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1. Introduction. In this paper we are concerned with the representation theory of the
symmetric groups over a field K of characteristic p. Every field is a splitting field for the
symmetric groups. Consequently, in order to study the modular representation theory of
these groups, it is sufficient to work over the prime fields. However, we take K to be an
arbitrary field of characteristic p, since the presentation of the results is not affected by this
choice. Sn denotes the group of permutations of {xu ..., xn}, where xu ..., xn are indepen-
dent indeterminates over K. The group algebra of Sn with coefficients in K is denoted by <5)n.

Let (A) be a partition of n. We can define the Specht module S(A) corresponding to (X)
(over the field K). For the construction, the reader is referred to [3]. S w consists of ^-linear
combinations of the polynomials/^^) defined for any tableau y of (A) as in [3, Introduction].
These modules are studied in the author's Ph.D. thesis [4]. If K is a field of characteristic
zero, the Specht modules constitute a full set of irreducible, non-isomorphic left ^-modules.

It turns out that the problem of determining the ^-decomposition numbers of the sym-
metric groups is equivalent to the problem of constructing the composition factors of the
Specht modules over a field of characteristic p. We attempt to analyse the Specht modules
corresponding to partitions of the form {n — r, Y), 0 ^ r ^ n— 1. The diagram of such a
partition is a hook, and accordingly, these Specht modules are referred to as Hook Represen-
tations. The Specht module corresponding to the partition (n — r, V) is denoted by S(r, ri).

Throughout most of this paper, K is a field of characteristic p not equal to 2. We prove
that S(r, n) is irreducible if/? does not divide n. In the case in which p divides n, we find a
composition series of the form 0 <=• M <= S(r, n), 0 < r < n— 1. The proof is by induction on
n. In the first few sections we lay the foundations of the inductive argument which is carried
out in Section 5.

The paper is concluded in Section 6 with some remarks concerning the hook represen-
tations over a field of characteristic 2. We establish a connection between these modules and
the natural representation modules to be defined. If 2r fS n, S(r, ri) contains a submodule
isomorphic to the Specht module corresponding to the partition (n-r, r). The problem of
analysing the hook representations is equivalent to that of analysing the natural representation
modules.

For a general reference on the representations of the symmetric groups, see [5].

2. General remarks. We begin with a few general remarks concerning the hook
representations.

PROPOSITION 1. IfK is afield of characteristic not equal to 2, then S(r, ri) is an indecom-
posable <bn-module.

Indeed the Specht modules Sw are all indecomposable over a field of characteristic not
equal to 2. One proves that Hom<pn(S

U), Sw) S K.
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For the rest of this section, K is an arbitrary field. We write xt ^
{}>!,..., yr} will denote a subset of the set {xu ..., xn).

if i^j, and

PROPOSITION 2. A K-basisfor S(r, n) is given by

X =
Thus

:S(r,n) =

This is a special case of the result that a AT-basis for Sw is given by {fw(y): y is a standard
tableau of (A)} (standard tableaux are defined in [5], to which the reader is referred for the
meaning of any undefined terms). The proof that the set X is linearly independent over K is
by induction on n. S(r, n) is generated over K by the polynomials of the form A(ylt ...,yr+1),
xt g j>! < . . . < yr+! g xn. The formula

(i)

where >̂s is meant to indicate that ys is missing from the sequence (xu yt,..., ys,..., yr+1),
shows that X generates S (r, n) over K. This formula can be proved by expressing the difference
products as Vandermonde determinants, and noting that the determinant
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i y\ ••• tf+
is zero.

The partitions (« —r, lr) and (r+1, I""'"1), 0 ^ r ^ n— 1, are conjugate in the sense of
[5, p. 36]. Write A = A(JC,, . . . ,*„). Then KA = S{n-\,ri).

PROPOSITION 3. S(r,n) and KA®KS(n—r—l,n) have the same composition factors,
counted according to multiplicity.

