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SUMMARY

The systematic rather than random entry arrangement of honeycomb designs (HDs) has been deployed to
sample the spatial heterogeneity. This hypothesis was studied in fairly homogeneous populations, assuming
that their phenotypic variability stemmed absolutely from spatial rather than genetic heterogeneity. It
was based on single plant performance in two separate trials of a maize hybrid and a wheat cultivar
reflecting different level of spatial heterogeneity. In general, the HDs counteracted spatial heterogeneity
well, particularly when the number of evaluated entries was limited. There was a suggestion that they
do well even in a high number of entries with many replicates per entry. Distribution and layout of
spatial heterogeneity across the experimental area did not affect the precision of the HDs. Standardized
configuration, which ensures implementation of essential principles met in other experimental models
such as blocking, replication and nearest-neighbour (NN) adjustment on the same baseline, renders the
honeycomb experimental pattern advantageous over the classical experimental designs like the randomized
complete block (RCB), the NN method and the lattice model.

I N T RO D U C T I O N

Within-field and sub-field soil variability is a ubiquitous feature, management-induced
(i.e., soil amendments) or the result of naturally occurring sources (Adamchuk et al.,
2010). Some soil properties exhibit highly dynamic characteristics varying rapidly with
time and over distances ranging from mm to m, e.g., nitrate, temperature, moisture,
microbial activity, water-soluble salts, nutrient concentration in soil solution and redox
potential (Adamchuk et al., 2010; Becker, 1995; Dhillon et al., 1994; Lascano and
Hatfield, 1992; Wierenga et al., 1991). Berndtsson and Bahri (1995) found that field
variability of different element concentrations in plants can only partially be explained
by corresponding soil variability. Spatial heterogeneity, reflecting the acquired part of
the plant-to-plant variability, is owed to soil variation and inflated by uneven seed
emergence, effects of clouds and capping in wet soils, uneven application of applied
inputs, differential effects of herbivores, parasites or pathogens and interactions among
these factors (Fasoula and Tokatlidis, 2012). Acquired variability can have serious
effects on the interpretation of variety trials, preventing precise distinction of the
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genotypes’ characteristics (Ball et al., 1993; Brownie et al., 1993; Stroup et al., 1994;
Vollmann et al., 2000).

Several techniques have been proposed for dealing with spatial heterogeneity in
breeding field trials. The most common is the RCB design, where plots (PLs) are
positioned on the basis of blocking and randomization within each block, as well as
on replication of the blocks. The statistical validity of the RCB and accurate estimates
depend primarily on the assumption that treatments are evaluated with respect to
similar environmental and operational conditions within a block (Brownie et al., 1993;
Gusmao, 1986). Papadakis (1937) was the first to propose the use of yield residuals from
neighbouring PLs and paved the way for what is now termed NN analysis (Scharf and
Alley, 1993). Assuming that close neighbours share a common micro-environment,
the NN adjustment can improve both the precision and accuracy of field experiments
(Magnussen, 1993). Papadakis’s idea motivated Briggs and Shebeski (1968) to suggest
unreplicated PLs with every third PL planted with a common control genotype (the
check-PL method). However, the check-PL technique can still induce additional spatial
heterogeneity because of the extra 33% of land required. Knott (1972) introduced the
moving average method in which the mean of a number of adjacent PLs is used as
a covariate for adjusting PL values, eliminating the need to devote PLs to checks. In
the moving average procedure, however, the absence of common control genotype
implies a varying baseline for PL adjustment. The lattice design (LD) suggested by
Yates (1936) allows sampling of spatial variation in two directions (row–column);
however, it is restrictive for the number of treatments and the field layout (Rosielle,
1980). The honeycomb breeding methodology and respective experimental selection
designs, i.e., HD, have been suggested as remedy for the confounding effects of spatial
heterogeneity (Fasoula and Fasoula, 2000; Fasoula and Tokatlidis, 2012; Fasoulas,
1987, 1993; Fasoulas and Fasoula, 1995). Two inviolable rules obtain: individual
plants grown widely apart to ensure the absence of competition and consideration
of each plant as the experimental unit rather than the classical PL. Further, it has
been asserted that advanced features of systematic instead of random entry allocation,
plus multiple replications, ensure the highest efficiency in terms of sampling spatial
heterogeneity and counteracting its detrimental effects on selection efficiency. Precise
entry allocation enables adjustment on the same baseline, even if extra control is
absent. In order to obtain the systematic arrangement for a given number of entries, a
constant (k) value should be used so as to define the starting codes of each row (Fasoulas
and Fasoula, 1995). For certain designs, the standardized pattern is accomplishable
only if the set of entries is split into more than one row, called ‘grouped’ designs. For the
rest (‘ungrouped’ designs), systematic arrangement is formed with entire sets of entries
in each row. Numerous breeding studies have successfully incorporated this method,
on two of which the present study was based (Tokatlidis, 2000; Tokatlidis et al., 2006).

Even though spatial heterogeneity can limit precise distinction of performance
differences, breeders are reluctant to use elaborate statistical designs (e.g., lattice or NN
adjustment designs), sustaining lower breeding efficiency (Ball et al., 1993). Because
of low densities, HDs demand considerably increased field areas, so the way they
manage spatial heterogeneity is challenging. This paper considers the effectiveness of
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the systematic entry arrangement of the honeycomb pattern to correct for the effects
of spatial heterogeneity of breeding field trials, and compares it with the classical RCB
design, the NN analysis method and the LD. To appraise these procedures, two field
trials were held.

M AT E R I A L S A N D M E T H O D S

In trials including a mono-genotypic population, the coefficient of variation (CV)
represents absolute environmental effects, depicting the level of spatial heterogeneity.
Spatial heterogeneity is also depicted by the top-to-bottom gap (TBG) among the
means of a number of simulated entries dispersed across the whole experimental area,
as well as by the number of means significantly differing (MSD) from the overall (grand)
experimental mean. Hereafter, the terms ‘significant residual’ and ‘mean deviating’
imply the statistically significant difference of an entry mean from the grand mean. The
TBG was computed as a percentage of the overall trial mean. For example, assuming
the value of 100 as grand mean, the entry mean range of 75–130 corresponds to +30
and −25% top and bottom deviation, respectively, thus to 55% TBG. The deflation in
TBG obtained by an experimental technique was seen as reflecting its effectiveness in
overcoming spatial heterogeneity. Data from two field studies pertaining to grain yield
of individual plants were used to test the above hypothesis. The first comprised the
maize (Zea mays L.) hybrid ‘B73xMo17’ (Tokatlidis, 2000), and the second, the wheat
(Triticum aestivum L.) cultivar ‘Nestos’ (Tokatlidis et al., 2006). However, the maize trial
was the primary source because its experimental area was more than three times larger
and it had three additional agronomic traits (plant height, ear height, ear length).

