {J:J is a prime ideal containing 1}.

Proof. (<) By Corollary 2.4, (x, I) is an ideal for any ideal ] and x € S.
Consequently S is prime, by Theorem 3.2.

(=) Clearly, I € N {J:J is a prime ideal containing /}. Now assume
that there exists an element x & I and x € J for any prime ideal J
containing I. Then [x) N I = @. By Theorem 4.3, there exists a prime filter
F such that [x) € Fand F N I = §. Apply Lemma 3.3, we know that
Jo = F¢is a prime ideal containing I. But x & J, contradicts our
assumption. Thus

I = N {J:J is a prime ideal containing I}.

The following statement was stated by Gritzer in ([3], Corollary 18,
p- 75):

“Every ideal of a distributive lattice is the intersection of all prime
ideals containing it.”

As we notice that the concepts of primeness and distributivity given in
([3], p. 36) are exactly the same in a lattice, so by Theorem 4.5, we can
modify Gritzer’s result as follows:

COROLLARY 4.6. A lattice L is distributive if and only if every ideal of L is
the intersection of all prime ideals containing it.

5. Filters, ideals and complemented semilattices. Filters and ideals in
prime semilattices were studied by Pawar and Thakare in [6]. The
following theorem was stated by them.

THEOREM 5.1. Let S be a prime semilattice with 0 and 1 in which the
complement of every maximal ideal is a maximal filter. Then S is
complemented. ( [6], Theorem 9, p. 296).

Unfortunately, the proof of this theorem provided by Pawar and
Thakare is wrong. In this section, we shall amend this result which leads to
a thorough study of complemented prime semilattices.

As the condition “complement of every maximal ideal is a maximal
filter” is a rather ambiguous statement, we shall study what it can mean.
We first obtain the following proposition.
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PROPOSITION 5.2. Let S be a prime semilattice with 1 in which N° (the set
complement of N) is a maximal filter for every maximal ideal N of S. Then
for any ideal M the following are equivalent.

(1) M is a maximal ideal.

(i) Q = M€ is a maximal filter.

(i) Q = M€ is a prime filter.

(iv) M is a prime ideal.

(v) M is a minimal prime ideal.

(vi) Q is a minimal prime filter.

Note. 1t is a well-known fact that a maximal ideal of a prime semilattice
must be prime. The converse is easily shown to be false in general.
However, from Proposition 5.2, we note that if the complement of a
maximal ideal is a maximal filter, then there is no difference between
maximal and prime ideals in prime semilattices with 1.

Proof. (1) = (ii). This follows by assumption.

(i) = (i11). Q is a maximal (proper) filter, so there exists an element
x € S — Q. Apply Balbes theorem (or more explicitly, apply Theorem 2
in [6] ), there exists a prime filter F such that F 2 Q and x & F. By the
maximality of Q, we must have Q = F. Thus Q is a prime filter.

(111) = (iv). See Lemma 3.3.

(iv) = (1). Suppose M is not a maximal ideal of S. Because S has 1, by
Zorn’s lemma there is a maximal ideal M, such that M & M, & S.
By assumption, Q; = M| is a maximal filter. As Q = M¢ is a filter and
0 2 Q,, this contradicts the maximality of Q,. Hence M is a maximal
ideal.

(iv) = (v). Let M’ be a prime ideal of S such that M’ € M € S. Since
M’ is a maximal ideal (by (i) & (iv) ) thus M’ = M. Therefore M is a
minimal prime ideal.

(v) = (iv). This is trivial.

(iii) = (vi). Suppose that 9; € Q € S and Q, is a prime filter. Then,
because (iii) « (ii), Q, is a maximal filter. Therefore O, = Q,andso Qis a
minimal prime filter.

(vi) = (i1). This is trivial.

The proof is thus completed.

Remark. In [6], Pawar and Thakare also proved (ii) = (iii). But they had
to assume that the semilattice has 0. In fact, our proof shows that the
assumption of zero is superfluous.

In general, the complement of a maximal ideal M in a prime semilattice
with 1 need not be a maximal filter, but it is a filter.