This again is a special case of a general result. Let (A) and (A') be conjugate partitions
with corresponding ordinary irreducible characters C(A) and C(r) respectively. Then
£W _ (̂i")̂ (A')) where ((ln) is the alternating character. This is the basis of the result that
Sw and KA®KS(A) have the same composition factors.

The final proposition of this section will be of use in Section 5.

PROPOSITION 4. Let M be an indecomposable <bn-module with a composition series of the
form 0 c: Mi c M. Then M has exactly one proper subntodule.

Proof. Let 0 <=. Af t c Af be a composition series for M, and suppose that N is a proper
<Dn-submodule of Af. The chain 0 c N c Af can be refined to a composition series, and by the
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Jordan-Holder Theorem, it must be a composition series. If MYnN = 0, then MY +N (direct
sum) would be a submodule of M properly containing Mj. It would follow that M = Mv + N
(direct sum), contradicting the assumption that M is indecomposable. Thus M^N^Q.
Since M± and N are irreducible, Mt = M^nN= N, proving that Ml is the unique proper
submodule of M.

3. The case p divides n. The results of this section form part of the author's Ph.D
Thesis [4]. Throughout this section we assume that the characteristic p of the field K divides
n. We set

Suppose that r < n— 1. Proposition 1 gives a AT-basis for S(r, ri). Using this basis, we
define a linear transformation 0r: S(r, ri) -»S(r+1, ri) as follows:

!, ) > ! , . . . , y r ) ) = £ A(Xi , y l t . . . , y r , xk)
k=l

1 1

Xl J'l

1 n

JV Si

Y r
Xl

+1

(2)

extending to the whole of S(r, ri) by .^-linearity. We claim that ff' is a On-homomorphism.
To see this, let {ylt..., yr+1} s {x^ . . . , xn} with ^ < >>2 < .. . < yr+1. From (1), we have

1 1

1 1

Xl J'l

.̂r+1 ,,r+l

1 0

1 n

J'r+1 St

v r+ l c

J'r+1 S,+ ]

1

J'l

Since p divides n,

1

J'l

1 «

J'r+1 St

J'r
r+l „
r+1 s r+ l

1 n

J'r+1 St

J'r+1 S p + 1

From this it follows that P is a On-homomorphism.
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Thus we have a chain of 3>n-modules and 0,,-homomorphisms:

0 -> S(0, M) £ S(l, n) ̂  ...-> S(n - 2 , n ) - ^ » S ( n - 1 , n) -»0. (3)

We proceed to investigate the properties of this sequence.
Certainly S(r, n— 1) is a <!>,,_ j-submodule of S(r, ri). Let $ r denote the restriction of 0r

to this submodule. Then <j>r is a O^j-homomorphism.

LEMMA 1. Im 6r = Im $'.

Proof. All we need to show is that Im 0r £ Im <j)r. We do this by checking that
er(A(x1,yu...,yr))slm(j)r for all yu...,yr with x t < j x < . . . < y r g xn. Clearly it is
sufficient to take yr = xn.

n — I n n

E Sr(A(*i.J'i.---»>'r-i»^*))= E A C x , , ^ , . . . , y r _ i ,x t ) x,)- £ A(x,,y1 ^ - 1 . ^ . ^ 1 )
* = 1 fc,/=l 1 = 1

= -fl'CACx,,^!,..., yr_i,xn)).

Lemma 1 follows from this.
For the rest of this section, we assume that 0 < r < n— 1.

LEMMA 2. Suppose that S(r, n— 1) andS(r—l, «— 1) are irreducible <&n-i-modules. Then

Proof. erO-\Myu...,yr))= £ A(yl f . . . . j>r) xt, x,) = 0. Hence Im^" 1 £ ker^.
k,l=l

We prove the reverse inclusion by counting dimensions.
By hypothesis, S(r,n—l) is an irreducible <&„_!-module, and certainly <j>r^0. Hence

ker<pr = 0. Consequently, by Lemma 1 and Proposition 1,

dimK Im 6r = dimK Im <j>r = dimK S(r

Therefore

, n - 1 ) = I j .

dimKker0r = dimxS(r, H)-dimJtImflr = ( " \-(" ) = ( " _ , ) •

By hypothesis, S(r— 1, n— 1) is irreducible; whence ker^1""1 = 0. Hence by Lemma 1 and
Proposition 1,

dimKIm0p"1 = d imxlm^ '" 1 = d i m K S ( r - l , « - l ) = 1 I.