The trial of the maize hybrid ‘B73xMo17’

The trial area was 44 m long and 77 m wide including 70 rows of 35 single-plant
hills, i.e., 2450 hills in total. To construct the uniformity map, the procedure described
in Petersen (1994) was applied, smoothed in two directions. By omitting an edge plant
of each row (because of the zig-zag arrangement, the first for the odd rows and the
last for the even rows), the trial was divided into units of four (2×2) plants and their
average corrected yield was recorded: it comprised 35 rows of 17 means on each row,
i.e., 595 yield PLs. The running median of three PLs was used whereby the yield of
a PL was replaced by the median of the three adjacent PLs on the same row or the
same column. Finally, areas of equal yield were delineated (Figure 1).

The whole area was divided into 28 equal PLs (4×7, Figure 1), defined as PL28
(Table 1), with each PL including around 87 plants. Alternatively, 28 simulated entries,
i.e., tested PLs, allocated on the 1×28 longitudinal arrangement, were analysed on
the NN analysis by adjusting their means against the mean of six adjacent check-PL
(three rows leftwards and three rows rightwards), defined as NN28ln (Table 1); all rows
were included either in tested PLs or in check-PLs except for the edge ones used just
as check-PLs. To correct the yield of each tested PL, it was divided by the yield of the
adjacent check-PL and then multiplied by the overall trial mean. The same analysis
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Table 1. The influence of spatial heterogeneity on single-plant performance of the maize hybrid B73xMo17 for four traits, as illustrated by the range of mean values, the
top-to-bottom gap (TBG) in relation to the overall mean and the number of means significantly differing from the grand mean (MSD), when the trial is divided into a number of
plots (i.e., 28 for PL28), as well as the degree of amelioration if the respective simulated entries are allocated according to the randomized complete block (RCB) of four replicates
or the ‘nearest-neighbour’ (NN) configuration or the lattice design (LD) pattern. The overall measures of mean value (x̄ ), coefficient of variation of single plants (CVsp), and

number of plants (n) are also given.

Yield (g) Plant height (cm) Ear height (cm) Ear length (mm)

x̄ = 449, CVsp = 38%, x̄ = 199, CVsp = 9.3%, x̄ = 95, CVsp = 13%, x̄ = 235, CVsp = 5.8%,
n = 2223 n = 2316 n = 2316 n = 2223

Entry Mean TBG%/ Mean TBG%/ Mean TBG%/ Mean TBG%/
arrangement range MSD range MSD range MSD Mean MSD

7 simulated entries
PL7ln

† 424–460 8.1/1 189–205 7.8/3 88.7–98.1 9.9/6 231–238 2.9/4
PL7br

† 404–479 17/4 189–203 7.1/5 89.6–99.9 11/6 231–239 3.4/6
RCB7b

‡ 439–453 3.1/0 196–201 2.1/1 93.2–95.4 2.3/1 234–235 0.8/0
RCB7w

‡ 372–511 31/5 186–208 11/3 88.1–100 13/6 229–240 4.5/5
NN7ln 421–470 6.4/1 191–201 5.4/3 91.7–98.0 6.7/3 232–237 1.8/3
NN7br 405–507 16/4 190–204 7.2/5 90.5–96.3 6.2/4 230–237 2.9/4
LD7 412–487 17/4 193–205 6.2/5 91.9–97.3 5.7/3 231–237 2.3/2

28 simulated entries
PL28 337–526 42/12 178–212 17/16 83.1–104 22/16 225–243 7.7/12
NN28ln 409–495 19/5 195–204 4.7/2 92.1–100 6.2/2 231–238 3.0/2
NN28br 402–499 22/8 194–206 6.1/4 90.6–99.8 9.7/3 229–243 6.1/5

16 simulated entries
PL16 341–510 38/5 182–210 14/12 85.1–103 18/10 228–242 5.9/7
RCB16b 430–461 6.8/0 196–204 4.2/8 93.0–94.9 2.0/0 233–236 1.0/0
RCB16w 360–533 38/10 183–212 15/12 85.4–102 18/11 227–242 6.0/10
NN16ln 410–485 17/7 196–205 4.6/4 92.6–100 8.0/6 232–239 3.1/10
NN16br 424–486 14/1 186–205 9.4/7 89.1–97.8 9.2/4 231–238 3.0/5

†ln and br subscriptions denote lengthwise and breadthwise plot orientation (Figure 1), respectively.
‡b and w subscriptions denote the best and the worst scenario, respectively.
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Figure 1. Smoothed variability map constructed on the single-plant grain yield (g) from the uniformity trial of the
maize hybrid B73xMo17. The coloured legend on the right gives the yield range of small plot units (g) corresponding
to the respective delineated area. The whole area is divided into 28 square plots, with mean yield (g) and CVsp(%)
of single plants shown in parentheses in the plot centre (the PL28 arrangement of Table 1), averaged lengthwise and
breadthwise outside the trial borders. The within-circle numbers represent the best scenario of randomization of seven
entries into four complete blocks (I–IV) corresponding to the RCB7b of Table 1. The table below the map depicts
the plot yields of eight simulated entries replicated in four blocks either lengthwise (RCB8ln) or breadthwise (RCB8br).
The above the map results of mean yield (x̄ ), CVsp, and top-to-bottom gap (TBG) relate to seven simulated entries

analysed as honeycomb layout (HD7) in three equal parts, with each frame corresponding to the part below it.

was conducted in the breadthwise direction, on two-row check-PL and tested PL, i.e.,
the NN28br analysis.

