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Abstract

In the predecessor to this article, we used global equidistribution theorems to prove
that given a correspondence between a modular curve and an elliptic curve A, the
intersection of any finite-rank subgroup of A with the set of CM-points of A is finite.
In this article we apply local methods, involving the theory of arithmetic differential
equations, to prove quantitative versions of a similar statement. The new methods apply
also to certain infinite-rank subgroups, as well as to the situation where the set of CM-
points is replaced by certain isogeny classes of points on the modular curve. Finally, we
prove Shimura-curve analogues of these results.

1. Introduction

LetN > 3. Let S be the modular curveX1(N) over Q, and let CM⊆ S(Q) be the set of CM-points
on S (see § 2 for definitions). Let A be an elliptic curve over Q. Given a morphism S→A, we
may map the CM-points on S to points on A and ask what relations exist among them in the
group law on A. More generally, we may consider a modular-elliptic correspondence, a pair of
non-constant morphisms S Π←−X Φ−→A of smooth connected projective curves over Q, where
S and A are as above. On the one hand, it is easy to construct some relations by using Hecke
correspondences; see (A4). On the other hand, the following special case of [BP, Theorem 2.1]
says that not too many relations exist.

Theorem 1.1. Let S
Π←−X Φ−→A be a modular-elliptic correspondence and let Γ≤A(Q) be a

finite-rank subgroup. Then Φ(Π−1(CM)) ∩ Γ is finite.

(Recall that Γ is said to be of finite rank if the quantity rank(Γ) := dimQ(Γ⊗Q) is finite.) [BP,
Theorem 2.5] implies an analogous result for when S is a Shimura curve and Π is the identity.

The aim of this paper is to prove local analogues of these results in which, roughly speaking,
the field Q is replaced by the completion R := Ẑur

p of the maximal unramified extension of the
ring Zp of p-adic integers, while the set CM is replaced by either the set CL of canonical-lift
points or by a fixed (partial) isogeny class. The new results represent an improvement over those
in [BP] in that they come with effective bounds and are valid for certain groups Γ of infinite rank.

For historical background see [BP, § 1.2], which comments on related results in [Cor02, Kol88,
Maz84, NS99, RS07, Vat02]. Although the present article is intended as a sequel to [BP], it is
logically independent of [BP].
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Independence of special points arising from modular and Shimura curves

Our methods are quite different from those used in [BP, Cor02, Kol88, Maz84, NS99, RS07,
Vat02]. Indeed, our local results will be proved using the theory of arithmetic differential
equations in the sense of [Bui05]; see § 3.9.

1.1 Main theorems
First, we introduce the following local analogue of rank, in order to treat some infinite-rank
groups as if they were of finite rank.

Definition 1.2. For any abelian group G, define Gp-div :=Gtors + pG. For any subgroup Γ≤G,
define

rankGp (Γ) := dimFp

(
Γ

Γ ∩Gp-div

)
.

Then

rankGp (Γ)≤ dimQ(Γ⊗Q) =: rank Γ,

rankGp (Γ)≤ dimFp(Γ⊗Z Fp).

Assume that we are given a modular-elliptic correspondence S
Π←−X Φ−→A. For each

sufficiently large prime p ∈ Z one can choose a model of this correspondence over R := Ẑur
p ; see § 3.

We obtain maps S(R) Π←−X(R) Φ−→A(R). Let CL⊂ S(R) be the set of CL-points (canonical-lift
points); see § 3.3 for more on the definition of CL. In an appropriate sense, CL is a subset of
CM; see Theorem 4.4.

Theorem 1.3 (Finiteness for CL-points in a subgroup). Suppose that S
Π←−X Φ−→A is a

modular-elliptic or Shimura-elliptic correspondence (see § 2 for definitions), and assume that
p is a sufficiently large good prime in the sense of Definition 3.3. Then there exists a constant

c depending on p such that for any subgroup Γ≤A(R) with r := rankA(R)
p (Γ)<∞, the set

Φ(Π−1(CL)) ∩ Γ is finite of cardinality at most cpr.

Remark 1.4. Corollary 3.19 makes c explicit in the case where Π is the identity and Φ is a
modular parametrization in the sense of Definition 2.3.

Remark 1.5. There are interesting examples of subgroups Γ≤A(R) with rankA(R)
p (Γ)<∞ and

rank(Γ) =∞: indeed, if Γ := Γ0 + pA(R), where Γ0 ≤A(R) and rank(Γ0)<∞, then Γ is such
an example; see Remark 3.11 for more on this.

If S is a modular curve and Σ is a set of prime numbers, define the Σ-isogeny class of Q in
S(R) to be the set of all points in S(R) corresponding to elliptic curves that admit an isogeny
u to E such that all the prime divisors of deg(u) are in Σ. There is a similar definition in the
Shimura-curve case; see § 3.7 for details. Also, if S is a modular curve and Q ∈ S(R) is an ordinary
point, i.e., a point corresponding to an elliptic curve E with good ordinary reduction E, then let
KQ := End(E)⊗Q; for a similar definition in the Shimura-curve case, see § 3.4.

Theorem 1.6 (Finiteness of the intersection of an isogeny class with a subgroup). Assume that

S
Π←−X Φ−→A is a modular-elliptic or Shimura-elliptic correspondence and that p is a sufficiently

large good prime. Let Q ∈ S(R) be an ordinary point. Let Σ be the set of all rational primes
that are inert in the imaginary quadratic field KQ. Let C be the Σ-isogeny class of Q in S(R).
Then there exists a constant c such that for any subgroup Γ≤A(R) with r := rankA(R)

p (Γ)<∞,
the set Φ(Π−1(C)) ∩ Γ is finite of cardinality at most cpr.
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A. Buium and B. Poonen

Theorems 1.1, 1.3 and 1.6 suggest the following ‘global’ conjecture.

Conjecture 1.7. Let S Π←−X Φ−→A be a modular-elliptic or Shimura-elliptic correspondence.
Let Γ≤A(Q) be a finite-rank subgroup. Let C ⊂ S(Q) be an isogeny class. Then the set
Φ(Π−1(C)) ∩ Γ is finite.

1.2 Reciprocity functions

Our local results for CL-points are proved via ‘reciprocity theorems’ (e.g., Theorem 3.5), which
transform relations between certain CL-points in A into additive relations between values of
a certain ‘reciprocity function’. More precisely, one part of Theorem 3.5 (with Remark 3.7 for
terminology) shows that given a modular-elliptic correspondence S Π←−X Φ−→A and a model
of X over R, there exist an affine dense open subscheme X† of this model and a p-adic formal
function Φ† on X† with non-constant reduction such that for any divisor

∑
miPi supported on

Π−1(CL) ∩X†(R), we have
∑
miΦ(Pi) ∈A(R)tors if and only if

∑
miΦ†(Pi) = 0 ∈R.

Some reciprocity results have analogues for (local) isogeny classes: see § § 3.7 and 3.8.

On the other hand, Theorems A1, A2 and A10 show that there is no reciprocity in the global
setting.

1.3 Structure of the paper

We review basic definitions in § 2. Section 3 states all our local results beyond those already in
this introduction, and § 4 proves them. Section 4 also reviews the necessary background from
the theory of arithmetic differential equations. The non-existence of global reciprocity functions
is relegated to an appendix.

Remark 1.8. The proofs of the modular and Shimura cases are parallel and share some common
tools, but they are logically independent in the sense that it is not necessary to follow both
cases to understand only one. A similar comment applies to results for CL-points versus isogeny
classes.

The following leitfaden may help the reader seeking a quick path through the proof of the
modular case of Theorem 1.3 (the result for CL-points). Theorem 1.3 follows from Theorem 3.5
and its immediate consequence, Corollary 3.8. The proof of Theorem 3.5 is sketched in § 3.9. A
reader accepting parts (iv) and (v) of Lemma 4.7, the isomorphism (4.48) and formula (4.15) can
go directly to the initial paragraphs of § 4.9 for a complete proof of Theorem 3.5 in the modular
case.

2. Basic definitions

2.1 Modular curves

Let N ∈ Z satisfy N > 3. Let X1(N) over Q be the complete modular curve attached to the group
Γ1(N). If Y1(N)⊂X1(N) is the non-cuspidal locus, then Y1(N)(Q) is in bijection with the set
of isomorphism classes of pairs (E, α) where E is an elliptic curve over Q and α : Z/NZ ↪→ E(Q)
is an injection.
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Independence of special points arising from modular and Shimura curves

Definition 2.1. A CM-point on the curve S :=X1(N) is a point in Y1(N)(Q) represented by
a pair (E, α) such that E has complex multiplication, i.e., End(E) 6= Z. Let CM⊂ S(Q) be the
set of CM-points on S.

Definition 2.2. A modular-elliptic correspondence is a pair of non-constant morphisms of
smooth connected projective curves over Q, S Π←−X Φ−→A, where S =X1(N) and A is an elliptic
curve. From now on, we normalize Φ by fixing x∞ ∈X(Q) such that Π(x∞) =∞ and requiring
Φ(x∞) = 0. We call Φ(Π−1(CM))⊂A(Q) the set of CM-points on A.

Definition 2.3. Let f =
∑
anq

n be a newform. (Unless otherwise specified, newforms in this
paper are of weight 2, on Γ0(N), and normalized (a1 = 1), with Fourier coefficients in Z.) (For
terminology on modular forms we refer to [DI95].) The Eichler–Shimura construction [DI95]
yields a Q-morphism from X0(N) to an elliptic curve Af . By a modular parametrization attached
to f we mean a composition X1(N)→X0(N)→Af →A where X1(N)→X0(N) is the usual
map and Af →A is any isogeny of elliptic curves over Q. A modular-elliptic correspondence

is said to arise from a modular parametrization if it is of the form S
Π←−X Φ−→A where

S =X =X1(N), Π = Id, and Φ is a modular parametrization.

Remark 2.4. By the work of Wiles and others [Wil95, TW95, BCDT01], together with the
isogeny theorem of Faltings [Fal83], any elliptic curve A over Q has a modular parametrization.

Definition 2.5. The isogeny class C of a non-cusp Q ∈ S(Q) is the set of points in S(Q) such
that the corresponding elliptic curve admits an isogeny to the elliptic curve corresponding to Q.
(The isogeny is not required to respect the points of order N .)

2.2 Shimura curves
Let D be a non-split indefinite quaternion algebra over Q. Fix a maximal order OD once and for
all. Let XD(U) be the Shimura curve attached to the pair (D, U), where U is a sufficiently small
compact subgroup of (OD ⊗ (lim←− Z/mZ))× such that XD(U) is connected; see [Buz97, Zha01].

Definition 2.6. A fake elliptic curve1 is a pair (E, i) consisting of an abelian surface E over
Q and an embedding i : OD→ End(E).

The set XD(U)(Q) is in bijection with the set of isomorphism classes of fake elliptic curves
equipped with a level U structure in the sense of [Buz97, Zha01].

Definition 2.7. The classification of endomorphism algebras [Mum70, p. 202] shows that for
any fake elliptic curve (E, i), the algebra (End E)⊗Q is isomorphic to either D or D ⊗K '
M2(K) for some imaginary quadratic field K embeddable in D. In the latter case, (E, i) is said
to be CM; then E is isogenous to the square of an elliptic curve with CM by an order in K.
A CM-point of S(Q) is a point whose associated (E, i) is CM. Let CM⊂ S(Q) be the set of
CM-points on S.

Definition 2.8. A Shimura-elliptic correspondence is a pair of non-constant morphisms of
smooth connected projective curves over Q, S Π←−X Φ−→A, where S is a Shimura curve as
above and A is an elliptic curve. We call Φ(Π−1(CM))⊂A(Q) the set of CM-points on A.