Thus dimKIm0'~1 = dimjjkerfl', and this completes the proof of Lemma 2.
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140 M. H. PEEL

THEOREM 1. Assuming that p divides n, let 0 < r < n— 1, and suppose that S(r,n— 1) and
S(r-1, n-1) are irreducible ^.^modules. Then a composition series for S(r, n) is given by

where 0r is the <&n-homomorphism (2). Further, ker0r s 5(r— 1, n-1) ouer $„_!•

Proof. By Lemmas 1 and 2, there are O^j-isomorphisms

ker0r = Irne'"1 = Im^'"1 s S ( r - 1 , n - l )

because ker^'"1 = 0. It follows that ker^ is irreducible as a On_1-module, and hence as a
On-module. Also there are O^j-isomorphisms

^ | ? p s S(r, n-l).

The irreducibility of 5(r, n-1) over $n_t implies that of S(r, n)/ker0r over <!>„.

COROLLARY. TaA:e « = p . ier (r~ be the homomorphism (2). Then if 0 < r </>—1, a
composition series for S(r,p) is given by

0 c ker fl'cS (>,/>).

Proo/. This follows immediately because we know that S(r, p— 1) is irreducible for all r.

REMARKS. By Lemma 2, the sequence (3) is exact in the case in which n =p; thus if
r<p-2,

ker0r '

Hence if 0 ^ r g p — 2, S(r,p) and S (r +1, p) have a common composition factor. Further,
Proposition 3 says that S(r— l,p) and KA®KS(p—r,p) have the same composition factors.
A composition series for the latter is given by

0 c ii:A<g)Kker0p-r c KA®KS(p-r,p).

Counting dimensions we see that

We cannot have ker0r = ker 0s with r^s, since

I = dimKker0r = dimxkerO* =
; - l

can only occur when r = p—s, and when this is satisfied, the relationship between ker0r and
ker 0s is as described.

These results give the modular representation theory of Sp over the field of p elements as
obtained by T. Nakayama [2, Theorems 2 and 4], and R. M. Thrall and C. Nesbitt [6]. The
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Specht modules S w , where (A) is a partition ofp whose diagram is not a hook, together with
the kerfl', r = 0, 1,. . . ,p—2, and KA constitute a full set of irreducible, non-isomorphic left
<t>p-modules.

H. K. Farahat [1, Theorem 5.2] proves that S(l, ri) is irreducible if p does not divide n.
Further, taking/? to be a factor of n, he obtains the same composition series for S(l, ri) as is
given by applying Theorem 1 with r = 1. In [4], we prove that 5(2, ri) is irreducible if/? does
not divide n and p ^ 2. In Section 5 we prove the conjecture made in [4] that S(r, ri) is
irreducible if/? does not divide n and p # 2. The composition factors of S(r, ri) in the case
when p divides n are then as in Theorem 1. We shall see in Section 6 that if the ground field
has characteristic 2, the hook representations are reducible, except for r = 0, n— 1, and
possibly r = 1, n—2. In this situation, Theorem 1 is not applicable.

3. Restriction to Sn-i. In preparation for the analysis of the hook representations by
induction on n, we examine the structure of S(r,ri) regarded as a OB_ ̂ module. In this
section, K is an arbitrary field and 0 < r < n — 1.

Using the basis of S(r, ri) given by Proposition 2, we define a linear transformation
iji':S(r, ri) -* S(r-1, n-1) as follows:

-,yr-i), x1<y1<...<yr.1<yr = xn

0, xt < y 1 < . . . < y r _ 1 < 3 ; 1 . < x n ,

extending to the whole of S(r, ri) by /if-linearity. Using (1), it is clear that ^r is a
On-i-homomorphism. Obviously xji' is an epimorphism. Note also that S(r, n— 1) is a
<!>,,_ j-submodule of S(r, ri) contained in ker $r.