The trial was also divided assuming that 16 entries were allocated to 16 PLs (4×4)
or in 4 RCBs (4×16), i.e., the arrangements of PL16 and RCB16, respectively. For
comparison purposes, analysis of variance (ANOVA) was performed for the RCB16
to find the best randomization (RCB16b) of the lowest TBG, as well as the worst
randomization (RCB16w) assuming that all the highest yielding PLs within blocks
belonged to the same entry and all the PLs that gave the second highest yield belonged
to the same entry, etc. In another option, seven simulated entries were positioned either
on the PL7 breadthwise (1×7) or lengthwise (7×1) orientation, as well as in four RCBs
(4×7) constituting the RCB7 arrangement shown in Figure 1. The NN16 and NN7
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configurations were analysed similarly to the NN28 arrangement. The trial was also
separated in 49 PLs so as each of 7 entries to be positioned on either each of 7 rows
or each of 7 columns, matching thus the 7×7 lattice design (LD7).

In order to test the effectiveness of the honeycomb procedure in overcoming spatial
heterogeneity, data were analysed for possible HD with regard to the 3–37 entries
(HD3–37) constructed on the alternative k values. Those including 4, 9, 12, 16, 25,
27 and 28 entries were ‘grouped’ designs, and the rest were ‘ungrouped’ designs.
This analysis was performed bilaterally, with the breadthwise one corresponding to
the actual establishment. Thus, entries’ mean range and their TBG and MSD were
obtained (Tables 2, 3).

The trial of the wheat cultivar ‘Nestos’

The trial area was approximately 30 m long and 31 m wide including 34 rows
of 31 single-plant hills, i.e., 930 hills in total. Spatial heterogeneity of the wheat
cultivar ‘Nestos’ was approached by splitting the experimental area into 16 (4×4)
PLs. The 30 internal rows formed 15 two-row PLs corresponding to the NN15
pattern. The honeycomb analysis was conducted with the HD3–HD25 model
unilaterally (breadthwise direction). The uniformity map on single-plant yields was
also constructed as described for the maize hybrid.

Statistical analysis

A computer program tailored to HDs was used for analysis of means (ANOM)
(Mauromoustakos et al., 2006). Single-plant observations were subjected to the t-test
to appraise the significance of residual of each entry mean from the grand mean, i.e.,
t = (x̄ − x̄1)/

√
s2/n 1 (Snedecor and Cochran, 1989), where x̄ , and s , are mean and

standard deviation of the overall population, while x̄1 is the entry mean and n 1 its size.
To approach the across-individuals phenotypic heterogeneity, CV on the single-plant
basis was measured, e.g., for the overall population CVsp = s/x̄ .

ANOVA was performed with the M-STAT statistical package (MSTAT-C, version
1.41, Crop and Soil Sciences Department, Michigan State University, USA) to
measure the heterogeneity among PLs, where CV was computed by the formula
CVp l = √

EMS/x̄ , with EMS corresponding to the mean square error.

R E S U LT S

The maize hybrid ‘B73xMo17’

Data quoted in Table 1 show that as regards yield per plant the overall mean was
449 g, with a CVsp of 38%. As expected, heterogeneity was greater along the longer
side of the breadthwise direction. Indicatively, the TBG of grain yield of seven PLs
was higher when allocated breadthwise rather than lengthwise, that is, 17 vs. 8.1%.

Spatial heterogeneity is further depicted in the uniformity map of Figure 1 where the
yield range of 28 equal PLs (337–526 g) reflected a TBG relevant to the overall mean
of 42%. The respective CVsp range was 30 to 42%. Twelve MSD out of the 28 PL
yield means reflected significant residuals (Table 1). The NN analysis for 28 simulated
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Table 2. The mean range (g) of 3–37 simulated entries allocated according to the honeycomb experimental pattern
concerning the single-plant performance of the maize B73xMo17 hybrid for grain yield (GY), plant height (PH), ear
height (EH) and ear length (EL), with least significance difference (LSD) values shown in this order. The potential

designs are determined by the number of entries (i.e., seven entries for HD7) and the potential constant k.

HD3 (LSD = 14.3 – 1.6 – 1.1 – 1.2) HD4 (LSD = 16.0 – 1.7 – 1.2 – 1.3)

k = 1 k = 1, 2

Trait Breadthwise Lengthwise Breadthwise Lengthwise

GY (g) 438–462 440–456 441–455 433–456
PH (cm) 197–200 198–200 199–199 199–200
EH (cm) 94.1–95.3 94.3–95.4 94.5–95.6 94.4–95.5
EL (cm) 234–236 235–235 235–235 234–235

HD7 (LSD = 20.2 – 2.2 – 1.5 – 1.7) HD9 (LSD = 22.6 – 2.4 – 1.7 – 1.8)

k = 2 k = 4 k = 2 k = 4 k = 2, 3, 5, 6
GY (g) 439–458 437–463 435–463 440–455 431–471 439–466
PH (cm) 198–200 198–200 197–200 198–200 198–201 198–199
EH (cm) 94.3–95.4 93.9–95.8 94.1–95.9 94.2–95.8 93.7–96.2 93.2–96.2
EL (cm) 234–236 234–236 234–236 234–235 234–236 233–236

HD12 (LSD = 25.7 – 2.8 – 1.9 – 2.0) HD13 (LSD = 26.7 – 2.9 – 2.0 – 2.2)

k = 4, 7 k = 3 k = 9 k = 3 k = 9
GY (g) 426–474 415–464 425–469 428–475 430–469 429–460
PH (cm) 197–203 196–202 197–201 197–201 198–200 197–200
EH (cm) 93.1–96.1 93.6–96.5 93.3–95.8 93.4–96.1 94.1–95.8 94.2–95.7
EL (cm) 233–236 234–236 233–236 233–236 233–236 233–237

HD16 (LSD = 29.4 – 3.2 – 2.1 – 2.1) HD19 (LSD = 31.9 – 3.4 – 2.3 – 2.4)

k = 3, 4, 11, 12 k = 7 k = 11 k = 7 k = 11
GY (g) 425–470 418–469 406–485 428–471 417–469 415–469
PH (cm) 197–201 197–201 196–201 196–200 196–201 197–201
EH (cm) 93.3–96.2 93.0–96.4 92.7–96.4 92.7–96.3 93.6–96.4 92.7–96.1
EL (cm) 233–237 233–237 233–237 233–237 232–237 234–237