Definition 2.9. For any Q ∈ S(Q), represented by a fake elliptic curve (E, i) with level U
structure, the isogeny class C of Q in S(Q) consists of all points in S(Q) that are represented by

1 In the literature this is sometimes called a ‘false elliptic curve’.
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fake elliptic curves (E′, i′) with level U structure such that there is an isogeny E→ E′ compatible
with the OD-action (but not necessarily compatible with the level U structures).

3. Detailed exposition of the results

3.1 Review of Witt rings
Fix a prime p. Let Zp be the ring of p-adic integers, and let Zur

p be the maximal unramified
extension of Zp. Let R := Ẑur

p be the completion of Zur
p . We set k =R/pR and K :=R[1/p]. Thus

k ' Fp and R is the Witt ring W (k). Let Fr: k→ k be the automorphism Fr(x) := xp, and let
φ : R→R be the unique automorphism lifting Fr.

We will use the notion of a canonical-lift (CL) abelian scheme over R; see § 4.1 for the
definition.

3.2 Hecke correspondences
For any prime l, let Y1(N, l) be the affine curve over Q parametrizing triples (E, α, H)
in which (E, α), with α : Z/NZ ↪→ E(Q), represents a point in Y1(N) and H ≤ E(Q) is an
order-l subgroup that intersects α(Z/NZ) trivially; see [Con01, p. 207]. Define degeneracy
maps σ1, σ2 : Y1(N, l)→ Y1(N) by σ1(E, α, H) := (E, α) and σ2(E, α, H) := (E/H, u ◦ α), where
u : E→ E/H is the quotient map.

Let X1(N, l) be the smooth projective model of Y1(N, l). The σi extend to σi : X1(N, l)
→X1(N). Define the Hecke operator T (l)∗ on Div(X1(N)(Q)) by T (l)∗D := σ2∗σ

∗
1D. For

P ∈X1(N)(Q), write T (l)∗P =:
∑

i P
(l)
i ; the sum involves l + 1 or l terms according to whether

l -N or l |N . If, in addition, f =
∑
anq

n ∈ Z[[q]] is a newform, then the divisor
∑

i P
(l)
i − alP

will be called a Hecke divisor.

3.3 Conventions on modular-elliptic correspondences
The Z[1/N ]-scheme Y1(N) represents the functor taking a Z[1/N ]-algebra B to the set of
isomorphism classes of pairs (E, α) where E is an elliptic curve over B and α : (Z/NZ)B → E
is a closed immersion of group schemes. For each P ∈ Y1(N)(B), let (EP , αP ) be a pair in
the corresponding isomorphism class. The Z[1/N ]-scheme S =X1(N) is the Deligne–Rapoport
compactification; see [DI95, pp. 78–81]. The base extension of S to C will also be denoted by S.
The cusp ∞ on X1(N) is defined over Q(ζN ), where ζN is a primitive Nth root of 1.

Remark 3.1. Some of the references we cite use a modular curve parametrizing elliptic curves
with an embedding of µN instead of Z/NZ, but the two theories are isomorphic as long as we
work over Z[1/N, ζN ]-algebras.

Assume that we are given a modular-elliptic correspondence S Π←−X Φ−→A with S =X1(N).
We may assume that A comes from a model over OF0 [1/Nm] and that X, S,Π, Φ come from
models over OF [1/Nm], where F0 ⊆ F are number fields, and OF0 and OF are their rings of
integers, and m ∈ Z>0. Then x∞ = Π(∞) has a model over OF1 [1/Nm], where F1 is a number
field containing F (ζN ).

If p is large enough to be unramified in F1, then we fix once and for all an embedding of
F1 into K; we then obtain an embedding OF1 [1/Nm]⊂R. A point P ∈ S(R) is called ordinary
(respectively, a CL-point) if P ∈ Y1(N)(R) and EP has ordinary reduction EP (respectively, EP
is CL). If P ∈ S(R) is ordinary, let KP be the imaginary quadratic field End(EP )⊗Q. Finally,
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Independence of special points arising from modular and Shimura curves

let CL be the set of all CL-points of S(R). We call Φ(Π−1(CL))⊂A(R) the set of CL-points
of A.

3.4 Conventions on Shimura-elliptic correspondences
Now suppose instead that S is a Shimura curve XD(U), where D and U satisfy the conditions
in [Buz97]. Then, for some m ∈ Z>0, the Shimura curve S =XD(U) is a Z[1/m]-scheme with
geometrically integral fibers such that for any Z[1/m]-algebra B, the set S(B) is in bijection
with the set of isomorphism classes of triples (E, i, α) where (E, i) is a fake elliptic curve over B
(i.e., E/B is an abelian scheme of relative dimension 2 and i : OD→ End(E/B) is an injective
ring homomorphism) and α is a level U structure.

Assume that we are given a Shimura-elliptic correspondence S Π←−X Φ−→A. With notation as
in § 3.3, after replacing m by a multiple if necessary, we may assume that A comes from a model
over OF0 [1/m] and that X, S,Π, Φ come from models over OF [1/m], where F0 ⊆ F are number
fields. Assuming that p is suitably large, we again fix an embedding F ⊂K; hence we have an
embedding OF [1/m]⊆R. A point P ∈ S(R) is called ordinary (respectively, a CL-point) if P
corresponds to a triple (EP , iP , αP ) where EP has ordinary reduction EP (respectively, EP is
CL). If P ∈ S(R) is ordinary, let KP be the imaginary quadratic field End(EP , iP )⊗Q. Finally,
CL is the set of all CL-points of S(R). We call Φ(Π−1(CL))⊂A(R) the set of CL-points of A.

3.5 Reciprocity functions for CL-points
Definition 3.2. Let p be a prime number, let F0 be a number field, and let v be a degree-1
place lying above p. We say that v is anomalous for an elliptic curve A over F0 if the trace av of
the p-power Frobenius on the reduction A mod v satisfies av ≡ 1 (mod p). (See [Maz72, p. 186].)

Let the notation be as in § 3.3 or § 3.4.

Definition 3.3. A rational prime p is good (for our correspondence) if p splits completely in
F0, the elliptic curve A has good reduction at all primes v|p, and in the Shimura-elliptic case
each v|p is not anomalous for A.

Remark 3.4. The Chebotarev density theorem easily implies that there are infinitely many good
primes.

Let p be sufficiently large and set XR :=X ⊗R. (More generally, throughout this paper the
subscript R always means ‘base extension to R’, and we use the same convention for any other
ring in place of R. In particular, if p is a good prime, then AR comes from an elliptic curve AZp
over Zp and we let ap be the trace of the p-power Frobenius on AFp .) Let X̄ :=Xk =X ⊗ k. For
any P ∈X(R), let P̄ denote the image of P in X̄(k). (More generally, in this paper, whenever we
are dealing with a situation that is ‘localized at p’, an upper bar will mean ‘reduction mod p’.)
Let X̂R be the p-adic completion of XR viewed as a formal scheme over R. (More generally,
throughout this paper an upper ˆ will denote ‘p-adic completion’.) If X† ⊂XR is an affine dense
open subscheme, then any global function Φ† ∈ O(X̂†) =O(X†)̂ defines a map Φ† : X†(R)→R.
The reduction Φ† ∈ O(X̄†) induces a regular map Φ† : X̄†(k)→ k.

Recall the group A(R)p-div :=A(R)tors + pA(R).

Theorem 3.5 (Reciprocity functions for CL-points). Assume that S
Π←−X Φ−→A is a modular-

elliptic or Shimura-elliptic correspondence and that p is a sufficiently large good prime.
Then there exist an affine dense open subscheme X† ⊂XR and a function Φ† ∈ O(X̂†) with
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non-constant reduction Φ† ∈ O(X̄†) \ k such that for any P1, . . . , Pn ∈Π−1(CL) ∩X†(R) and
any m1, . . . , mn ∈ Z, we have

n∑
i=1

miΦ(Pi) ∈A(R)tors ⇐⇒
n∑
i=1

miΦ†(Pi) = 0 ∈R,

n∑
i=1

miΦ(Pi) ∈A(R)p-div ⇐⇒
n∑
i=1

miΦ†(P̄i) = 0 ∈ k.

Theorem 3.5 will be proved in § 4. It is useful to compare Theorem 3.5 with Theorems A1
and A10.

Remark 3.6. As the proof of Theorem 3.5 will show, the functions Φ† will be functorially
associated (in an obvious sense) to tuples (X, S, A,Π, Φ, ωA) where ωA is a nonzero global
1-form on A defined over F0.

Remark 3.7. Let C = Π−1(CL) ∩X†(R), and let Div(C) be the free abelian group generated
by C. One can consider the maps Φ∗ : Div(C)→A(R)/A(R)tors and Φ†∗ : Div(C)→R naturally
induced by Φ and Φ† by additivity. The first equivalence in Theorem 3.5 then says that
Ker(Φ∗) = Ker(Φ†∗). A similar description can be given for the second equivalence. There is
a formal similarity between such a formulation of Theorem 3.5 and the way in which classical
reciprocity laws are formulated in number theory and algebraic geometry. Indeed, in classical
reciprocity laws one is usually presented with maps Φ : C →G and Φ† : C →G† from a set C of
places of a global field to two groups G and G† (typically a Galois group and a class group), and
one claims equality of the kernels of the induced maps Φ∗ : Div(C)→G and Φ†∗ : Div(C)→G†.

Let us discuss some consequences of Theorem 3.5.

Corollary 3.8. In the notation of Definition 1.2 and Theorem 3.5, we have

rank
( n∑
i=1

Z · Φ(Pi)
)

= rank
( n∑
i=1

Z · Φ†(Pi)
)
,

rankA(R)
p

( n∑
i=1

Z · Φ(Pi)
)

= dimFp

( n∑
i=1

Fp · Φ†(P̄i)
)
.

Proof of Theorem 1.3. By Corollary 3.8, the Fp-span of

Φ†(Φ−1(Γ) ∩Π−1(CL) ∩X†(R))

has dimension less than or equal to r over Fp. So

#Φ−1(Γ) ∩Π−1(CL) ∩X†(R)≤ pr deg(Φ†).

Now, CL elliptic curves over R are uniquely determined up to isomorphism by their reduction
mod p; see Theorem 4.3. Similarly, by the same theorem, if (E1, i1) and (E2, i2) are two fake
elliptic curves such that E1, E2 are CL and (Ē1, ī1)' (Ē2, ī2), then (E1, i1)' (E2, i2). Thus

Φ−1(Γ) ∩Π−1(CL) ∩X†(R)

has at most pr deg(Φ†) · d1d2 elements, where d1 := deg Π and d2 is the number of level
Γ1(N) structures (respectively, level U structures) on a given elliptic (respectively, fake elliptic)
curve. Also, #(Π−1(CL) \X†(R))≤ d1d2d3, where d3 = #(Π−1(Sord(k)) \ X̄†(k)), with the ‘ord’
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superscript indicating the ordinary locus. So

#Φ(Π−1(CL)) ∩ Γ≤#Φ−1(Γ) ∩Π−1(CL)≤ (pr deg(Φ†) + d3)d1d2, (3.9)

which is at most cpr, where c := deg(Φ†) + d1d2d3. 2

Corollary 3.19 will make the bound in (3.9) explicit in the case where S =X =X1(N), Π = Id
and Φ is a modular parametrization.

Remark 3.10. Let M be the algebraic closure of F in K. Then the study of pA(M) is analogous
to the study of Wieferich places in [Sil88] and [Vol00]: indeed, for a ∈ Z not divisible by p, the
classical Wieferich condition ap ≡ a (mod p2) is equivalent to a ∈M×p, and M×p is the analogue
of pA(M) for the multiplicative group Gm.