LEMMA 3. The following sequence ofO^i-modules is exact:

0-> S(r, n- l ) - ^ 5 ( r , riy^S(r-1, n-1) ->0. (4)

Proof. We have 5(r, n— 1) ^ ker \j/'. It follows by counting dimensions that

For the moment, let 5n_2 be the group of permutations of the set {x2>..., * n - i } - The
map a>o: S(r—1, n — 1) -»S(r, ri) defined by

»o(A(xi, j>i,..., )V-i)) = A(x1( ? „ . . . , }>,-!, xn) x1<y1<...<yr.1< xn,

is a On_2-homomorpnism, where OB_2 is the group algebra of Sn-2 with coefficients in K.
Clearly ^irco'o is the identity map on S(r—\,n—\). Suppose that/; does not divide n—l,
and define of: S{r-1, n-1) -»S(r, ri) by

o/(2) = (« - 1 ) " J " I (xt x>po((x! x,)z) (z e S(r - 1 , n -1)).

Then cor is a <!>,,_ j-homomorphism, and i^ra/ is the identity map on Sir— 1, n— 1). This means
that the exact sequence (4) splits; thus Ima/ S 5 ( r - 1 , n-1) and S(r, ri) = 5(r, n - 1)+Imo)r,
(direct sum). This proves
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LEMMA 4. If the characteristic of the field K does not divide n-\, there is a $„ _ ^-isomorphism

S{r, n) s S(r-1, n- l) + 5(r, n-1) {direct sum).

5. Analysis of hook representations. The one theorem of this section gives the composition
factors of the hook representations when the ground field has characteristic p not equal to 2.

THEOREM 2. Let K be afield of characteristic p not equal to 2. If' p does not divide n,
S{r, n) is irreducible for each r, O ^ r ^ n — 1 . If' p divides n, a composition series for S{r, n),
0 < r < «— 1, is given by

Ocker0rcS(r, n),

where (f: S (r, n) -* S (r +1 , n) is the ®n-homomorphism (2). S (0, n) and S{n~l,n) are of course
still irreducible when p divides n.

Proof. Throughout the proof we assume that 0 < r < n— 1 and n ̂  3. We proceed by
induction on n.

Induction hypothesis: pXn implies that S(r, n) is irreducible for each r, 0 < r < n— 1;
p | n implies that each S(r, n) has a composition series of the form 0 c M c S ( r , n).

The remarks at the end of Section 3, together with Proposition 3, are sufficient to cover
the cases when n ̂  6. Suppose that n > 3, and that the induction hypothesis holds for smaller
values of the inductive argument. The proof is divided into three parts.

(a) p\n. In this case, p does not divide n— 1, and so S{r, n— 1) and S{r— 1, n— 1) are
irreducible <!>,,_^modules by the induction hypothesis. By Theorem 1, S{r,ri), has a
composition series

O c k e r 0 r c S ( r , n ) ,

where 0r is the <Dn-homomorphism (2).
(b) p X n, p X n -1 • By Lemma 4, there is a On _ j-isomorphism

Sir, n) s S(r, n- \) + S{r-1, n-1) (direct sum).

Thus, by the induction hypothesis S(r, n) is completely reducible as a O^i-module. Let X
be a On-submodule of S(r, n). Then A' is a On_1-submodule of S(r, n), and as such is a
direct summand. Hence there exists a O^i-homomorphism tio:S(r,ri)-+X such that the
restriction of n0 to Xis the identity map on X, namely the projection onto X. We are suppos-
ing that/? does not divide n, so that n"1 exists in K. We can therefore define t\: S(r, n) -* X by

n

>/(z) = n~l £ (xf xn)jj0((Xjxn)z) (z e S(r, n)).

Then n is a On-homomorphism, and the restriction of r\ to X is the identity map on X. It
follows that S{r, n) = X+Imn, (direct sum), where both X and Imn are <I>n-submodules of
S{r,n). But S(r,«) is indecomposable according to Proposition 1; whence X = 0 or
X=S{r, n). Thus 5(r, «) is irreducible.