HD21 (LSD = 33.4 – 3.6 – 2.4 – 2.5) HD25 (LSD = 36.3 – 3.9 – 2.6 – 2.7)

k = 4 k = 16 k = 4 k = 16 k = 4, 5, 19, 20
GY (g) 413–490 407–482 420–494 425–479 415–477 423–477
PH (cm) 196–202 195–201 195–202 196–203 196–202 196–201
EH (cm) 92.6–96.8 92.3–97.2 92.2–97.1 93.1–96.4 92.4–97.1 92.4–96.6
EL (cm) 233–237 232–237 233–237 233–236 233–237 232–237

HD27 (LSD = 37.8 – 4.1 – 2.7 – 2.8) HD28 (LSD = 38.5 – 4.1– 2.8 – 2.8)

k = 7, 10, 16, 19 k = 9, 11, 16, 18
GY (g) 415–501 415–480 420–476 416–489
PH (cm) 193–203 195–204 196–202 196–203
EH (cm) 90.9–97.3 92.1–97.2 92.9–97.1 93.3–96.8
EL (cm) 232–237 232–239 232–238 233–239

HD31 (LSD = 40.2 – 4.3 – 2.9 – 3.0) HD37 (LSD = 44.0 – 4.7 – 3.2 – 3.2)

k = 5 k = 25 k = 5 k = 25 k = 10 k = 26 k = 10 k = 26
GY (g) 406–514 413–484 413–508 392–494 410–486 417–487 410–503 415–485
PH (cm) 195–203 195–204 195–202 196–203 195–205 195–202 194–203 196–202
EH (cm) 91.7–97.8 93.0–97.7 91.4–97.0 92.7–97.8 91.7–96.9 92.6–98.8 91.6–97.2 92.1–98.1
EL (cm) 229–238 232–238 232–237 232–238 232–237 231–238 231–237 233–237
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Table 3. Top-to-bottom gap relevant to the overall mean and in parentheses the number of means significantly
deviating from the overall mean concerning the single-plant performance of the maize B73xMo17 hybrid for grain
yield (GY), plant height (PH), ear height (EH) and ear length (EL). The potential designs are determined by the

number of entries (i.e., seven entries for HD-7) and the potential constant k.

HD3 HD4

k = 1 k = 1, 2

Trait Breadthwise Lengthwise Breadthwise Lengthwise

GY (g) 5.4 (1) 3.5 (0) 3.0 (0) 5.2 (1)
PH (cm) 1.4 (0) 0.7 (0) 0.3 (0) 0.6 (0)
EH (cm) 1.3 (0) 1.2 (0) 1.1 (0) 1.2 (0)
EL (cm) 1.0 (0) 0.2 (0) 0.3 (0) 0.6 (0)

HD7 HD9

k = 2 k = 4 k = 2 k = 4 k = 2, 3, 5, 6
GY (g) 4.0 (0) 5.7 (0) 6.3 (0) 3.5 (0) 8.8 (1) 6.0 (0)
PH (cm) 1.0 (0) 0.9 (0) 1.3 (0) 1.2 (0) 1.5 (0) 0.9 (0)
EH (cm) 1.2 (0) 2.0 (0) 1.9 (0) 1.6 (0) 1.3 (0) 1.4 (0)
EL (cm) 1.1 (0) 0.8 (0) 0.6 (0) 0.8 (0) 1.3 (0) 1.3 (0)

HD12 HD13

k = 4, 7 k = 3 k = 9 k = 3 k = 9
GY (g) 11 (1) 11 (1) 9.9 (0) 10 (0) 8.6 (0) 6.9 (0)
PH (cm) 1.3 (1) 1.4 (2) 0.9 (0) 0.9 (0) 0.5 (0) 0.8 (0)
EH (cm) 0.7 (0) 0.7 (0) 0.6 (0) 0.6 (0) 0.4 (0) 0.3 (0)
EL (cm) 0.7 (0) 0.4 (0) 0.5 (0) 0.6 (0) 0.5 (0) 0.9 (0)

HD16 HD19

k = 3, 4, 11, 12 k = 7 k = 11 k = 7 k = 11
GY (g) 10 (0) 11 (1) 18 (2) 9.7 (0) 12 (1) 12 (1)
PH (cm) 0.9 (0) 0.9 (0) 1.1 (0) 1.0 (0) 1.0 (0) 1.0 (0)
EH (cm) 0.7 (0) 0.8 (0) 0.8 (0) 0.8 (0) 0.6 (0) 0.8 (0)
EL (cm) 0.9 (0) 1.0 (1) 0.9 (2) 0.8 (0) 1.2 (1) 0.8 (0)

HD21 HD25

k = 4 k = 16 k = 4 k = 16 k = 4, 5, 19, 20
GY (g) 17 (2) 17 (2) 17 (1) 12 (0) 14 (0) 12 (0)
PH (cm) 1.2 (0) 1.3 (0) 1.4 (1) 1.4 (1) 1.3 (0) 1.2 (0)
EH (cm) 0.9 (0) 1.1 (1) 1.1 (1) 0.7 (0) 1.0 (0) 0.9 (0)
EL (cm) 1.0 (0) 1.1 (1) 0.9 (0) 0.8 (0) 0.9 (0) 1.1 (0)

HD27 HD28

k = 7, 10, 16, 19 k = 9, 11, 16, 18

GY (g) 19 (1) 15 (0) 13 (0) 16 (1)
PH (cm) 2.3 (2) 1.9 (1) 1.4 (0) 1.5 (0)
EH (cm) 1.4 (1) 1.1 (1) 0.9 (0) 0.8 (0)
EL (cm) 1.1 (0) 1.6 (2) 1.2 (0) 1.4 (1)

HD31 HD37

k = 5 k = 25 k = 5 k = 25 k = 10 k = 26 k = 10 k = 26
GY (g) 24 (2) 16 (0) 21 (1) 23 (3) 17 (0) 16 (0) 21 (2) 16 (0)
PH (cm) 1.6 (0) 2.1 (2) 1.5 (0) 1.6 (0) 2.2 (1) 1.4 (0) 2.0 (1) 1.4 (0)
EH (cm) 1.4 (2) 1.1 (0) 1.3 (2) 1.1 (1) 1.2 (0) 1.4 (1) 1.3 (1) 1.3 (1)
EL (cm) 2.0 (2) 1.3 (2) 1.2 (0) 1.3 (0) 1.2 (0) 1.7 (2) 1.3 (2) 0.9 (0)

https://doi.org/10.1017/S0014479715000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0014479715000150