Remark 3.11. Let Γ0 be a finite-rank subgroup of A(M), and let Γ := Γ0 + pA(M). Then
rankA(R)

p (Γ)<∞, so Theorem 1.3 applies to Γ.
On the other hand, we claim that rank(Γ) =∞. This is a consequence of the following

statement: If L is the compositum in F of all quadratic extensions of F that are unramified
at all primes above p, then A(L) is of infinite rank. To prove this, choose a Weierstrass equation
y2 = f(x) for A, where f(x) is a monic cubic polynomial with coefficients in the ring of integers
OF of F . Consider points with x-coordinate xn = 1/p4 + n for n ∈ OF . Then F (

√
f(xn)) is

unramified at p since the equation p12f(xn)≡ 1 (mod p4) implies, by Hensel’s lemma, that
p12f(xn) is a square in the completion of F at any prime above p. Thus, we get a collection
of points in A(L). We may inductively define a sequence ni ∈ OF such that each F (

√
f(xni))

is ramified at a prime of F not ramifying in the field generated by the previous square roots;
this can be done by choosing ni so that 1/p4 + ni has valuation 1 at some prime of F that
splits completely in the splitting field of f . Further, by choosing the ni sufficiently large, we may
assume that the corresponding points Pi ∈A(L) have large height and hence are non-torsion.
Now we claim that the Galois action forces P1, . . . , Pm to be Z-independent in A(L). Indeed, if
there were a relation a1P1 + · · ·+ amPm = 0, we could apply a Galois automorphism fixing all
the Pi but P1 to obtain −a1P1 + a2P2 + · · ·+ amPm = 0, and subtracting would then show that
2a1P1 = 0; but P1 is non-torsion, so a1 = 0; similarly, all the ai would be 0. Since m can be made
arbitrarily large, A(L) has infinite rank.

3.6 Refinement of results on CL-points for modular parametrizations
Theorem 3.17 below is a refinement of Theorem 3.5 in the special case of a modular-elliptic
correspondence S Π←−X Φ−→A arising from a modular parametrization attached to a newform
f =

∑
anq

n. Recall that S =X =X1(N), Π = Id, and we always assume f to be of weight 2,
on Γ0(N), normalized, with rational Fourier coefficients. In this case we may (and will) take
F = F0 = Q. Recall that a1 = 1, that an ∈ Z for n≥ 1, and that for sufficiently large p the
coefficient ap equals the trace of Frobenius on AFp . One can ask whether, in this case, the
function Φ† also has a description in terms of eigenforms. This is indeed the case, as we shall
explain below. Consider the series

f (−1)(q) :=
∑

(n,p)=1

an
n
qn ∈ Zp[[q]]. (3.12)

The series f (−1)(q) is called f |R−1 in [Ser73, p. 211]. Assume that p� 0 and that AR has
ordinary reduction. Then ap 6≡ 0 (mod p). Let up ∈ Z×p be the unique root in pZp of the equation
x2 − apx+ p= 0; thus āpū= 1. Let V : Zp[[q]]→ Zp[[q]] be the operator V (

∑
cnq

n) =
∑
cnq

np.
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Define

f
(−1)
[u] (q) :=

( ∞∑
i=0

uiV i

)
f (−1)(q) =

∑
i≥0

∑
(n,p)=1

ui
an
n
qnp

i ∈ Zp[[q]]. (3.13)

Then

−
(
f

(−1)
[u] (q)

)p
+ āpf

(−1)
[u] (q) = āpf (−1)(q) (3.14)

in Fp[[q]], where the bars denote reduction modulo p, as usual. The series f (−1)(q) has a nice
interpretation in terms of modular forms mod p. Indeed, recall from [Gro90, pp. 451, 458] that
if Mm is the k-linear space of modular forms over k on Γ1(N) of weight m, then there exist
an injective q-expansion map Mm→ k[[q]] and a Serre operator θ : Mm→Mm+p+1 that acts on
q-expansions as q ( ddq ). Let Ēp−1 ∈Mp−1 be the reduction mod p of the modular form Ep−1 over
Z(p) whose q-expansion in Z(p)[[q]] is the normalized Eisenstein series of weight p− 1; hence Ēp−1

is the Hasse invariant and has q-expansion 1 in Fp[[q]].
Define the affine curve

X1(N)
ord

:=X1(N) \ {zero locus of Ēp−1}= Y1(N)
ord ∪ {cusps},

where Y1(N)
ord

is the open set of points in Y1(N) represented by ordinary elliptic curves.

If α ∈Mm+w, and β ∈Mm is nonzero, we call α/β a weight-w quotient of modular forms
over k. A weight-0 quotient of modular forms is a rational function on X1(N). In particular,
θp−2f̄ , Ēpp−1 ∈Mp2−p, and

f̄ (−1) := (θp−2f̄)/Ēpp−1 (3.15)

is a regular function on X1(N)
ord

. Let g 7→ g∞ be the natural q-expansion map k(X1(N))
→ k((q)). The corresponding point in X1(N)(k((q))) will be called the Fourier k((q))-point.
Then f̄

(−1)
∞ = f (−1)(q). For primes l 6= p, define the Hecke operator T (l) : k[[q]]→ k[[q]] by

T (l)(
∑
cnq

n) =
∑
clnq

n + ε(l)l−1
∑
cnq

ln, where ε(l) = 0 or 1 according to whether l divides
N or not. Define the U -operator U : k[[q]]→ k[[q]] by U(

∑
cnq

n) :=
∑
cnpq

n. By [Gro90, p. 458],
f (−1)(q) is an eigenvector of Tl for every l 6= p; moreover, f (−1)(q) ∈ ker U . Finally, for any open
subscheme X ′ ⊂X1(N)R containing the ∞ section [∞], we have a natural injective q-expansion
map O(X ′ \ [∞])̂ →R((q))̂ , which we write as G 7→G∞. (See § 4.4 for more details.)

Definition 3.16. An open subscheme of the form X ′ \ [∞] with X ′ as above will be called
standard.

Let j(x) ∈ k be the j-invariant of x ∈ Y1(N)(k).

Theorem 3.17 (Explicit reciprocity functions for CL-points). Assume, in Theorem 3.5, that
X = S =X1(N), Π = Id, and Φ is a modular parametrization attached to a newform f . Then
one can choose X† and Φ† in Theorem 3.5 such that the following hold:

(i) X† is standard and X̄† = Y1(N)
ord \ {x | j(x) = 0, 1728}.

(ii) If AR is not CL, then Φ†∞ = f (−1)(q); in particular, Φ† = f̄ (−1).

(iii) If AR is CL, then Φ†∞ =−uf (−1)
[u] (q); in particular, (Φ†)p − āpΦ† = f̄ (−1).
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In both (ii) and (iii), the function Φ† is integral over the integrally closed ring O(X1(N)
ord

)
and belongs to the fraction field of O(X1(N)

ord
); so Φ† ∈ O(X1(N)

ord
). Theorem 3.17 will be

proved in § 4.

Remark 3.18. If AR is CL, then Theorem 3.17(iii) implies that f (−1)
[u] (q) is the Fourier expansion

of a rational function on X1(N) and hence of a quotient α/β where α, β ∈Mν are modular forms
defined over k of some weight ν. Is there a direct argument for this?

Corollary 3.19. Let Φ: X1(N)→A be a modular parametrization and let Γ≤A(R) be a

subgroup with r := rankA(R)
p (Γ)<∞. Then the set Φ(CL) ∩ Γ is finite of cardinality at most[

(2g − 2 + ν) · p
2 − p

2
· pr + 2λ

]
λ,

where g is the genus of X1(N), ν is the number of cusps of X1(N), and λ is the degree of
X1(N)→X1(1).

Proof. By Theorem 3.17 we have d1 = 1, d2 = λ and d3 ≤ 2λ in (3.9). So it will be enough to
check that

deg(Φ†)≤ (2g − 2 + ν) · p
2 − p

2
. (3.20)

Taking degrees in parts (ii) and (iii) of Theorem 3.17 yields either deg(Φ†) = deg(f̄ (−1)) or
p deg(Φ†) = deg(f̄ (−1)). In both cases, deg(Φ†)≤ deg(f̄ (−1)). Now (3.20) follows from the fact
that the numerator and denominator of the fraction in (3.15) are sections of the line bundle
(Ω1(cusps))(p2−p)/2, where Ω1 is the cotangent bundle on X1(N). 2

We next discuss a uniqueness property for the function Φ† in Theorem 3.17. Let S =X1(N),
let X† ⊂ S be a standard open subscheme over R such that

X̄† ⊂ Y1(N)
ord \ {x | j(x) = 0, 1728}, (3.21)

and define

P := {P ∈ CL | P̄ is not in the isogeny class of any of the k-points of Y1(N) \X†}. (3.22)

Clearly, P is infinite. Let M be the algebraic closure of Q in K, and let ℘ be the place of M
above which pR lies. We have P ⊂X†(OM,℘). Let f =

∑
anq

n be a newform. Let
∑
P

(l)
i − alP

be the Hecke divisor on S(Q) associated to any P ∈ P and any prime l 6= p (see § 3.2). Then
P

(l)
i ∈ CL ∩X†(OM,℘). For d ∈ (Z/NZ)×, let 〈d〉 be the diamond operator acting on X1(N) and

on O(X1(N)
ord

). Consider the k-linear space

F := {Θ ∈ O(X1(N)
ord

) | 〈d〉Θ = Θ for all d ∈ (Z/NZ)× and UΘ(q) = 0}, (3.23)

where Θ(q) ∈ k[[q]] is the Fourier expansion of Θ. Note that f̄ (−1) ∈ F .

Theorem 3.24 (Uniqueness of reciprocity functions for CL-points). Let S =X1(N), let Φ: S
→A be a modular parametrization attached to a newform f =

∑
anq

n, and let p be a sufficiently
large good prime. Assume that X† ⊂ S is an open subscheme over R as in (3.21). Let P be as
in (3.22). Then the following conditions on Θ ∈ F are equivalent.

(1) For any P1, . . . , Pn ∈ CL ∩X†(R) and any integers m1, . . . , mn,

n∑
i=1

miΦ(Pi) ∈A(R)p-div =⇒
n∑
i=1

miΘ(P̄i) = 0 ∈ k.
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(2) For any P ∈ P and any prime l 6= p,∑
Θ(P̄ (l)

i )− alΘ(P̄ ) = 0.

(3) Θ = λ̄ · f (−1) for some λ̄ ∈ k.

Proof. Condition (1) implies condition (2) by (A5). That condition (2) implies condition (3) will
be proved in § 4; see Lemma 4.83. Finally, condition (3) implies condition (1) by Theorem 3.17. 2

3.7 Reciprocity functions and finiteness for isogeny classes
Fix a set Σ of rational primes.

Suppose that S =X1(N). Let B be a Z[1/N ]-algebra. Let Q be a B-point of Y1(N),
represented by (EQ, αQ). The Σ-isogeny class (respectively, the prime-to-Σ isogeny class) of
Q in S(B) is the set C = CQ ⊂ S(B) of all B-points of Y1(N) represented by (EQ′ , αQ′) such
that there exists an isogeny EQ→ EQ′ of degree divisible only by primes in Σ (respectively,
outside Σ). We do not require the isogeny to be compatible with αQ and αQ′ .

The definition for S =XD(U) is similar. Let B be a Z[1/m]-algebra. Let Q ∈ S(B) be
represented by (EQ, iQ, αQ). The Σ-isogeny class (respectively, the prime-to-Σ isogeny class)
of Q in S(B) is the set C = CQ ⊂ S(B) of all B-points of S represented by (EQ′ , iQ′ , αQ′) such
that there exists an isogeny EQ→ EQ′ that is compatible with the OD-action and of degree
divisible only by primes in Σ (respectively, outside Σ). Again, the isogeny need not respect αQ
and αQ′ .