(c) p X n, p | n — 1. In Lemma 3 we found the following exact sequence of On _ t -modules:
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Since p divides n— 1, there exist On^-homomorphisms Q':S(t, n —1)-> S(t+1, n — 1),
0 ̂  t g n - 2 ; Im6'~l = ker0' for 0 < t g «-2 , as in Section 3. By the induction hypothesis,
each of ker^, S(r,n-l)lker9r, kerfl'"1 and S(r-\, w-O/kerfl'"1 is an irreducible
O,,.,-module.

From the above exact sequence of Q>n-i-modules, we can construct a chain of
<J>n_ ̂ submodules of S(r, n) of the form

0 <= Xt £ X2 £ X3 c= S(r, n), (5)

where X2 = S(r, n— 1) and Ar
1 = ker0r: in the case in which r = n — 2, we have

X2 s AAC*!,..., xn_i), and JTt = X2; otherwise Xt is a proper submodule of X2. Also the
map ^' induces a O^i-is

and A'j is the Oj^-submodule of S(r, n) containing X2 and corresponding to kerff"1; thus

is a $„_!-isomorphism: in the case in which r = 1, we have S(r, n)/X2 S AT, and Z3 = X2;
in all other cases X2c X3.

At this point we construct a specific submodule X3 which has the properties just described.
We take r > 1. Propositions 1 and 4 show that there is exactly one proper OB_ ̂ submodule of
S[r, n) containing X2 properly.

Let X3 be the smallest <!»„_ i-submodule of S(r, ri) containing X2 and all polynomials of
the form

n - l

By (1), and using the assumption thatp divides n — 1, we have
»-l n-lr-l

«t=i * = I J = I

n - l

1
Further (if r > 2),

n-li-l

£ £ &(xuyu...,yr-3,x,,xk, xn) = 0.
1=1k=l

It follows that X3 is generated over K by the set

{&{xuyu...,yr):xl<yi < ... < yr < xn}u\ ^ A(x,, yu ..., yr_2, xk, xn):
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n - l

(In the case in which r = 2, the second set in this union consists of the element £ A(xls xk, xn)
k = l

alone.) It is easy to check that this set is linearly independent over K because

{A(xlt yu...,yr):x1<yl<...<yr^xn}
is linearly independent over K. We therefore have a /sf-basis for X3 which yields a /f-basis for
X3jX2. We have now constructed a On_x-composition series (5) for S(r, n).

Let M be a non-zero On-submodule of S(r,ri), and consider the ^^-submodule
Y = Mr\X2. There are three possibilities: Y = 0, 0 c Y <= X2, or Y = X2. In the third case,
X2 c M\ whence A(xu ..., xr+1)eM. Since M is a OB-submodule of S(r, n), this implies
that M = S(r, n). We shall prove that the other conditions are impossible by deducing a
contradiction from each. It will follow from this that S(r, n) is an irreducible On-module.

First suppose that 0 <r Y c X2 (this does not arise if r = n—2). By Propositions 1 and 4,
Y= Xx. It follows that Xy s M. Now Xt = ker0r = Im^"1 , and hence M contains

B - l

0r~\A(xu x2,..., x,)) = £ A(xlt x2,..., xr, xk).

Applying the permutation (xnxn-t) to this element gives

n

Y A(x1,x2,...,xr,xn.l).
k=l

k*n-l

The difference of these two, namely,

AC*!,..., xr, xn)-A(xu ...,xr,xk) (6)

belongs to M. Applying (xrxn) to (6) and adding the result to (6), we find that

—A^!,. . . , xr_i, xn, xn-i)—A(xlf..., xr_i, xr, xn_1)

belongs to Af. Apply (jcrxn_!) to this element and add the result to (6); this yields
c 1 ( . . . , x r - u xr, xn)eM. Since p ^ 2, A(xu ...,xr, xn)eM, whence M = S(r, n). This

contradicts Y = MnX2 <= X2.
For the final part of the proof, suppose that Y=0. Then M+X2 (direct sum) is a