Sampling the spatial heterogeneity 379

entries reduced the TBG to 19% (lengthwise analysis) and 22% (breadthwise analysis),
and the respective MSD values to 5 and 8. In terms of the plant height, mean values
varied from 178 up to 212 cm (TBG of 17%), and 16 out of the 28 means differed
significantly from the overall mean of 199 cm. The NN method resulted in TBG of
4.7 and 6.1% (MSD of 2 and 4). The ear height of the 28 PLs ranged from 83.1 up to
104 cm (TBG of 22%) with 16 of them significantly differing from the overall mean
(95 cm), and the NN analysis gave TBG of 6.2 and 9.7% (MSD of 2 and 3). The
average ear length of 235 mm differed significantly in 12 out of the 28 PL means of
225 to 243 mm, corresponding to TBG of 7.7%, and the NN analysis reduced TBG
to 3.0 and 6.1% (MSD of 2 and 5).

In the case of 16 simulated entries, grain yield means corresponded to 38% TBG
and included five significant residuals (MSDs). Comparatively, the RCBw exhibited a
similar TBG including double MSDs, while the RCBb declined TBG to 6.8% without
any significant residual. The NN method decreased the TBG to 17% for the lengthwise
and 14% for the breadthwise arrangement; however, the MSD increased to seven for
the former and decreased to one for the latter. Concerning plant height, the best RCBb

reduced TBG to 4.2% and the MSD to 8, and the worst RCBw did not make any
correction. The NN alternative gave TBG values of 4.6 and 9.4%, and MSD of 4 and
7. With regard to ear height and ear length, and compared with the PL configuration,
the RCBb reduced the TBG nine-fold and six-fold, respectively, zeroing the MSD in
both. Instead, the RCBw arrangement retained the level of TBG and increased the
MSD from 10 to 11 for ear height and from 7 to 10 for ear length. The NN analysis,
gave 6 and 4 MSD for lengthwise and breadthwise arrangement in the matter of ear
height. The respective values in relation to ear length were 10 and 5.

As regards grain yield of seven simulated entries, the RCB7w resulted in almost
double heterogeneity compared with the adverse breadthwise allocation (31 vs. 17%
TBG and 5 vs. 4 MSD). Instead, the RCB7b reduced the TBG to 3.1% and zeroed the
MSD. ANOVA resulted in CVpl of 5.4% for the RCB7w and 13.5% for the RCB7b.
When the ANOVA was performed for several randomized scenarios of the RCB7, a
negative connection between TBG and CVpl was found (Figure 2). The NN analysis
resulted in less heterogeneity than the common PL arrangement, that is, 6.4 vs. 8.1%
TBG (one MSD for both) for the desirable lengthwise orientation, but retained almost
the same heterogeneity (16 vs. 17% TBG and four MSD for both) for the breadthwise
orientation. The outcome of the LD7 analysis was 17% TBG and 4 MSDs. As regards
plant height and ear height, for the best RCB arrangement there was still one MSD (vs.
three and six of the lengthwise PL arrangement). Against PL7, the NN analysis gave
the same (plant height) or less (ear height and length) MSD values for both directions.
The LD7 substantially lowered the TBG, however, five, three and two MSDs were
computed for plant height, ear height and ear length, respectively.

The NN32 analysis did not change the 46% TBG of 32 PLs (Figure 3). Since
resolving the major direction of the spatial heterogeneity blocking the lengthwise
direction would be desirable, for comparison purposes, the 32 PL assumed to represent
four blocks of eight entries were analysed in both directions (see the Table below
Figure 1). In the longitudinal arrangement prudent randomization (RCB8ln/b) resulted
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Figure 2. The relationship between the level of the top-to-bottom gap (TBG) with the coefficient of variation among
plots (CVpl) within blocks which resulted when ANOVA was performed for the RCB7 of Figure 1 for different

randomizations.

in a mean range of 444 to 454 g (TBG of 2.7%) and zero MSD, whereas the most
adverse randomization (RCB8ln/w) gave a mean range of 389 to 518 g (TBG of 28%)
and 6 out of the 8 MSD (not shown). The CVpl value resulting from ANOVA was
higher for the former (12%) than the latter (4.7%). The breadthwise randomization
resulted in a mean range of 431 to 462 g (TBG of 6.9%) and zero MSD for the
RCB8br/b, and 380 to 516 g (TBG of 30%) and six MSD for the RCB8br/w. The CVpl

values from ANOVA were 12.4 and 6.2%, respectively.
As far as the honeycomb entry arrangement is concerned, the mean ranges of the

potential designs simulating 3–37 entries are given in Table 2, and the respective TBGs
and the number of means differing significantly from the overall mean are shown in
Table 3. In general, increasing the number of entries resulted in wider variation among
their means and a greater incidence of deviating means. Indicatively for grain yield,
the lowest TBG (3.0%) was observed in an HD4 model and the highest one (24% with
two MSD) in an HD31 analysis. A positive correlation was measured between the
number of entries and the respective average TBG (Figure 4). For the seven designs
that belong to the grouped set (corresponding to 4, 9, 12, 16, 25, 27 and 28 entries)
different constant (k) values did not affect the outcome resulting in absolute the same
mean ranges (Table 2). For the ungrouped designs, different k constants gave different
mean ranges, but over all did not play any crucial role in experimental precision, and
the same applied to trial orientation. For example, in the HD21 and HD37 designs
for which two k values exist, the higher k resulted in more MSD in the breadthwise
orientation and the lower k resulted in more MSD in the lengthwise orientation. For
the HD31 design, the opposite was true. In terms of experimental orientation, out of
the total 80 mean ranges for each orientation (Table 2), at least one significant residual
was included in 21 for the breadthwise and 26 for the lengthwise orientation (Table 3).