Now let S be either X1(N) or XD(U), and let C be a Σ-isogeny class where p /∈ Σ or
a prime-to-Σ isogeny class where p ∈ Σ. We say that C is ordinary (respectively, CL) if it
contains an ordinary point (respectively, a CL point); in this case, all points in C are ordinary
(respectively, CL).

Theorem 3.25 (Reciprocity functions mod p for isogeny classes). Assume that S
Π←−X Φ−→A

is a modular-elliptic or Shimura-elliptic correspondence, that p is a sufficiently large good
prime, and that C is an ordinary prime-to-p isogeny class in S(R). Then there exist an affine
dense open subscheme X† ⊂X, a (not necessarily connected) finite étale cover π : X̄‡→ X̄† of

degree p, a regular function Φ‡ ∈ O(X̄‡) that is non-constant on each component of X̄‡, and
a map σ : Π−1(C) ∩X†(R)→ X̄‡(k) such that π(σ(P )) = P̄ for all P and for any P1, . . . , Pn ∈
Π−1(C) ∩X†(R) and any m1, . . . , mn ∈ Z,

n∑
i=1

miΦ(Pi) ∈A(R)p-div ⇐⇒
n∑
i=1

miΦ‡(σ(Pi)) = 0 ∈ k. (3.26)

Theorem 3.25 will be proved in § 4.

Remark 3.27.

(1) Again, as the proof will show, the maps Φ‡ and σ will have a functorial nature. In
Theorem 3.25 σ is simply a map of sets, but the proof will show that σ has actually
an algebro-geometric flavor.

(2) Theorem 3.25 is an analogue of the second equivalence in Theorem 3.5. Is there also an
isogeny-class analogue of the first equivalence in Theorem 3.5?

(3) The sum in the right half of (3.26) may be viewed as a function η‡ on X‡
n

evaluated at
(σ(P1), . . . , σ(Pn)). If the value is zero, then so is η†(P̄1, . . . , P̄n), where η† is the norm of
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η‡ in the degree-pn extension O(X‡
n
) of O(X†

n
). Here η† may be expressed as a polynomial

in the mi and the coefficients of the characteristic polynomial of multiplication-by-Φ‡ on
the locally free O(X†)-algebra O(X‡). Thus the left half of (3.26) implies a statement
expressible in terms of evaluation of functions on X† instead of X‡. Corollary 3.33 will
show that η† is not always zero (consider the case n= 1, for example), so the statement is
not always vacuous.

Theorem 3.25 trivially implies the following.

Corollary 3.28. In the notation of Theorem 3.25, we have

rankA(R)
p

( n∑
i=1

Z · Φ(Pi)
)

= dimFp

( n∑
i=1

Fp · Φ‡(σ(Pi))
)
.

Just as Corollary 3.8 implied Theorem 1.3, Corollary 3.28 applied to subsets {P1, . . . , Pn} of
Φ−1(Γ) ∩Π−1(C) ∩X†(R) implies the first conclusion in the next corollary.

Corollary 3.29. Assume that S
Π←−X Φ−→A is a modular-elliptic or Shimura-elliptic

correspondence, and assume that p is a sufficiently large good prime. Let C be an ordinary
prime-to-p isogeny class in S(R). Then there exists a constant c such that for any subgroup

Γ≤A(R) with r := rankA(R)
p (Γ)<∞, the set Φ(Π−1(C)) ∩ Γ⊆A(k) is finite of cardinality at

most cpr. In particular, the set Φ(Π−1(C)) ∩A(R)tors is finite.

The first conclusion of Corollary 3.29 implies the last one because the reduction map
A(R)tors→A(k) is injective for large p.

One might ask whether the set Φ(Π−1(C)) ∩ Γ is finite for every Γ with rankA(R)
p (Γ)<∞.

Theorem 1.6 represents a partial result in this direction, with certain Σ-isogeny classes in place
of prime-to-p isogeny classes. Corollary 3.29 will be used to prove Theorem 1.6 in § 4.9.

3.8 Refinement of results on isogeny classes for modular parametrizations

Suppose that S Π←−X Φ−→A arises from a newform f =
∑
anq

n. Our goal in this subsection is
to state Theorem 3.32, which describes the cover X‡ and the function Φ‡ explicitly in this case.

Let I1(N) be the Igusa curve from [Gro90, pp. 460–461], except that we view I1(N) as a
smooth projective integral curve. It is a Galois cover of X1(N) ramified only over supersingular
points, and the Galois group is naturally isomorphic to F×p . Let J := I1(N)/〈−1〉 be the
intermediate cover of degree (p− 1)/2 obtained by taking the quotient of I1(N) by the involution
corresponding to −1 ∈ F×p . We will describe X‡ in terms of J . There is a point ∞ on each of
these covers that is unramified over ∞∈X1(N). In particular, rational functions on I1(N) and
J have Fourier expansions in k((q)).

Let

f (0)(q) :=
∑

(n,p)=1

anq
n ∈ Zp[[q]]. (3.30)

(The series f (0)(q) is called f |R0 in [Ser73, p. 115].) Let

f
(0)
[ap](q) :=

( ∞∑
i=0

aipV
i

)
f (0)(q) =

∞∑
i=0

∑
(n,p)=1

aipanq
npi ∈ Zp[[q]]. (3.31)
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Corollary 4.50 and Lemma 4.52 will show that for p� 0, the series f
(0)
[ap](q) is the Fourier

expansion of some η ∈ k(J). For a constant λ̄ ∈ k to be specified later, define

Φ†† :=

{
λ̄ηp

2 − āpηp if AR is not CL,
ηp if AR is CL.

Theorem 3.32 (Explicit reciprocity functions mod p for isogeny classes). Assume, in Theo-

rem 3.25, that S
Π←−X Φ−→A arises from a modular parametrization attached to a newform

f on Γ0(N). Then there exists λ̄ ∈ k× such that X†, X‡ and Φ‡ can be chosen to satisfy the
following properties.

(1) The cover X‡ of X† is a disjoint union X0
∐
X+

∐
X−, where X0 'X† is the trivial cover

and X+ and X− are each isomorphic to the inverse image of X† under J →X1(N).

(2) The restrictions of Φ‡ to X0, X+, X− equal

Φ†, Φ† + λ+Φ††, Φ† + λ−Φ††,

respectively, where λ± ∈ k are such that λ
(p−1)/2
+ , λ

(p−1)/2
− are the two square roots of λ̄.

Theorem 3.32 will be proved in § 4.

Corollary 3.33. With notation as in Theorem 3.32, the characteristic polynomial of the
endomorphism ‘multiplication by Φ‡’ in the locally free O(X†)-algebra O(X‡) is

xp − λ̄h2x+ (λ̄h2Φ† − (Φ†)p),

where h := (Φ††)(p−1)/2 ∈ k(X1(N)).

Proof. The characteristic polynomial of Φ‡ − Φ† equals

x
(
x(p−1)/2 − λ(p−1)/2

+ Φ††
(p−1)/2)(

x(p−1)/2 − λ(p−1)/2
− Φ††

(p−1)/2)
= xp − λ̄h2x.

In this expression, replace x by x− Φ†. 2

3.9 Strategy of proofs
The proof of our local results will be an application of the theory of δ-characters [Bui95, Bui97]
and δ-modular forms [Bui00, Bui03]. These two types of objects are special cases of arithmetic
differential equations in the sense of [Bui05]. Section 4 reviews the facts from this theory that
are necessary for our proof. As an illustration of our strategy let us explain, very roughly, the
idea of our proof of Theorem 3.5. Assume, for simplicity, that we are dealing with a modular-
elliptic correspondence S

Π←−X Φ−→A arising from a modular parametrization attached to a
newform f . Following [Bui95], consider the Fermat quotient operator δ : R→R defined by
δx := (φ(x)− xp)/p, where φ : R→R is the lift of Frobenius. We view δ as an analogue of a
derivation operator with respect to p. Recall from [Bui95] that if Y is any smooth scheme over
R, then a function g : Y (R)→R is called a δ-function of order r if it is Zariski locally of the form
P 7→G(x, δx, . . . , δrx), where G is a restricted power series with R-coefficients and x ∈RN is a
tuple of affine coordinates of P in some N -dimensional affine space. If A is our elliptic curve, then
by [Bui95] there exists a δ-function of order 2, ψ : A(R)→R, that is also a group homomorphism;
in [Bui95] ψ is called a δ-character, and it may be viewed as an arithmetic analogue of the ‘Manin
map’ [Man58, Man63]. Consider the composition f ] = ψ ◦ Φ: X(R)→R. On the other hand, the
theory of δ-modular forms [Bui00] yields an open subset X† of S and a δ-function of order 1,
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f [ : X†(R)→R, that vanishes at all CL-points; see Lemma 4.37 and (4.39). We then prove that
there exist δ-functions of order 2, denoted by h0, h1 :X†(R)→R, such that the δ-function

Φ† := f ] − h0 · f [ − h1 · δ ◦ f [

has order 0, or equivalently is a formal function in the usual sense of algebraic geometry.
(Intuitively, in the system of ‘arithmetic differential equations’ f ] = f [ = 0 one can eliminate
all the ‘derivatives’ of the unknowns.) It follows that f ] and Φ† have the same value at each
CL-point Pi. Therefore∑

miΦ†(Pi) =
∑

mif
](Pi) = ψ

(∑
miΦ(Pi)

)
.

By the arithmetic analogue in [Bui95, Bui97] of Manin’s theorem of the kernel [Man58, Man63],
ψ(
∑
miΦ(Pi)) vanishes if and only if

∑
miΦ(Pi) is torsion. (Actually, for our application to

Theorem 1.3 we need only the ‘if’ part, which does not require the analogue of the theorem of
the kernel.) On the other hand, we shall check that Φ† /∈ k by looking at Fourier q-expansions,
and this will complete the proof of the first equivalence in Theorem 3.5 in the special case that
we considered.

In particular, our proof of the (effective) finiteness of Φ(CL) ∩ Γ in the case of Γ =A(R)tors

can be intuitively described as follows. The points of CL are solutions of the ‘arithmetic
differential equation’ f [ = 0, whereas the points of Φ−1(Γ) are solutions of the ‘arithmetic
differential equation’ f ] = 0. Hence the points of CL ∩ Φ−1(Γ) are solutions of the system of
‘arithmetic differential equations’ f [ = f ] = 0. By what was said above, one can eliminate from
this system the ‘derivatives’ of the unknowns; hence one is left with a (non-differential) algebraic
equation mod p, whose ‘degree’ can be estimated. There are only finitely many solutions to this
algebraic equation, and their number is effectively bounded by the ‘degree’.

4. Proofs

Fix a prime p≥ 5. Recall that R= Ẑur
p , k =R/pR, K :=R[1/p], and φ : R→R is the Frobenius

automorphism.

4.1 Review of CL- and CM-points

This section reviews facts that we need about CL abelian schemes and their relation with CM-
points; see [Kat81, DO86, Mes72]. Expert readers can skip this discussion.

Definition 4.1. An abelian scheme E/R is CL (a canonical lift) if its reduction Ē := E ⊗ k is
ordinary and there exists an R-homomorphism E→ Eφ := E ⊗R,φ R whose reduction mod p is
the relative Frobenius k-homomorphism Ē→ ĒFr := Ē ⊗k,Fr k.

Theorem 4.2. The following are equivalent for an elliptic curve E over R.

(i) E is CL.

(ii) E has ordinary reduction and Serre–Tate parameter q(E) = 1 (with respect to some, and
hence any, basis of the physical Tate module).