On_1-submodule of 5(r, n) containing X2 properly. Suppose first that M+X2 is a proper
submodule of S(r, n) (if r = 1, this situation does not arise). Then, by Propositions 1 and 4,

M+X2_X3

V Y '
A2 A2

i.e. M+X2 = X3. Let q:X3-+X2 be the projection onto X2 = S(r,n — \), and write
n - l

y A(xu ...,xr-u xk, xn) = £eX3. Since ^(OeA'j, we have
*=i
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where each xfl l reK. In each sequence (ilt..., ir) with 1 < it < . . . < ir < n, both /, > r— 1
and /,_! > r— 1. Since {xirxir_^£ = <!;, and because q is a On-j-homomorphism, we have
(xir

xir.M(€) — i(O- Equating coefficients of A(x1; xh,..., xir), we have A,-,...(r = 0. Thus
— 0» and this means that £ e M, i.e.

n - l

Y, A(x, x , . , , x b x , )eM.

Apply the permutation (JCJ, x,) to this element, / j* 1, 2 , . . . , r— 1, n. We have by (1)

n - l n - l

|, X2, ..., Xr^1, Xkt Xn) = 2 J ^\X1> X2> • • •) •Xr-ls Xt> Xn)
*=1 t=l

n-lr-1

+ Z Z

n - l

n - l

Since/> divides n-1, ^ A(x1; x 2 , . . . , xr_,, x,)eM. This element also belongs to S(r, n— 1),
t=i

contradicting MnS(r, n-1) = 0.
This rules out the possibility that M+X2 is a proper submodule of S(r, n) i.e.

M+X2 = S(r,«). Let gt :5(r, «) -> M be the projection onto M. Then ^ is a 0,-i-homo-
morphism. Define q: S (r, ri) -* M by

n

g(z) = n "1 J] (xn xk)qi((xn xk)z) (z e 5(r, n)).
*=i

Then ^ is a On-homomorphism, and S(r,ri) = M+Imq (direct sum). This contradicts
Proposition 1, and completes the proof of Theorem 2.

6. Hook representations and natural representations at characteristic 2. We begin this
section by defining the natural representation modules. These are studied with a view to
constructing irreducible and indecomposable representation modules of the symmetric groups.

Let K be an arbitrary field. The On-module Mr(n) defined by

M °(n) = K,

is called the rth natural representation module of Sn (over K). A AT-basis for M'(ri) is given
by

T h u s d i m K M \ n ) = ( ) • F o r example , M"(n) £ K = M°{n).
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Define the map cor: M
r(«) -> M"~r(n) by

CO,(<™1 . . . Xr) = a X r + j . . . Xn (ff G <DB).

It is easy to check that cor is a well defined On-isomorphism, so that M'(n) = M"~r(n). Thus, in
studying the natural representation modules, it is sufficient to treat only the cases when 2r ^ n.

If 2r ^ «, (n - r , r) is a partition of n. We denote by S'(n) the corresponding Specht
module. Thus Sr(n) consists of all ^-linear combinations of polynomials of the form

(*<., - xbi)(
xa2 ~ *bl) • • • (xar - xbr),

where au . . . , ar, 6^ ...,br are all distinct. It is clear that Sr(n) s Mr(ri). A AT-basis for
Sr(n) can be found in terms of the standard tableaux of the partition (n—r, r).

Let d: K [xy,..., xn] -* K [xt,..., xn] be the map defined in terms of the partial differential
operators by

Restricting to Mr + 1(n), r <n, we obtain a <Dn-homomorphism

dr:M
r+ \n) -+ M\ri) (r = 0, 1 , . . . ,« -1) .