For yield, the TBG of 4% of the HD7 analysis (k = 2) across the entire experimental
area (Table 3) inflated to 8.9, 11 and 13% when applied to the left, middle and right
third, respectively (Figure 1); none showed significant deviation, however. The HD7
(Table 3) averaged higher TBG (4.9%) compared with the RCB7b (Table 1); however,
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Figure 3. The entry residual from the grand mean as an index of the alleviation level of spatial heterogeneity obtained
by the nearest-neighbour (NN) and the honeycomb design (HD) methods versus the plot (PL) arrangement in two
grain yield trials. Each model is followed by the number of simulated entries and the top-to-bottom gap of entry means
is given within parentheses, i.e., PL-16(51%) implies that means of 16 entries allocated in random plots exhibited
51% TBG relevant to the grand mean. Trial areas (m2) and statistics of single plants are shown, i.e., grand mean (x̄ ),
coefficient of variation (CVsp) and the number of plants measured (n). Solid points along a line correspond to means

significantly differing from the grand mean.

no significant residual resulted. The HD7 model gave better results compared with
the NN analysis of both directions. For plant height, the HD7 gave TBG values of 0.9
to 1.3% (no MSD), whereas the respective values for the RCBb, RCB7w, NN7ln and
NN7br were 2.1% (1), 11% (3), 5.4% (3) and 7.2% (5). For ear height, the HD7 gave
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Figure 4. The relationship between the number of simulated entries included in a honeycomb design, and the degree
of the respective average top-to-bottom mean value gap as a percentage of the trial mean, in relation to yield per
plant of maize hybrid ‘B73xMo17’ and wheat cultivar ‘Nestos’. The slopes of the linear correlations (significant at p

< 0.001) indicate three-fold higher rate of TBG increase in the wheat compared to the maize trial.

TBG values of 1.2 to 2.0% (no MSD), whereas the respective values for the RCBb,
RCB7w, NN7ln and NN7br were 2.3% (1), 13% (6), 6.7% (3) and 6.2% (4). For ear
length, the HD7 gave TBG values of 0.6 to 1.1% (no MSD), whereas the respective
values for the RCBb, RCB7w, NN7ln and NN7br were 0.8% (0), 4.5% (5), 1.8% (3)
and 2.9% (4).

In terms of 16 entries, for yield the HD16 exhibited less precision than the RCB16b

resulting in TBG of 10% (no MSD) in the breadthwise analysis and 11% (one MSD)
in the lengthwise analysis. Nevertheless, the HD16 model was more precise than the
NN analysis. For plant height, the HD16 was more effective (TBG of 0.9% with no
MSD) than the RCB and NN analysis. Regarding ear height, the HD16 matched the
effectiveness of RCB16b, exhibiting TBG of 0.7 to 0.8% (no MSD). Regarding ear
length, the HD16 gave TBG of 0.9% (no MSD) for breadthwise direction matching
the RCB16b. For the lengthwise direction, TBG was 1.0% (one MSD), whereas
the NN16ln gave 3.1% TBG and the NN16br 3.0% TBG, with 10 and 5 MSD,
respectively.

In the case of four simulated entries and for grain yield in particular, the honeycomb
analysis averaged TBG of 4.1% with one significant residual, and the RCB4b and
RCB4w resulted in TBG of 6.9 and 19%, respectively; in both, two out of the four
means differed significantly from the overall mean (not shown). The 14% TBG of
the LD4 was accompanied by three MSDs for yield. The LD4 configuration resulted
in 4.8% TBG and 4 MSD concerning plant height, 4.3% TBG and 3 MSD for
ear height, and 1.5% TBG and 3 MSD for ear length. For comparison purposes,
data from Tables 1 and 3 were summarized in Figure 5 demonstrating the average
deflation in TBG obtained by HD and the classical procedures, concerning 7, 16 and

https://doi.org/10.1017/S0014479715000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0014479715000150


Sampling the spatial heterogeneity 383

Figure 5. Comparison of the honeycomb model (HD) for 7, 16 and 28 entries with the respective randomized
complete block (RCB) of four replicates, the nearest-neighbour (NN) model and the lattice design (LD), concerning
the deflation in spatial heterogeneity for grain yield (GY), plant height (PH), ear height (EH) and ear length (EL), as
percentage reduction in TBG relevant to TBG measured in the plot (PL) configuration (the breadthwise direction for

seven entries). Pooled data obtained from Table 3 (HD) and Table 1 (RCB, NN and LD).

28 entries. The HD model averaged the highest deflation, i.e., of 70, 90, 92 and 81%
for grain yield, plant height, ear height and ear length, respectively. The respective
achievements were 22, 19, 37 and 31% for RCB, 48, 43, 52 and 40% for NN and 2,
13, 48 and 32% for LD.
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Figure 6. Smoothed variability map constructed on the single-plant grain yield (g) from the uniformity trial of the
wheat cultivar ‘Nestos’. The coloured legend on the right gives the yield range of small plot units corresponding to the
respective delineated area. An illustration of the possible honeycomb arrangement of seven entries demonstrates that
every entry (e.g., entry 7) is evenly positioned across the entire experimental area on an equilateral triangle pattern, so
the spatial heterogeneity can be sampled and overcome in the most effective way when comparing different entries.
The circles demonstrate that the performance of each plant (positioned in the centre) can be expressed in relation to
the mean of the plants within a circle of chosen size, constituting thus a moving fixed complete replicate, distributed
to all directions. The moving fixed complete replicate allows the nearest-neighbour approach to be easily established,
e.g., yield of the plant coded 7 or 1 is adjustable to the average performance of 7 (interior circle) or 19 (exterior circle)
or more entries/plants, ensuring the most objective single-plant selection within a particular entry. (Based on Fasoulas

and Fasoula, 1995).

The wheat cultivar ‘Nestos’

Spatial heterogeneity of the wheat experiment (Figure 6) was expressed by 56%
CVsp; divided into 16 PLs gave a mean range of 23.3 to 39.0 g, corresponding to a
51% TBG and including 9 MSDs (Figure 3). The NN and HD remedy techniques for
the same number of PLs gave TBG of 38 and 22%, respectively, with three MSDs for
the former and none for the latter. In the case of the honeycomb models, significant
residuals were computed for the HD19 of k = 11 (one MSD), the HD21 of k = 4
(one MSD) and the HD25 (two MSDs), and the correlation of TBG with the number
of entries was significant (Figure 4). When four entries were under consideration, the

https://doi.org/10.1017/S0014479715000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0014479715000150


Sampling the spatial heterogeneity 385

HD4 and RCB4b succeeded in zeroing MSD (TBG of 6.1 and 3.0%, respectively)
while the four means of the LD4 significantly deviated (TBG of 10%) (not shown).