PROPOSITION 5.3. Let S be a prime semilattice with 1. Then for every
maximal ideal M, Q = M is a filter.
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Proof. Suppose that x Ny € M = Q. If x € M, thenx = x Ay
implies that x /A y € M since M is an ideal. This contradicts the fact that
x Ny € M. Hence, x € Qand y € Q. Suppose that x € Q,y € Q and
x N\ y € M. Since M is a maximal ideal, we have (MU{x}] = S.
Therefore

xVmV...Vm =1

for some m,, m,, ... m;, € M (see [2] ), and hence
YyNEVm V... Vm) =y.

As S is a prime semilattice, so

y=WAX)Vy Am)V...V(y N\ m).

Because y A x € M,andy A m; € M foralli = 1,...,k, we have
y € M, which is a contradiction. Thus x Ay € Q. Hence Q = M is a
filter.

Note. In proving Theorem 5.1, Pawar and Thakare considered the ideal
{a,0) for any a € S and assumed a V x # 1 for all x € {a, 0). Then they
considered the set

A = {{a, x}"x € {a,0)}

and let J = A', where for any non-empty subset Y of S, Y* and Y! denote
the set of all upper bounds of Y and the set of all lower bounds of Y
respectively. As J is a proper ideal in S and 1 € S, J € M for some
maximal ideal M in S. Then they claimed that a € S — M. However, we
observe that 0 € (a, 0) and in fact a is the smallest element in A4, so
J = A' = (a]. Therefore a € J € M. Thus Pawar and Thakare’s proof is
incorrect. Also, they claimed that (a, 0) € M, but such claim is not
justifiable. ( [6], Theorem 9, p. 296, lines 5-12).

In order to amend the mistakes made by Pawar and Thakare [6], we find
a rather interesting result which, in fact, is a characterization for
complemented semilattices. The following lemma, which has certain
interest of its own, is crucial for such characterization.

LEMMA 5.4. Let S be a prime semilattice with 0 and 1, then the following
statements are equivalent:
(1) For any maximal ideal M, M* is a maximal filter.

,,,,,

(a, 0) such that
aVyVuyV.. Ve =1
Proof. (i) = (ii). First, we claim that

(@ u{a0)]=S forallae€S.
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Suppose if possible that ((a] U (a, 0)] & S. Then, by Zorn’s lemma,
there exists a maximal ideal M such that

((@uU{a0)]CE MCS.

This is because S has 1. Now let Q = M€, by assumption (i), Q is a
maximal filter. Hence a & Q implies [Q U {a}) = S. Consequently, we
can pick some element ¢ € Q such that ¢ A\ a = 0, which implies that
g € Q N M = @, a contradiction. Therefore we have proved that

((a] U (a,0)] = S.
Thus, there exists @’ = a, {t;};_, in (a, 0) such that
a’Vt]V...Vln = ]..

ClearlyaV i, V... V1, = 1, so (ii) is established.

(ii) = (i). Let M be a maximal ideal, M¢ be its set complement in S.
Clearly, M® is a filter (by Proposition 5.3). Assume that there exists a
filter F such that M € F C S, then M N F # @, that is, there exists
a € M N F. Now, by (ii) there exists {#,};_, in {a, 0) such that

thlV...Vln= l.
Ift, € Mforalli = 1,...,n then
l=aVyV...Vt, € M,

a contradiction. Therefore 7, € M“ C Fforsomei € {1,...,n}, but then
0 = a A\ 1; € F, again, a contradiction. Thus M* is indeed a maximal filter
of S.

Remark 5.5. Let S be a prime semilattice with 0 and 1 in which the
statement of Proposition 5.4 (ii) holds. Then statements (i)-(vi) in
Proposition 5.2 are all equivalent.

THEOREM 5.6. Let S be a prime semilattice with 0 and 1, then the
Jfollowing statements are equivalent.
(I) (i) For any maximal ideal M, M€ is a maximal filter.
(i1) S is pseudocomplemented.
(IT) S is complemented.

Proof. (I) = (II). By Lemma 5.4, for any a in S, there exists a sequence

.....

aVI]Vt2V...VIn= 1.

Now let a* be the pseudocomplement of a. Then #;, = a* for all
i € {l,...,n}, clearly a V a* = 1, as a* /\ a = 0, therefore S is
complemented.

(II) = (I). By virtue of Lemma 5.4, clearly (i) is established. Since S is
complemented, for any a € S, there exists ¢ € S such thata /A ¢t = 0 and
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aVt = 1. We claim that a* = ¢, forif a A x = 0 then
x=@VtH)y Nx=@Nx)VENx)=1tNx,
that is, x = ¢. Hence, S is pseudocomplemented.