We clearly have
r + l

where $j is meant to indicate thaty} is missing from the product yl ...yr+ P

For the rest of this section we assume that K has characteristic 2. We intend to study the
following sequence of <Dn-modules and On-homomorphisms:

0-* MXn)-^*M"-\n) -> . . . -> M\n)% M\n)% M » -• 0. (7)

Clearly ker*/n-i = 0 and lmd0 = M°(n). We prove that (7) is exact. Obviously, because K
has characteristic 2,

drdr+1=0 (r = 0,1, . . . , n - 2 ) .
Thus Imdr+l £ kerrf,.

A isT-basis for 5(r, n) is given by Proposition 2. Using this basis, we define a linear
transformation rjr: S(r, n) -»Mr(«) by

j / X A ^ i , j > l f . . . , j p ) ) = dr{Xiy^...yr),

extending to the whole of S(r, n) by A-linearity. By (1)
r+l

n X A Q ' i , . . . , y r + 1 ) ) = Z d ( x i y i - - - P s - - - y r + i )
5 = 1

/r+l \ r+l

)
\s=l / s=l

= xt d\y! •.. yr
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It follows that t\r is a 0,,-homomorphism.
Suppose that

fr( £ K
\l<ii<...<f,Sn

where each kh lr e K. Then

£ A,, ird(xlx,l...x,} = 0,
l<ii<...<l,£n

i.e.
£ A,, i.x,, . . . x,r+ £ A,, ,rX! d(xh ... xlr) = 0.

Equating coefficients of x(l . . . xir, 1 < it < ... < ir g n, we find that Xit ,r = 0. This proves
that

ker?/,. = 0,
i.e. f/P is a monomorphism.

Now define ar:M
r+\n) -> S(r, n), r = 0, 1 , . . . , n-1, by

extending to the whole of Mr+1(n) by AT-linearity. It is clear that <xf is a <J>n-homomorphism,
and Irna, = S(r, n), i.e. ar is an epimorphism.

Obviously
dr = t]rtxr.

We have thus factorised dr into the composition of an epimorphism and a monomorphism.
It follows that Imf/r = \m.dt and keraP = ker</r. We have already noted that Imrfr+1 £ ker*/r-
We prove the reverse inclusion by counting dimensions. Thus

df+1 = dimKImf/f+1 = dimxS(r + l, n) =

and

dimKkerdr = dimKM'+1(«)-dimJKlmdr = ( r

Thus dimxlm^+t = dimKkerrfr, and it follows that Im</r+1 = kerrf,- This completes the
proof of

THEOREM 3. The sequence (7) of<bn-modules is exact.
Suppose that 0 < 2r ̂  n. It is clear that S"(M) £ kerdr.Y = Imrf,., so that 5r(«) S Imf/r.

We determine ^-'(S^n)).
Choose integers a , , . . . , ar, bu ...,br all different and satisfying 1 < a,, bj g n. Define

the element A0"6'-"2-1'2 °r-b'eS(r, n) by

A""6' *A-
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summing over all sequences c — (cu ..., c,) in which, for each /, either ci = at or e, = bt. By
the definition of nr,

nX^1-"1 * * ) = Z'/rCACXj, XC1, . . . . XCr))

l . . . xCr.
c c

But

£ x c , . . . xCr = (xai+xbi)(xa2 + xbl) ... (xar+xbr).
c

Consequently

>7,(Aa"61 fl"*0 = (xa i+x6 l ) (x f l 2+x6 2) . . . (xa r+x6 r) .

Note also that of k is different from \,au ...,ar,bu ...,bn then

Thus, since r\r is a monomorphism,

A0""' °"6' =

We have now proved

THEOREM 4. Let K be afield of characteristic 2, and choose r such that 0 < 2r g n. Then
S(r, ri) contains a submodule isomorphic to Sr(n) over <Dn, namely the <ba-submodule generated
by the elements A"1-"1 "r'br.

Take r = 1. In this case A"ubl = (xai+xb), and the submodule is 5(1, ri). Note that
S 1(n) = 5(1, ri). If r > 1, the submodule is a proper submodule. The results of [3] yield the
composition factors of 5(2, ri) when the ground field has characteristic 2. The problem of
analysing the hook representations is equivalent to the problem of analysing the natural
representation modules.
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