(iii) There exists a morphism of Z-schemes E→ E whose reduction mod p is the absolute
Frobenius Fp-morphism Ē→ Ē. (In [Bui05] this situation was referred to by saying that E
‘has a lift of Frobenius’.)
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Proof. The equivalence between (i) and (ii) is essentially the definition of the CL property
in [Kat81]. The implication (i) =⇒ (iii) is trivial. For (iii) =⇒ (i), note first that Ē must be
ordinary; this follows, for instance, from [Bui05, Proposition 7.15 and Corollaries 8.86, 8.89].
Finally, the Z-morphism E→ E induces an R-morphism E→ Eφ. The Néron model property
shows that the latter is a composition of a homomorphism u with translation by an R-point
reducing to the identity mod p; but then u mod p is the relative Frobenius. 2

Theorem 4.3 (Existence and uniqueness of CL abelian schemes).

(i) Fix a prime p and an ordinary abelian variety Ē over k; then there exists a unique CL
abelian scheme E over R with E ⊗ k ' Ē (unique up to isomorphism).

(ii) If E and E′ are CL abelian schemes over R, then the natural map HomR(E, E′)
→Homk(Ē, Ē′) is an isomorphism.

(iii) If two elliptic curves over R are related by an isogeny of degree prime to p and one of them
is CL, then so is the other.

Proof. This is due to Serre and Tate; see [Kat81, DO86]. 2

The conductor of an order in a quadratic number field is the index of the order in the maximal
order.

Theorem 4.4 (Relation between CL and CM).

(i) (a) If E is a CL elliptic curve over R, then E has CM (part of this claim is that E is
definable over M =K ∩Q). Thus we have the relation CL⊆ CM between subsets of
Y1(N)(Q).

(b) Conversely, if Q= (E, α) ∈ Y1(N)(Q) is in CM, and p is split in End E ⊗Q and does
not divide the conductor of End E, then Q ∈ CL.

(ii) (a) If (E, i) is a CL fake elliptic curve over R, then (E, i) is CM. Thus we have the relation
CL⊆ CM between subsets of XD(U)(M).

(b) Conversely, for any CM-point Q ∈XD(U)(Q), we know that the associated abelian
surface E is the square of an elliptic curve with CM by an order in some K; if p splits
in K and p does not divide the conductor of the order, then Q ∈ CL.

Proof.

(i) (a) If E/R is a CL elliptic curve, then EndR(E)' Endk(Ē) 6= Z.
(b) This follows from the theorem in the middle of [Ser67, p. 293].

(ii) (a) Let E := EndR(E)⊗Q' Endk(Ē)⊗Q. Since Ē is ordinary, the center of E contains an
imaginary quadratic field K; see, for example, [Bui05, p. 247]. In particular, E 6'D, so
(E, i) is CM.

(b) Apply Theorem 4.4(i)(b) to the elliptic curve. 2

4.2 δ-functions

See [Bui95, Bui05]. Let δ : R→R be the Fermat quotient map δx := (φ(x)− xp)/p. Then

δ(x+ y) = δx+ δy + Cp(x, y),
δ(xy) = xp · δy + yp · δx+ p · δx · δy, (4.5)
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where Cp(X, Y ) := (Xp + Y p − (X + Y )p)/p ∈ Z[X, Y ]. Following [Bui95], we think of δ as a
‘derivation with respect to p’. If P ∈AN (R) =RN , then δP is defined by applying δ to each
coordinate.

Let X be a smooth R-scheme and let f : X(R)→R be a map of sets. Following [Bui05,
p. 41], we say that f is a δ-function of order r if for any point in X(R) there is a Zariski
open neighborhood U ⊂X, a closed immersion u : U ↪→AN

R and a restricted power series F with
R-coefficients in (r + 1)N variables such that

f(P ) = F (u(P ), δ(u(P )), . . . , δr(u(P ))) for all P ∈ U(R).

(Restricted means that the coefficients converge p-adically to 0.) Let Or(X) be the ring of
δ-functions of order r on X.

We have natural maps δ : Or(X)→Or+1(X), f 7→ δf := δ ◦ f , and natural ring
homomorphisms φ : Or(X)→Or+1(X), f 7→ φ(f) = fφ := φ ◦ f . The above maps δ still satisfy
the identities in (4.5). Let X be affine and let x be a system of étale coordinates on X, that is,
there exists an étale map X →Ad such that x is the d-tuple of elements in O(X) obtained by
pulling back the coordinates on Ad. Let x′, x′′, . . . , x(r) be d-tuples of variables, and let ˆ denote
p-adic completion, as usual. Then the natural map

O(X )̂ [x′, x′′, . . . , x(r) ]̂ →Or(X) (4.6)

sending x′ 7→ δx, x′′ 7→ δ2x, . . . , x(r) 7→ δrx is an isomorphism; see [Bui05, Propositions 3.13
and 3.19].

4.3 δ-characters

We recall facts from [Bui95, Bui05]. If G is a smooth group scheme over R, then by a δ-character
of order r we mean a δ-function ψ : G(R)→R of order r that is also a group homomorphism into
the additive group of R. Following [Bui95], we view δ-characters of abelian schemes as arithmetic
analogues of the Manin maps [Man58, Man63]. Let Xr(G) be the R-module of δ-characters of
order r on G. By [Bui95, pp. 325-326], the following two properties hold for an elliptic curve
E/R:

(i) If E is CL, then X1(E) is free of rank 1.

(ii) If E is not CL, then X2(E) is free of rank 1.

We will need to review (and complement) some results in [Bui95, Bui97] that can be viewed as
an arithmetic analogue of Manin’s theorem of the kernel [Man63, Cha91]. For any abelian group
G, we set p∞G :=

⋂∞
n=1 p

nG and let p∞G : p∞ be the group of all x ∈G for which there exists
an integer n≥ 1 with pnx ∈ p∞G. Recall also that we set Gp-div =Gtors + pG.

Lemma 4.7. Let E be an elliptic curve over Zp. Let r be 1 or 2 according to whether E is CL
or not. Let ψ : E(R)→R be a generator of Xr(G). Then the following hold:

(i) ψ is surjective and defined over Zp.
(ii) ker ψ = p∞E(R) : p∞.

(iii) ker ψ + pE(R) = E(R)tors + pE(R) =: E(R)p-div.

(iv) ψ−1(pR) = E(R)tors + pE(R) =: E(R)p-div.

(v) (ker ψ) ∩ E(Zur
p ) = E(Zur

p )tors.
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Proof.

(i) Surjectivity follows from [Bui97, Theorem 1.10]. That ψ is defined over Zp follows from its
construction in [Bui95].

(ii) If E has ordinary reduction, then [Bui95, Theorem B’, p. 312] shows that (ker ψ)/p∞E(R)
is a finite cyclic p-group; this implies the non-trivial inclusion ‘⊂’. If E has supersingular
reduction, we are done by [Bui97, Corollary 1.12].

(iii) The non-trivial inclusion is ‘⊂’. If P ∈ ker ψ, then by (ii) there exists n such that pnP =
pn+1Q for some Q ∈ E(R). So P − pQ ∈ E(R)tors and we are done.

(iv) This follows from (iii) and (i).

(v) If E has ordinary reduction, then by [Bui97, Theorem 1.2 and Remark 1.3 on p. 209]
we have p∞E(R) ∩ E(Zur

p )⊂ E(Zur
p )tors; combining this with (ii) yields the non-trivial

inclusion (ker ψ) ∩ E(Zur
p )⊂ E(Zur

p )tors. Now assume that E has supersingular reduction.
If ap is the trace of Frobenius on EFp , then the map φ2 − apφ+ p : R→R is injective.
By [Bui97, Theorem 1.10, p. 212], the restriction of ψ to the kernel of the reduction map
red: E(R)→ E(k) is injective. In other words, ker(ψ) ∩ ker(red) = {0}. Equivalently, red
restricts to an injection ker ψ→ E(k). Since E(k) is torsion, so is ker ψ. 2

We now describe an explicit generator ψ of Xr(AR), where A is an elliptic curve over
Zp and r is 1 or 2 according to whether AR is CL or not. Fix a 1-form ω generating the
Zp-module H0(A, Ω1). This uniquely specifies a Weierstrass model y2 = x3 + ax+ b for A over
Zp such that ω = dx/y. Let T :=−x/y. So T is an étale coordinate at the origin 0 of A,
vanishing at 0. Let L(T ) ∈Qp[[T ]] be the logarithm of the formal group of A associated to
T , so dL(T ) = ω ∈ Zp[[T ]] dT and L(0) = 0. If A is CL, let up be the unique root in pZp of the
polynomial x2 − apx+ p. By [Bui05, Theorem 7.22] and [Bui97, Theorem 1.10], we may take

ψ :=


1
p

(φ2 − apφ+ p)L(T ) ∈R[[T ]][T ′, T ′′ ]̂ if A is not CL,

1
p

(φ− up)L(T ) ∈R[[T ]][T ′ ]̂ if A is CL.
(4.8)

4.4 δ-Fourier expansions
See [Bui00]. We start by reviewing some background on classical Fourier expansions as in [DI95,
p. 112]. (The discussion there involved the modular curve parametrizing elliptic curves with
an embedding of µN , rather than Z/NZ as we have here. But, the two modular curves are
isomorphic over Z[1/N, ζN ]; see [DI95, p. 113].) The cusp ∞ on S :=X1(N) arises from a
Z[1/N, ζN ]-valued point; so if p� 0 (specifically, p -N), then it gives rise to an R-point, which
may be viewed as a closed immersion s∞ : SpecR→ SR. Let [∞] = s∞(SpecR). Let S̃R be the
completion of SR along [∞]. The Tate generalized elliptic curve Tate(q)/R[[q]] equipped with
the standard immersion αcan of µN,R ' (Z/NZ)R is a point in S(R[[q]]) that reduces mod q to
s∞. For p� 0 there is an induced isomorphism Spf R[[q]]' S̃R. Therefore, for any open subset
U ⊂ SR containing [∞], we have an induced Fourier q-expansion homomorphism

O(U \ [∞])→R((q)) :=R[[q]][1/q].

More generally, suppose that we are given a modular-elliptic correspondence S Π←−X Φ−→A.
Let M be the ramification index of Π at x∞. As before, we assume p� 0. Then we have
Spf R[[q]]' X̃R, where q := q1/M and X̃R is the completion of XR along the closure [x∞]
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of x∞. Moreover, for any open set U ⊂XR containing [x∞], we have a Fourier q-expansion
homomorphism

O(U \ [x∞])→R((q)).

Next we move to the ‘δ-theory’. Let q′, q′′, . . . , q(r), . . . be new indeterminates. Define

Sr∞ :=R((q))̂ [q′, q′′, . . . , q(r) ]̂ .

For each r, extend φ : R→R to a ring homomorphism φ : Sr∞→ Sr+1
∞ , written as F 7→ F φ, by

requiring

qφ := qp + pq′, (q′)φ := (q′)p + pq′′, . . . ,

and define δ : Sr∞→ Sr+1
∞ by

δF :=
F φ − F p

p
. (4.9)

By the universality property of the sequence {Or(U \ [∞])}r≥0 (see [Bui05, Proposition 3.3]),
there exists a unique sequence of ring homomorphisms

Or(U \ [∞])→ Sr∞, (4.10)

called δ-Fourier expansion maps and denoted by g 7→ g∞, such that (δg)∞ = δ(g∞) for all g.

More generally, given a modular-elliptic correspondence S Π←−X Φ−→A, define rings

Srx∞ :=R((q))̂ [q′, . . . , q(r) ]̂ ,

where q′, . . . , q(r) are new variables. Again, there are natural maps φ, δ : Srx∞ → Sr+1
x∞ defined

exactly as above; there are also δ-Fourier expansion maps

Or(U \ [x∞])→ Srx∞

that commute with δ and are denoted by g 7→ gx∞ . There are natural maps Sr∞→ Srx∞ . Since
SpecR[q, q−1]→ SpecR[q, q−1] is étale, (4.6) implies that

Srx∞ 'R((q))̂ [q′, . . . , q(r) ]̂ .