COROLLARY 5.7. Let S be a prime semilattice with 0 and 1. If S is a
complemented semilattice, then the six statements as stated in Proposition 5.2
are equivalent.

6. Relative annihilators. In this section, we study semilattices in which
{(a, b) V (b, a) = S.

{a, by V (b, a) means the ideal generated by (a, b) U (b, a). We shall see
that these semilattices can be characterized as those in which the filters
containing any given prime filter form a chain. In fact, such characteriza-
tion for lattices has already been obtained by Mandelker [5]. Most of his
results can be transferred verbatim to semilattices with only slight
modifications.

In [6], Pawar and Thakare proved the following theorem.

THEOREM 6.1. In a prime semilattice if the filters containing the given
filter F form a chain then F is prime and

(@, b) V (b, a) = S.

Also, they said that it will be interesting to see whether the condition
{a, b) V (b, a) = S is also necessary [6, Theorem 8, p. 295].

The proof of Theorem 6.1 is essentially taken from the necessity part of
Mandelker’s theorem [5, Theorem 3] as Stone’s theorem for distributive
lattices also holds for prime semilattice (Theorem 4.3). However, if one
goes through Mandelker’s proof, it can be seen that the sufficient part of
Mandelker’s theorem also holds for prime semilattices. This answers the
question of Pawar and Thakare without any difficulty. We would like to
point out that in proving Theorem 6.1, Pawar and Thakare did not
mention the chain condition which is a key step in the proof.

We now extend Mandelker’s theorem [5, Theorem 3] from lattices to
semilattices as follows.

LEMMA 6.2. In any prime semilattice S, each of the following conditions on

a given filter F implies the next.
(1) For any element a and b of S, there exists an element x in F such that

a /\ x and b \ x are comparable.

(ii) The filters containing F form a chain.

(iii) The prime filters containing F form a chain.

(iv) F is prime.

(v) F contains a prime filter.
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Proof. (i) = (ii). Let G and H be filters containing F, and suppose that
they are not comparable. Choose a € G — H and b € H — G. Choose
x € F c G such that @ A\ x and b A x are comparable. Without
loss of generality, we may assume a /A x = b /\ x. Since x € G, we have
a N\ x € G. Thisimplies » A\ x € G and hence b € G for G is a filter. This
contradicts the fact that b & G.

(i1) = (iit). This is trivial.

(iii) = (iv). Let the prime filters containing F be denoted by {F,}. Since
the F’s form a chain, it is easily seen that (N, F,) = F’ is also a prime
filter such that F € F'. If F C F’, then there exists x € F' — F. Because S
is a prime semilattice, by Balbes-Stone Theorem (Theorem 4.3), there
exists a prime filter G such that F € G, x ¢ G. But FF € G, a
contradiction. Thus F = F’ and so F is a prime filter.

(iv) = (v). This is trivial.

THEOREM 6.3. Let S be a prime semilattice. The identity
{a,b) V (b, a) = S

holds for any a, b in S if and only if all the conditions of the lemma are
equivalent.

Proof. (=) It suffices to show that (v) implies (i). Let P be a prime filter
contained in F and choose z € P. For any a and b in S we have

{a, bV (b,a) = S
={sss=2Vz,V...Vz,
z; € {a,b) U (b, a)}.
This is because S is prime [2, Theorem 1.1]. Thus
z=x;Vx,V..Vx,VyyVy, V... Vy,,

where x; € (a, b), y; € (b, a). Since P is a prime filter, z € P implies x; or
y; € P for some i, j. Without loss of generality, let x; € P & F. Consider
a N x,.Clearly a N\ x; = b as x; € {a, b). Thus

a/Nx =bA x.

Therefore, there exists x; € F such that ¢ N\ x; and b N x; are
comparable.
(<) Suppose that there exist a and b of S which are such that

— (a, b) V (b, a)

is a proper ideal. Then by Stone’s Theorem for prime semilattices
(Theorem 4.3), there exists a prime filter P such thatJ N P = @. Thus P
satisfies condition (iv) in Lemma 6.2 and hence satisfies condition (i).
Thus, there exists x € P such that a /A x and b /\ x are comparable.
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Without loss of generality, suppose
aNx=bANx=b

Then x € (a, b) € J. But x is in P, which contradicts / N P = §.
Hence

J ={(a, byV(b,ay =S8.
The proof is completed.