D I S C U S S I O N

The general impacts

Spatial heterogeneity is a ubiquitous feature in natural ecosystems (García–Palacios
et al., 2012; Li et al., 2010). In plant breeding, yield is always one of the main objectives
affected by numerous factors comprising spatial heterogeneity (Ball et al., 1993;
Brownie et al., 1993; Stroup et al., 1994; Vollmann et al., 2000). Spatial heterogeneity
was comparatively lower in maize rather than wheat (Figures 3, 4). This classification
was reflected by the significant residuals of simulated entries and/or the overall CVsp

values. It was the outcome of both genotype vulnerability to environmental forces
and the conditions under which each trial was conducted. The wheat cultivar had
been qualified as a genotype that lacks genetic buffering and is thus prone to acquired
variance (Tokatlidis et al., 2006). Trial of the maize hybrid was three-fold larger but
exhibited lower spatial variation attributable to genotype stability or a less fluctuating
environment or both.

The results suggest that spatial heterogeneity in maize field trials may simultaneously
influence not only grain yield but other agronomic characteristics as well, in agreement
with Vollmann et al. (2000) concerning soybean trials. Variations in soil parameters
have been reported to affect element concentrations in grain, grain yield and protein
content of wheat in a correlated manner (Berndtsson and Bahri, 1995; Mulla et al.,
1992). Inability to combat spatial variation could cause biased estimates of heritability
(Helms et al., 1995; Magnussen, 1993; Rosielle, 1980), decreased response to selection
and reduced precision of testing statistics (Vollmann et al., 2000). Procedures that
correct for the effects of spatial variability can require elaborate statistical designs (e.g.,
lattice or NN designs); however, they are rarely used by breeders, who prefer classical
field-PL designs, thus maintaining lower efficiency (Ball et al., 1993; Rosielle, 1980),
particularly for characteristics other than yield (Vollmann et al., 2000).

Effectiveness of the honeycomb model

The first and inviolable rule of the honeycomb breeding method is absence of
competition. The reasons have been thorougly explained previously (Fasoula and
Fasoula, 2000; Fasoula and Tokatlidis, 2012; Fasoulas, 1993; Fasoulas and Fasoula,
1995; Kyriakou and Fasoulas, 1985; Tokatlidis et al., 2010) and are beyond the
scope of this paper. This work focuses on the potential effectivenenes of honeycomb
experimental designs, and draws interesting comparisons with RCB, NN and LD.

Analysis of the maize hybrid data shows that there is no need for concern about
orientation in field experimentation according to the honeycomb pattern. Despite the
differential distribution of spatial variation (Figure 1), none of the directions was found
to be advantageous and their differences were relatively low (Tables 2, 3). The same
applies to the k constants. As regards the grouped HDs, different k resulted in absolutely
the same outcome, whereas for the ungrouped ones, the differences were relatively low.
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The systematic entry arrangement of the honeycomb layout regardless of the number
of entries and the k constant chosen to construct the design (Fasoulas and Fasoula, 1995)
offers a uniform entry distribution to all directions. The longitudinal arrangement gave
mostly better results in NN statistical analysis (Table 1). The same applies to the RCB8
because of the within-blocks higher heterogeneity for the breadthwise direction (lower
TBGs and CVpl values for RCB8ln than RCB8br). Heterogeneity among PLs within
a block causes the estimated difference between two treatments to vary across blocks;
the greater the heterogeneity within blocks, the greater the variation in estimates of
treatment effect and the lower the precision of the study (Brownie et al., 1993; Gusmao,
1986; Stroup et al., 1994; Vollmann et al., 1996, 2000).

Another important inference is that for up to nine entries, statistically the HDs
succeeded in almost absolute sampling the spatial heterogeneity (Table 3). The RCBs
did the same regarding the presupposition of favourable randomization, i.e., the
RCB7b and RCB16b (Table 1) as well as the RCB8b zeroed the MSD while the
RCB4b gave two MSDs. Nevertheless, the respective adverse randomizations not only
exhibited absolute failure to remedy the spatial heterogeneity, but even deteriorated
it (e.g., the RCB7w in Table 1). Hence, taking into account the very low possibility
of prudent randomization, the HD appears advantageous. For example, in the case
of seven entries replicated four times the possibility of a particular randomization
is one per 50404, implying that RCB7b (and RCB7w) is unrealistic. Considering the
magnitude of 31% TBG of the RCB7w, the most probable level of 15 to 20% TBG
(reflecting just 2% deflation and absolute failure as Figure 5 demonstrates) is far from
sufficient (i.e., the 16% of the NN7br included three out of seven significant residuals)
(Table 1). On the other hand, the NN model produced inadequate deflation of
differences, and sometimes failed completely (Table 1, Figure 3). Indeed, the literature
presents contrasting accounts of NN analysis. Pro the NN analysis were the results of
Townley-Smith and Hurd (1973), and Vollmann et al. (1996) indicated it was more
efficient than both the RCB and LDs. Scharf and Alley (1993) and Stroup et al. (1994)
recommended it to improve accuracy and precision compared with RCB analysis.
However, Zimmerman and Herville (1991) found random field methods to be more
accurate than NN procedures, and Helms et al. (1995) did not find any advantage
of NN over unadjusted selection criteria in two soybean populations. Rosielle (1980)
found an LD more efficient for control of intra-site error compared with both NN and
RCB designs, and Vollmann et al. (2000) found both lattice analysis and the NN method
to be far more efficient than randomized block analysis in modelling spatial variations.