4.5 δ-Serre–Tate expansions

See [Bui03, Bui05]. Assume that we are given a Shimura-elliptic correspondence S Π←−X Φ−→A
and that p� 0. By the proof of [Bui03, Lemma 2.6], there exist infinitely many k-points ȳ0 ∈ S(k)
whose associated triple (Ȳ , ī, ᾱ) is such that:

(i) Ȳ is ordinary; and
(ii) if θ̄ is the unique principal polarization compatible with ī, then (Ȳ , θ̄) is isomorphic to the

polarized Jacobian of a genus-2 curve.

We may therefore choose a point ȳ0 ∈ S(k) as above such that, moreover, there exists x̄0 ∈ X̄(k)
with Π(x̄0) = ȳ0 such that both Π and Φ are étale at x̄0; here we take p� 0 to ensure that Π⊗ k
and Φ⊗ k are separable.

Let Y be the canonical lift of Ȳ . Since End(Y )' End(Ȳ ), the embedding ī : OD→ End(Ȳ )
induces an embedding i : OD→ End(Y ). Also, the level U structure ᾱ lifts to a level U structure
on (Y, i). Let y0 := (Y, i, α) ∈ S(R). Since Π is étale at x̄0, there exists x0 ∈X(R) such that
x0 mod p= x̄0 and Π(x0) = y0.

Let Ȳ ∨ be the dual of Ȳ . By [Bui03, Lemma 2.5], there exist Zp-bases of the Tate modules
Tp(Ȳ ) and Tp(Ȳ ∨), corresponding to each other under θ̄, such that any fake elliptic curve over
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R lifting (Ȳ , ī) has a diagonal Serre–Tate matrix diag(q, qdisc(D)) with respect to these bases.
Fix such bases; they define an isomorphism between the completion of SR along the section y0

and Spf R[[t]]. The Serre–Tate parameter q corresponds to the value of 1 + t. Since Π is étale
at x̄0, we have an induced isomorphism between the completion of X along the section x0 and
Spf R[[t]]. As in § 4.4, define rings

Srx0
'R[[t]][t′, . . . , t(r) ]̂

and maps φ, δ : Srx0
→ Sr+1

x0
; then, for any affine open set U ⊂X containing the image of the

section x0, we have natural δ-Serre–Tate expansion maps

Or(U)→ Srx0
, (4.11)

denoted by g 7→ gx0 , that commute with φ and δ.

4.6 Pull-backs by Φ of δ-characters

Assume that we are given a modular-elliptic or Shimura-elliptic correspondence S Π←−X Φ−→A.
Recall that A is defined over a number field F0. We suppose that p� 0 and that p splits
completely in F0. Then AR comes from an elliptic curve over Zp. Define ap and (if AR is CL) u
as in § 4.3. Let ψ be as in (4.8). The composition

f ] : X(R) Φ→A(R)
ψ→R (4.12)

is in Or(XR). In what follows, we compute the δ-Fourier expansion f ]x∞ ∈ Srx∞ (in the modular-
elliptic case) or the δ-Serre–Tate expansion f ]x0 ∈ Srx0

(in the Shimura-elliptic case).

4.6.1 Modular–elliptic case. Suppose that S =X1(N). We have Φ∗ : R[[T ]]→R[[q]]. Define
bn ∈ F0 ∩R by (∑

n≥1

bnq
n−1

)
dq := d(Φ∗(L(T ))) = Φ∗(dL(T )) = Φ∗ω,

so ∑
n≥1

bn
n

qn = Φ∗(L(T )). (4.13)

Applying Φ∗ to (4.8) and substituting (4.13) yields

f ]x∞ = Φ∗ψ =


1
p

∑
n≥1

(
bφ

2

n

n
qnφ

2 − ap
bφn
n

qnφ + p
bn
n

qn
)

if A is not CL,

1
p

∑
n≥1

(
bφn
n

qnφ − upbn
n

qn
)

if A is CL.

(4.14)

In both cases, f ]x∞ ∈R[[q]][q′, q′′ ]̂ . Applying the substitution homomorphism

R[[q]][q′, q′′ ]̂ → R[[q]],
G 7→ G\ :=G(q, 0, 0) =G|q′=q′′=0,
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we obtain

(f ]x∞)\ =



1
p

∑
n≥1

(bφ2

n/p2

n/p2
− ap

bφn/p

n/p
+ p

bn
n

)
qnM if A is not CL,

1
p

∑
n≥1

(bφn/p
n/p
− upbn

n

)
qn if A is CL,

(4.15)

where bγ := 0 if γ ∈Q \ Z. (In particular, the right-hand side of (4.15) has coefficients in R, which
is not a priori obvious.)

Let us consider the special case where S Π←−X Φ−→A arises from a modular parametrization
associated to the newform f =

∑
anq

n, so S =X =X1(N), Π = Id, x∞ =∞, M = 1 and q = q.
We may take ω so that Φ∗ω =

∑
anq

n−1dq; then bn = an for all n. Since f is a newform, the an
satisfy the usual relations [Shi71, Theorem 3.43] (we take p� 0 to ensure that p -N):

apim = apiam for (p, m) = 1, (4.16)
api−1ap = api + papi−2 for i≥ 2. (4.17)

Lemma 4.18. Assume that S
Π←−X Φ−→A arises from a modular parametrization attached to f .

(i) With notation as in (3.12) and (3.13), the following holds in Zp[[q]]:

(f ]∞)\ =

f
(−1)(q) if A is not CL,

−uf (−1)
[u] (q) if A is CL.

(4.19)

(ii) With notation as in (3.30) and (3.31), the following holds in k[[q]][q′, q′′]:

f ]∞ =


f (−1)(q) +

(
q′

qp

)p(
f

(0)
[ap](q)

)p2 − āp( q′
qp

)(
f

(0)
[ap](q)

)p if A is not CL,

−ūf (−1)
[u] (q) +

(
q′

qp

)(
f

(0)
[ap](q)

)p if A is CL.
(4.20)

Proof. We shall prove (4.20) in the case where AR is not CL. The other three statements are
proved similarly (and are actually easier).

To simplify notation, let � stand for any element of Zp[[q]][q−1, q′, q′′ ]̂ . For any γ, β ∈
Zp[[q]][q−1, q′, q′′ ]̂ , any ` ∈ Z≥2 and any m ∈ Z≥1, we have

(1 + pγ + p2β)mp
`−2

= 1 +mp`−1γ + p`�. (4.21)
(Writing (1 + pγ + p2β)m as 1 + pγ′ lets us reduce the problem to the case β = 0 and m= 1,
which is proved by induction on `.)

By (4.14) we get

f ]∞ =
1
p

[∑ an
n

(qp
2

+ p(q′)p + p2�)n − ap
∑ an

n
(qp + pq′)n + p

∑ an
n
qn
]

=
1
p

[∑ an
n

(
1 + p

(
q′

qp

)p
+ p2�

)n
qp

2n − ap
∑ an

n

(
1 + p

q′

qp

)n
qpn + p

∑ an
n
qn
]

=
∑[

an/p2

n/p

(
1 + p

(
q′

qp

)p
+ p2�

)n/p2
− ap

an/p

n

(
1 + p

q′

qp

)n/p
+
an
n

]
qn

=:
∑

γnq
n,

where ar = 0 for r ∈Q \ Z.
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If (n, p) = 1, then γn = an/n.
If n= pm with (m, p) = 1, then (4.16) and (4.21) yield

γn =
apam
pm

− ap
am
pm

(
1 + pm

q′

qp
+ p2�

)
≡−apam

q′

qp
(mod p).

If n= p`m with `≥ 2 and (m, p) = 1, then (4.16), (4.17) and (4.21) yield

γn =
ap`−2am

p`−1m

(
1 +mp`−1

(
q′

qp

)p
+ p`�

)
−
apap`−1am

p`m

(
1 +mp`

q′

qp
+ p`+1�

)
+
ap`am

p`m

≡ a`−2
p am

(
q′

qp

)p
− a`pam

q′

qp
(mod p).

Therefore

f ]∞ ≡
∑

(m,p)=1

am
m
qm − ap

q′

qp

∑
(m,p)=1

amq
mp +

∑
`≥2

∑
(m,p)=1

am

(
a`−2
p

(
q′

qp

)p
− a`p

q′

qp

)
qmp

`
(mod p),

and the first case of (4.20) follows via a trivial algebraic manipulation. 2

Remark 4.22. The right-hand side of (4.20) belongs to the subring k[[q]][q′] of k[[q]][q′, q′′]. In
the case where S Π←−X Φ−→A does not necessarily arise from a modular parametrization, an
argument similar to the one in the proof of Lemma 4.18 still yields

f ]x∞ ∈ k[[q]][q′]. (4.23)

4.6.2 Shimura-elliptic case. Suppose that S =XD(U). Recall that we fixed x0 ∈X(R) and a
corresponding δ-Serre–Tate expansion map O2(XR)→ S2

x0
=R[[t]][t′, t′′ ]̂ , denoted by G 7→Gx0 .

Let z0 = Φ(x0) ∈A(R). Let λ : AR→AR be translation by −z0. Recall the étale coordinate T on
AR at 0, and use Tz0 := λ∗T as the étale coordinate at z0. Now we have R[[T ]] λ

∗
→R[[Tz0 ]] Φ∗→R[[t]].

Define bn ∈ F0 ∩R by(∑
n≥1

bnt
n−1

)
dt := d(Φ∗λ∗(L(T ))) = Φ∗λ∗d(L(T )) = Φ∗λ∗ω,

so ∑
n≥1

bn
n
tn = Φ∗λ∗(L(T )). (4.24)

Since Φ is étale at x0, we have b1 6= 0; by scaling ω, we may assume that b1 = 1. Since ψ is a
group homomorphism, we have ψ − ψ(z0) = λ∗ψ. We then add the constant ψ(z0) to both sides
and apply Φ∗ to obtain

f ]x0
= Φ∗ψ = ψ(z0) + Φ∗λ∗ψ.

Evaluate Φ∗λ∗ψ by applying Φ∗λ∗ to (4.8) and substituting (4.24) into the right-hand side; the
final result is

f ]x0
=


ψ(z0) +

1
p

∑
n≥1

(
bφ

2

n

n
tnφ

2 − ap
bφn
n
tnφ + p

bn
n
tn
)

if A is not CL,

ψ(z0) +
1
p

∑
n≥1

(
bφn
n
tnφ − upbn

n
tn
)

if A is CL.

(4.25)
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An argument similar to the one in the proof of Lemma 4.18 shows that

f ]x0 ∈ k[[t]][t′]. (4.26)

4.7 δ-modular forms: modular-elliptic case
We recall some concepts from [Bui00, Bui05, Bar03]. The ring of δ-modular functions [Bui00] is

M r :=R[a(≤r)
4 , a

(≤r)
6 ,∆−1 ]̂ ,

where a(≤r)
4 is a tuple of variables (a4, a

′
4, a
′′
4, . . . , a

(r)
4 ), a(≤r)

6 is similar, and ∆ :=−26a3
4 − 2433a2

6.
If g ∈M0 \ pM0, define

M r
{g} :=M r[g−1 ]̂ =R[a(≤r)

4 , a
(≤r)
6 ,∆−1, g−1 ]̂ .

An element of M r or M r
{g} is defined over Zp if it belongs to the analogously defined ring with Zp

in place of R. Define δ : M r→M r+1 and δ : M r
{g}→M r+1

{g} in the same way as δ : Sr∞→ Sr+1
∞ was

defined in § 4.4. Let j :=−21233a3
4/∆, let i := 2633 − j, and let t := a6/a4. (This t is unrelated

to the t used in δ-Serre–Tate expansions.) By [Bui00, Proposition 3.10], we have

M r
{a4a6} =R[j(≤n), j−1, i−1, t(≤r), t−1 ]̂ .