Thus the question raised in the paper of Pawar and Thakare [6] is now
completely solved by Theorem 6.3.

7. m-distributive semilattices. We call a semilattice S m-distributive if
and only if it satisfies the equation

D)y N(x;Vxy...Vx,)
=(yNANXDPVOANxy)...V(yA\x,)

in the sense that whenever the left hand side exists then so does the right
hand side and the two sides are equal. This idea was first put forward by
Schein [7]. We will denote the class of m-distributive semilattices by D,, for
each m = 2,3 ... and the class of semilattices which satisfy (D,,) for each
m = 2,3, ... by D, In fact the elements of D, are just the prime
semilattices. According to [9, p. 222], a semilattice S is distributive if
whenever x, a, b € S are such that x = a A b, there exists a’, b’ € S with
ad Z a, b = band x = a N V. If we denote the class of distributive
semilattices by D then the following series of inequalities holds:

D,2D;2...2D,2D.

In 1972, B. M. Schein [7] conjectured that D, and D,, (m > 2) are not
equivalent. Also the referee of [6] asked whether D, is sufficient for a meet
semilattice S to be D, As far as we know, in the literature, Schein’s
conjecture is not yet solved. In this section, we shall show that D, = D in
finite semilattices. Thus a partial answer to the above question is
obtained.

THEOREM 7.1. Let S be a finite semilattice. Then S is D, if and only if
S is a prime semilattice.

Proof. (<) This is trivial.

(=) Suppose ¢, = x; V x, V...V x, exists for some x, ..., x, € S. We
first claim the existence of x; V x, V ... V x;, for every 1 = k = n.
Now,

(x5 X9 oo x J# 0

(where Y* means the upper bounds of the set Y); this is because
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1, € {x}, X9 ..., X}

Since S is a finite semilattice,
4= N{X), Xy ooy X )

exists. Clearly 7, is the least upper bound of {x|, x,, ..., x; }. Therefore
L=xVx,V...Vx.

Our claim is established. Hence, for all x € S, we have
xNx;Vx;V...Vx,)=xAN(,_,Vx,)

ast, | = x; Vx,...Vx,_, exists. Therefore, by D,, we have

n—1
XN, Vx,)=xNt,_)V(xAx,)
=[x A2 Vx,_DIVxAXx,)
=xANt, )V ANx,_)V&xAx,)
=...=(xAXPVEAx)V...V(xANXx,).

Thus, S is a prime semilattice.

From Theorem 7.1, it is now clear that a counter-example showing that
D, is not equal to D, (as conjectured by Schein in [7] ) does not hold in
finite semilattices. Also, the question asked by the referee in [6] is partially
answered. However, we are still unable to prove that D, is equal to D, in
infinite meet semilattices, although we suspect that this may be so, in
contrast to Schein’s conjecture.

Finally, we prove a theorem which we feel may provide some useful
information in solving Schein’s conjecture.

THEOREM 7.2. Let S be a semilattice which is D,. Let a, b, cy, ..., c,
(1 = k =n — 1) be elements of S. If a < b such that

aVe V.. Ve =bVe V... Vg
exists, then there exists c;(1 = i = k) such that

alNc¢zbhAec

Proof. Suppose a N\ ¢; = b /\ ¢; for all 1 =i = k. Then
b=bANBVcV...Vc)
=bAN@VeV...Vg¢)

bNANaYVBNc)V...V(bANc)
aV@Nc)V...V@nNc)

Il

=a
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in contradiction with a < b.
Thus there exists an element c; such that

alNc¢ #bAg.
The proof is thus completed.

In closing, we would like to pose the following problem for solution. By
virtue of the proof in Theorem 7.1, we see that the statements of Lemma
5.4 (i1) and Theorem 5.6 (II) are equivalent in a finite prime semilattice
with 0 and 1. In this case, the complementation of S and the statement of
Lemma 5.4 (i) are equivalent. Thus the Theorem 9 in [6] is true in the finite
case. Our question is: does this hold in the infinite case? In other words, is
it true that for any element a of an infinite prime semilattice S with 0 and
1, there exists a sequence of elements {/,];c(,,. ) in {4, 0) such thata V
HV,V... Vi, = 1 implies the complementation of S?
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