Using a special analysis technique can improve precision, but selecting the most
appropriate analysis for a given set can be hard (Brownie et al., 1993). Spatial
homogeneity within blocks is extremely uncommon and the efficiency of the RCB
design tends to be poor in trials involving a large number of treatments (Brownie et al.,
1993; Stroup et al., 1994). Breeders qualify their trials on the CVsp of ANOVA and often
discard trials with CVsp > 15% as unacceptable (Stroup et al., 1994). However, if this is
the case, the negative relationship between the CVsp values obtained by ANOVA with
the respective TBGs (Figure 2) is interesting, implying contrasting inferences for two
desirable outcomes. Replication is in itself an attempt to account for the existence of
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soil’s spatial variability. However, it is a crude technique given the complex patterns of
spatial variability that exist, and there is no way to lay out blocks that will successfully
account for spatial yield variability (Scharf and Alley, 1993). To increase precision
in such a trial, one approach is to reduce block size by employing an incomplete
block design such as LD designs (Brownie et al., 1993). LDs, however, have certain
disadvantages over RCBs in terms of the number of treatments and the field layout
(Rosielle, 1980). Concerning the NN method, Ball et al. (1993) recommended it as a
means to remove the effects of spatial dependence on PL yield deviations from the
treatment mean. Brownie et al. (1993) recommended that NN analysis should ignore
blocks to avoid artificial discontinuities, whereas uniterated analysis lacks efficiency and
iterated produces inflated Type I error rates. The HDs compromise the main principles
of the above statistical schemes, i.e., blocking, replication, systematic distribution to all
directions, plus potential NN adjustment on the same baseline. These features can be
seen in Figure 6, corresponding to seven entries. A complete block should involve the
seven entries, as in the case of the interior circle. The fixed block is repeatable many
times throughout the trial, and its shape ensures the greatest within-block homogeneity.
Every entry is evenly distributed across the area on an equilateral triangular pattern
sampling the spatial heterogeneity. Every plant/entry that occupies the centre of a
circle can be qualified on the average performance of the plants included within the
circle, i.e., the moving circular average (Fasoulas, 1987), matching the moving average
method of Knott (1972). The systematic entry arrangement ensures that the same en-
tries are always included in the circle, so the technique simulates that of the check PL of
Briggs and Shebeski (1968), despite the ‘paucity’ of a common control. In fact, the tech-
nique of the honeycomb moving circular average was performed in both trials using a
circle size of 60 plants. Nevertheless, the results were essentially similar to the presented
unadjusted means and thus of no consequence from the perspective of this paper.

Difficulties of dealing with spatial variation are pronounced with a high number of
entries. In the RCB model, in experiments with more than 8 to 12 PLs per block, the
layout becomes problematic because the assumption of spatial homogeneity within
blocks is extremely uncommon (Stroup et al., 1994). Absolute failure resulted in maize
from the NN32 (Figure 3). Increasing the level of entries reduced ability of the HD
model to cope with the spatial variation, and slopes of the linear correlations indicated
almost three-fold higher rate of TBG increase in the wheat trial compared to the
maize one (Figure 4). Obviously, to encounter huge spatial heterogeneity, the number
of entries is a key factor. Larger area of the moving circular complete block in a higher
number of entries reasonably inflates the mean differences because of greater intra-
block variation. For instance, the exterior circles in Figure 6 correspond to the moving
circular complete block of the HD19 design, which is apparently more heterogeneous
than the interior of the HD7. Fasoulas (1987) maintained arguably that adjustment of
the size of the moving block is expected to be effective between certain limits only, i.e.,
large blocks are preferably used when the number of entries is large, while the opposite
is true for low entry selection pressures. The size of the moving circular complete block
is also determined by the inter-plant distance. Therefore, concerning honeycomb
breeding choice of an optimal rather than huge inter-plant distance to meet the
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condition of absence of competition appears very important. The issue is a matter
of both crop and genotypes under evaluation, as Tokatlidis et al. (2010) evidenced
in maize. The number of entries is determined by the genotype and treatment, and
limiting them is not always realistic. Considering the results of HD7 analysis for yield
in the trial shown in Figure 1 for the entire area and for the three parts, it looks as
though the number of replicates is crucial. For the partial analysis, the entry sample
size is more than 100 plants per entry and is statistically adequate, and the outcome is
deemed successful. However, over the entire experiment, the same analysis succeded
in substantially greater deflation of the means’ deviation from the grand mean (TBG of
4 vs. up to 13%) despite the three times larger area. This is a very important inference,
implying that when many entries are included in the honeycomb procedure increasing
the replicates per entry will improve effectivenes in correcting spatial variation despite
the concomitant greater overall spatial heterogeneity. According to Fasoula (2013), the
honeycomb model was invented for evaluation and selection to cover two needs. The
first is the removal of the masking effects of soil heterogeneity, and the other to exploit
the advantages offered by soil heterogeneity to select for stability.

Due to lack of previous relevant research, one could hypothesize that inferences
drawn are data specific (specific crops, traits and fields), hence, further research is
imperative. The HD may have not yet gained popularity among breeders. In classical
models, the PL as experimental unit is preferred to simulate true growing conditions.
However, in case of the mono-genotypic cultivar (i.e., inbred line and/or single-cross
hybrid) growing condition represents an absolute pure stand. Therefore, during the
breeding process seeking for the outhstanding genotype actual farming condition is
not feasible since the classical PL would comprise a mixture of genotypes. Further,
competition may exert obstructive influence on genotypes potential of excellent
performance in pure stand (Fasoula and Fasoula, 2000; Tokatlidis, 2015). Rather,
the honeycomb model assuming the individual plant as experimental unit enables
experimentation at nil-competition to erase the barrier of competition. This combined
with the effectiveness of sampling the spatial heterogeneity renders the model of long
perspective of promoting progress through selection as the so far relevant research
indicated in several crops, even within too narrow gene pools (Tokatlidis, 2015)
unexploitable through the PL model. Further research on the required distance to grow
individual plants independent of competition which vary among crops (depending
mainly on the crop ‘size’), and invention of appropriate hardware and software may
promote wider adoption of the honecycomb breeding among breeders.

C O N C LU S I O N

Despite the increased spatial heteogeneity induced by the large experimental surface
owed to high inter-plant distances, the overall inference drawn from the current
study is that the honeycomb experimental design samples spatial heterogeneity. It
comprises the main elements met in other models, i.e., blocking, replication, NN
pattern adjustment on the same baseline, plus distribution to all directions with
systematic rather than randomized configuration; thus, it appears advantageous over
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the classical experimental designs like the RCB, the NN method and the lattice pattern.
Additionally, breeders do not need to be concerned with the pattern and orientation
of soil variability in order to decide on the layout of the field plan, the shape, size and
orientation of the PLs and grouping of the PLs into blocks. To optimize sampling of
spatial heterogeneity via the honeycomb pattern, optimal inter-plant distance ensuring
exclusion of plant-to-plant interference for resources and the number of replicates per
entry are of paramount importance. The former is a matter of the crop, while more
replicates is mandate with increased size of the moving circular complete block (e.g.,
larger inter-plant distance or number of entries). They are challenging issues both
deserving further investigation.
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