If w =
∑
niφ

i ∈ Z[φ], define deg w =
∑
ni. If, moreover, λ ∈R, then define λw :=

∏
(λφ

i
)ni .

For w ∈ Z[φ], we say that f in M r or M r
{g} is of weight w if

f(λ4a4, λ
6a6, δ(λ4a4), δ(λ6a6), . . .) = λwf(a4, a6, a

′
4, a
′
6, . . .) (4.27)

for all λ ∈R. Let M r(w) be the set of f ∈M r of weight w, and define M r
{g}(w) similarly.

In [Bui00], elements of M r
{g}(w) were called δ-modular forms of weight w (holomorphic outside

g = 0).
If f ∈M r

{g}(w) and E is an elliptic curve given by y2 = x3 +Ax+B with A, B ∈R and
g(A, B) ∈R×, then define f(A, B) ∈R by making the substitutions a4 7→A, a6 7→B, a′4 7→ δA,
a′6 7→ δB, a′′4 7→ δ2A and so on. Recall from [Bui00] that f is called isogeny covariant if for any
isogeny u of degree prime to p from an elliptic curve y2 = x3 +A1x+B1 with g(A, B) ∈R× to
an elliptic curve y2 = x3 +A2x+B2 with g(A2, B2) ∈R× that pulls back dx/y to dx/y, we have

f(A1, B1) = deg(u)− deg(w)/2f(A2, B2).

By [Bui00, Corollary 3.11], M r
{a4a6}(0) =R[j(≤r), j−1, i−1 ]̂ . More generally, if m ∈ 2Z and

g ∈M0(m), define g̃ := gt−m/2; then

M r
{a4a6g}(0) =R[j(≤r), j−1, i−1, g̃−1 ]̂ . (4.28)

Also define the open subscheme Y (1)g := SpecR[j, j−1, i−1, g̃] of the modular curve Y (1)R :=
SpecR[j]. If we define

b := a2
6/a

3
4 =−223−3 + 28j−1, (4.29)

then R[j, j−1, i−1] =R[b, b−1, (4 + 27b)−1]; so b is an étale coordinate on Y (1)g, and Y1(N)R
→ Y (1)R is étale over Y (1)g. Suppose that, in addition, we are given a modular-elliptic
correspondence S

Π←−X Φ−→A. Then we may (and do) choose g so that the composition
v : XR

Π→X1(N)R→X(1)R is étale above Y (1)g. Set

X† := v−1(Y (1)g). (4.30)
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The pull-back of b to X†, which we will still call b, is an étale coordinate on X†. By (4.6), we
have natural isomorphisms

O(X†)̂ [b′, . . . , b(r) ]̂ 'Or(X†), (4.31)
where b′, . . . , b(r) are new indeterminates. We view (4.31) as an identification. Similarly, since j
is an étale coordinate on Y (1), (4.6) and (4.28) yield

M r
{a4a6g}(0)'Or(Y (1)g)⊂Or(X†). (4.32)

Since X† is standard in the sense of Definition 3.16, we have the δ-Fourier expansion map

Or(X†)→ Srx∞ . (4.33)

Composing (4.32) and (4.33) yields δ-Fourier expansion maps

M r
{a4a6g}(0)→ Srx∞ . (4.34)

Let E4(q) and E6(q) be the normalized Eisenstein series of weights 4 and 6, respectively,
where ‘normalized’ means that the constant coefficient is equal to 1. We have natural ring
homomorphisms

M r → Sr∞, (4.35)
g 7→ g∞ = g(q, q′, . . . , q(r)),

also referred to as δ-Fourier expansion maps [Bui00], that are characterized by the properties
that they send a4 and a6 to −2−43−1E4(q) and 2−53−3E6(q), respectively, and commute with δ.
There exists a unique Ep−1 ∈M0(p− 1) such that Ep−1(q) is the normalized Eisenstein series of
weight p− 1.

By [Bui00, (4.1) and (7.26)], there exists a unique f1 ∈M1(−1− φ), defined over Zp, such
that

f1(q, q′) =
1
p

log
qφ

qp
:=
∑
n≥1

(−1)n−1n−1pn−1

(
q′

qp

)n
∈R((q))̂ [q′ ]̂ . (4.36)

As explained in [Bui00, pp. 126–129], f1 is isogeny covariant and may be interpreted as a
(characteristic zero) arithmetic Kodaira–Spencer class.

Lemma 4.37. Let E be an elliptic curve given by y2 = x3 +Ax+B with A, B ∈R. With
notation as above, f1(A, B) = 0 if and only if E is CL.

Proof. See [Bui05, Proposition 7.15]. 2

Define

t
φ+1

2 := t
p+1
2

(
tφ

tp

)1/2

= t
p+1
2

(
1 + p

δt

tp

)1/2

= t
p+1
2

∑
j≥0

(
1/2
j

)
pj
(
δt

tp

)j
; (4.38)

this function is an element of M1
{a4a6}(1 + φ). Next, define

f [ := f1 · t
φ+1

2 ∈M1
{a4a6}(0)⊂M1

{a4a6g}(0)⊂O1(X†). (4.39)

The maps in (4.34) and (4.35) are compatible, so

f [∞ ∈ q′R((q))̂ [q′ ]̂ ⊂ q′R((q))̂ [q′ ]̂ . (4.40)

Finally, by the main theorem of [Hur01],

f1 = cEp−1∆−p(2ap4a
′
6 − 3ap6a

′
4) + f0 + pf1 (4.41)
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for some c ∈R×, f0 ∈M0(−1− p) and f1 ∈M1. On the other hand, (4.29) implies that

bφ =
(
a2

6

a3
4

)φ
=

(ap6 + pa′6)2

(ap4 + pa′4)3
,

so a calculation using the definition in (4.9) yields

δb= a−4p
4 ap6(2ap4a

′
6 − 3ap6a

′
4) + ph (4.42)

for some h ∈M1
{a4a6}. Set a0 := cEp−1∆−pa4p

4 a
−p
6 . Combining (4.41) and (4.42) then yields

f [ = f1 · t
φ+1

2 = a0t
p+1
2 δb+ f0t

p+1
2 + ph1 (4.43)

for some h1 ∈M1
{a4a6}. Let α= a0t

(p+1)/2 ∈M0
{a4a6}(0). Then, by (4.43) and (4.5), respectively,

we obtain, for n= 0 and n= 1,

δnf [ = αp
n
δn+1b+ βn + pγn (4.44)

for some βn ∈Mn
{a4a6}(0) and γn ∈Mn+1

{a4a6}(0).

Lemma 4.45. Assume that the element g ∈M0(m) is in Ep−1M
0. Then f [ and δf [ are

algebraically independent over O(X̄†), and the natural maps

O(X̄†)[f []→ O1(X†)⊗R k, (4.46)

O(X̄†)[f [, δf []→ O2(X†)⊗R k, (4.47)

O(X†)̂ → O2(X†)/(f [, δf [) (4.48)

are isomorphisms.

Proof. By (4.36), (4.38) and (4.39), we have

f [∞ = t
p+1
2∞ q′/qp, (4.49)

which involves q′, so the algebraic independence follows. Reducing (4.31) mod p gives
isomorphisms like (4.46) and (4.47) but with b′ and b′′ on the left in place of f [ and δf [. To
change variables, observe that since g ∈ Ep−1M

0, the element α is invertible inO(X†); thus (4.44)
implies O(X̄†)[f []'O(X̄†)[b′] and O(X̄†)[f [, δf []'O(X̄†)[b′, b′′]. This proves (4.46) and (4.47).

Now (4.47) implies that (4.48) induces an isomorphism mod p. Since both sides of (4.48)
are p-adically complete and separated rings, (4.48) is surjective. The δ-Fourier expansion map
O2(X†)→R((q))̂ [q′, q′′ ]̂ followed by the evaluation map mapping q′ and q′′ to 0 induces a map
O2(X†)/(f [, δf [)→R((q)), by (4.40). The composition of (4.48) with this map is simply the
Fourier expansion map, since elements of O(X†)̂ have Fourier expansions in R((q)). So the
Fourier expansion principle implies that (4.48) is injective. 2

Corollary 4.50. The series f (0)(q) and f
(0)
[ap](q) are Fourier expansions of weight-2 quotients

of modular forms.

Proof. We have f (0)(q) = (θp−1f̄)/Ēp+1
p−1 , which is the Fourier expansion of a weight-2 quotient.

We handle the second series in an indirect way, using f ]. Although f ] ∈ O2(X†), we have
f ] ∈ O1(X†)⊗R k by (4.23). So (4.46) identifies f ] with a polynomial in O(X̄†)[f []⊂ L[f [],
where L := k(X1(N)). We can find this polynomial explicitly from the δ-Fourier expansion,
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since elements of L have expansions in k((q)) while f [∞ involves q′; see (4.49). By Lemma 4.20
and (4.49),

f ]∞ =

f
(−1)(q) + t

− p
2+p
2∞
(
f

(0)
[ap](q)

)p2
f [∞

p
− āpt

− p+1
2∞
(
f

(0)
[ap](q)

)p
f [∞ if A is not CL,

−ūf (−1)
[u] (q) + t

− p+1
2∞
(
f

(0)
[ap](q)

)p
f [∞ if A is CL.

In either case, taking the coefficient of f [∞ shows that āpt
−(p+1)/2
∞ (f (0)

[ap](q))
p is the Fourier

expansion of an element of L. Since t is a weight-2 quotient, āp(f
(0)
[ap](q))

p is the Fourier expansion
of a weight-(p+ 1) quotient and hence (upon dividing by Ēp−1) also of a weight-2 quotient.
By (3.31),

−āp
(
f

(0)
[ap](q)

)p + f
(0)
[ap](q) = f (0)(q).

Now, f (0)
[ap](q) is the Fourier expansion of a weight-2 quotient since the other terms are. 2

Remark 4.51. The proof that f (0)
[ap](q) is a Fourier expansion of a quotient of modular forms

made use of the theory of δ-modular forms; we know of no direct proof.

Recall the Igusa curve I1(N) and its quotient J defined in § 3.8.

Lemma 4.52. The Fourier series of any modular form f on X1(N) over k is also the Fourier
series of a rational function g ∈ k(I1(N)). If the weight of f is even, then we may take g ∈ k(J).

Proof. By [Gro90, Proposition 2.2], there is a line bundle ω on X1(N) such that for each i ∈ Z,
the global sections of ωi are the modular forms of weight i. We denote also by ω the pull-back
of ω to I1(N) or J . By [Gro90, p. 461], the sections of ωi on I1(N) or J have naturally defined
Fourier expansions, compatible with the Fourier expansions of modular forms on X1(N). There
is a section a of ω on I1(N) whose Fourier expansion is 1; see [Gro90, Proposition 5.2]. Given a
modular form f of weight i on X1(N), let g := f/ai ∈ k(I1(N)).

The action of F×p on I1(N) lifts to an action of F×p on ω, and −1 ∈ F×p sends a to −a
(see [Gro90, Proposition 5.2(5)]); so if i is even, f/ai ∈ k(J). 2

Recall the definition of M r
{g}(w) from the end of the first paragraph of § 4.7. By [Bar03,

Construction 3.2 and Theorem 5.1], there exist unique δ-modular forms f∂ ∈M1
{Ep−1}(φ− 1) and

f∂ ∈M1
{Ep−1}(1− φ), defined over Zp, with δ-Fourier expansions identically equal to 1. Moreover,

these forms are isogeny covariant and f∂ · f∂ = 1. Furthermore, the reduction f∂ ∈M1 ⊗ k equals
the image of Ēp−1 ∈Mp−1 in M1 ⊗ k. For λ ∈R×, define

fλ := (f1)φ − λf1(f∂)−φ−1 ∈M2
{Ep−1}(−φ− φ

2). (4.53)

Since f1 and f∂ are isogeny covariant, so is fλ. Furthermore, consider the series

t
φ2+φ

2 := t
p2+p

2

(
tφ

tp

)1/2( tφ2

tp2

)1/2

∈M2
{a4a6}(φ+ φ2)

and define

f [λ := fλ · t
φ2+φ

2 ∈M2
{a4a6Ep−1}(0). (4.54)

The main reason for considering these forms comes from the following lemma.
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Lemma 4.55. Let E1 be an elliptic curve y2 = x3 +A1x+B1 over R with ordinary reduction.
Then:

(i) there exists λ ∈R× such that fλ(A1, B1) = 0;

(ii) if λ is as in (i) and there is an isogeny of degree prime to p between E1 and an elliptic curve
E2 over R given by y2 = x3 +A2x+B2, then fλ(A2, B2) = 0;

(iii) if, in addition, A2B2 6≡ 0 (mod p), then f [λ(A2, B2) = (δf [λ)(A2, B2) = · · ·= 0.

Proof.

(i) If f1(A1, B1) = 0, any λ ∈R× will do. If f1(A1, B1) 6= 0, set

λ :=
f1(A1, B1)φ

f1(A1, B1)
f∂(A1, B1)φ+1;

the numerator and denominator of the first factor have the same p-adic valuation and
f∂(A1, B1)≡ Ēp−1(Ā, B̄) 6= 0, so λ ∈R×.

(ii) Scaling A2 and B2 by suitable elements of R×, we may assume that the isogeny pulls back
dx/y to dx/y. Now use the isogeny covariance of fλ.

(iii) By (4.54), f [λ(A2, B2) = 0. Now use δ0 = 0. 2

Set σ := q′/qp. Then (4.36), (4.53) and (4.54) yield

f1
∞ = σ, fλ,∞ = σp − λσ and f [λ,x∞ = t

p2+p
2∞ (σp − λσ). (4.56)

In what follows, we assume that X† = U \ [x∞], where U has an étale coordinate τ ∈ O(U)
such that [x∞] is scheme-theoretically given by τ ; we can arrange this by shrinking X†. Then
R[[q]] =R[[τ ]], so

R((τ))̂ [τ ′, . . . , τ (r) ]̂ =R((q))̂ [q′, . . . , q(r) ]̂ =R((q))̂ [q′, . . . , q(r) ]̂ .

Also, Or(X†) =O(X†)̂ [τ ′, . . . , τ (r) ]̂ . Since

f [λ ∈ O(X̄†)[τ ′, τ ′′] ∩ k((τ))[τ ′] =O(X̄†)[τ ′] =O1(X†)⊗R k, (4.57)

we may define a quotient ring

A‡ := (O1(X†)⊗R k)/(f [λ) (4.58)

and a scheme X̄‡ := SpecA‡. We will view A‡ as an algebra over A† :=O(X†)⊗ k =O(X̄†).

Lemma 4.59. The k((q))-algebra A‡ ⊗A† k((q)) is a product of p copies of k((q)).

Proof. We have

A‡ ⊗A† k((q)) =
(
O(X̄†)[τ ′]/(f [λ)

)
⊗A† k((τ))

= k((τ))[τ ′]/(f [λ)

= k((q))[q′]/(f [λ,x∞)

= k((q))[σ]/(σp − λ̄σ)

'
p∏
i=1

k((q)),
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since σp − λ̄σ =
∏p
i=1(σ − λi) for some λi ∈ k. Explicitly, the isomorphism in the last line is given

by

q′ 7→ (λ1q
p, . . . , λpq

p). (4.60)

2

Lemma 4.61. One can choose X† so that X̄‡→ X̄† is a finite étale cover of degree p.

Proof. By definition, X̄‡→ X̄† is of finite type. Lemma 4.59 shows that it is étale of degree p
above the generic point of X̄†. Therefore X̄‡→ X̄† is finite étale of degree p over some open
neighborhood of the generic point. 2

In the case where our correspondence arises from a modular parametrization, one has the
following variant of Lemma 4.59.

Lemma 4.62. Assume that S
Π←−X Φ−→A arises from a modular parametrization and let

L= k(X1(N)). Then

A‡ ⊗A† L' L×A+ ×A−,
where

A± := L[y]/(y(p−1)/2 − Ēp−1/t
(p−1)/2).

Proof. By (4.46), we have A‡ ⊗A† L' L[f []/(f [λ). On the other hand,

f [λ = t
p2+p

2 [(f1)p − λ̄f1(f∂)−p−1]

= (f [)p − λt
p2−1

2 Ē−p−1
p−1 f [

= f [[(f [)(p−1)/2 +
√
λt(p−1)/2Ē−1

p−1(t(p−1)/2/Ēp−1)(p−1)/2]

· [(f [)(p−1)/2 −
√
λt(p−1)/2Ē−1

p−1(t(p−1)/2/Ēp−1)(p−1)/2],

so the result follows. 2

4.8 δ-modular forms: Shimura-elliptic case
We continue using the notation and assumptions of §§ 4.5 and 4.6. Assume that the U in (4.11)
is small enough that the line bundle of fake 1-forms on U is trivial. (See [Bui05, p. 230] for
the definition of this line bundle; there it is called the ‘line bundle of false 1-forms’.) Let
q := 1 + t ∈R[[t]] and write q′ = δ(1 + t), q′′ = δ2(1 + t) and so on. Define

Ψ = Ψ(t, t′) :=
1
p

log
qφ

qp
=
q′

qp
− p

2

(
q′

qp

)2

+ · · · ∈R[[t]][t′ ]̂ .

Lemma 4.63. There exists f [ ∈ O1(U) such that

f [x0
= u(t)φ+1 ·Ψ(t, t′) ∈ q′R[[t]][t′ ]̂ (4.64)

for some u(t) ∈R[[t]]× and

f [(P ) = 0 for all P ∈Π−1(CL) ∩ U(R). (4.65)

Proof. Use [Bui05, (8.116), (8.82) and Proposition 8.61]. (In the notation of [Bui05], one takes
f [ to be the value of the ‘δ-modular form’ f1

crys at the pull-back to U of the universal fake elliptic
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curve equipped with some invertible fake 1-form; again, f1
crys should be viewed as an arithmetic

Kodaira–Spencer class.) 2

Lemma 4.66. There exists a neighborhood X† ⊂ U of the section x0 such that f [ and δf [ are
algebraically independent over O(X̄†) and the natural maps

O(X̄†)[f []→ O1(X†)⊗R k, (4.67)

O(X̄†)[f [, δf []→ O2(X†)⊗R k, (4.68)
O(X†)̂ → O2(X†)/(f [, δf [) (4.69)

are isomorphisms.

Proof. By (4.64),

f [x0
=
ū(t)p+1

(1 + t)p
t′ + S0 ∈ k[[t]][t′] (4.70)

for some S0 ∈ k[[t]]. Using (4.5), one obtains

δf [x0
=
ū(t)p

2+p

(1 + t)p2
t′′ + S1 ∈ k[[t]][t′, t′′] (4.71)

for some S1 ∈ k[[t]][t′]. We may assume that there is an étale coordinate τ on U such that x0

is given scheme-theoretically by τ = 0. Then R[[t]] =R[[τ ]] (and R[[t]][t′, t′′ ]̂ =R[[τ ]][τ ′, τ ′′ ]̂ ), so
t= S(τ) :=

∑
n≥1 cnτ

n for some cn ∈R with c1 ∈R×. One can easily see that

t′ =
1
p

[∑
cφn(τp + pτ ′)n −

(∑
cnτ

n

)p]
= (∂S/∂τ)pτ ′ +B0 + pB1

for some B0 ∈R[[τ ]] and B1 ∈R[[τ ]][τ ′ ]̂ . Using (4.5), we obtain

t′′ = (∂S/∂τ)p
2
τ ′′ +B∗1 + pB2

for some B∗1 ∈R[[τ ]][τ ′ ]̂ and B2 ∈R[[τ ]][τ ′, τ ′′ ]̂ . Combining this with (4.70) and (4.71) and
setting

v̄(τ) :=
ū(S̄(τ))p+1(∂S̄/∂τ)p

(S̄(τ) + 1)p
∈ k[[τ ]],

we obtain

f [x0
= v̄(τ)τ ′ + C0(τ) ∈ k[[τ ]][τ ′], (4.72)

δf [x0
= v̄(τ)pτ ′′ + C1(τ, τ ′) ∈ k[[τ ]][τ ′, τ ′′],

where C0(τ) ∈ k[[τ ]] and C1(τ, τ ′) ∈ k[[τ ]][τ ′]. On the other hand, by (4.6) we have f [ ∈ O(Ū)[τ ′]
and δf [ ∈ O(Ū)[τ ′, τ ′′]. Thus v̄(τ), C0(τ) and C1(τ, τ ′) are images of elements v̄ ∈ O(Ū),
C0 ∈ O(Ū) and C1 ∈ O(Ū)[τ ′], respectively, such that

f [ = v̄τ ′ + C0 and δf [ = v̄pτ ′′ + C1. (4.73)

Lift v̄ to v ∈ O(U). Let X† be the complement in U of the closed subscheme defined by v. Since
v̄(τ) has a nonzero constant term, v̄ does not vanish at x̄0, so X† contains the section x0. The
proof now follows the proof of Lemma 4.45, with (4.73) in place of (4.44). 2

Remark 4.74. By using [Bui05, pp. 268–269], for Ū contained in the ordinary locus one can
construct forms f [λ ∈ O2(U) analogous to the ones in (4.54). (In the notation of [Bui05], one
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takes f [λ to be the Shimura analogues of the forms in (4.53) evaluated at a basis of the module
of fake 1-forms on U .) The analogues of Lemmas 4.55, 4.59 and 4.61 still hold with Fourier
expansions replaced by Serre–Tate expansions. The corresponding statements and their proofs
are analogous to the ones in the modular-elliptic case.

4.9 Proofs of the local results

Proof of Theorem 3.5. Assume that we are given either a modular-elliptic or a Shimura-elliptic
correspondence S Π←−X Φ−→A. Assume that p is sufficiently large and that p splits completely in
F0. In the Shimura-elliptic case, we also assume that the places v|p are not anomalous for A. In
the modular-elliptic case, choose g as in Lemma 4.45 and define X† as in (4.30). In the Shimura-
elliptic case, choose X† as in Lemma 4.66. By Lemma 4.45 or 4.66, there exists Φ† ∈ O(X†)̂
such that

f ] − Φ† = h0f
[ + h1δf

[ (4.75)
for some hj ∈ O2(X†). Suppose that P1, . . . , Pn ∈Π−1(CL) ∩X†(R) and m1, . . . , mn ∈ Z. By
Lemma 4.37 or 4.63, we have f [(Pi) = 0, so δf [(Pi) = 0. Thus

f ](Pi) = Φ†(Pi). (4.76)

Now (4.76) implies that∑
miΦ†(Pi) =

∑
mif

](Pi) =
∑

miψ(Φ(Pi)) = ψ

(∑
miΦ(Pi)

)
. (4.77)

Equation (4.77) and Lemma 4.7(iv) imply the second of the two equivalences in Theorem 3.5.
We now prove the first equivalence in Theorem 3.5. LetQ :=

∑
miΦ(Pi). IfQ ∈A(R)tors, then

ψ(Q) = 0 and (4.77) implies that
∑
miΦ†(Pi) = 0. Conversely, suppose that

∑
miΦ†(Pi) = 0;

then Q ∈ ker ψ. Since CL⊆ S(Q), we have Pi ∈X(Q) ∩X(R), so Q ∈A(Q) ∩A(R)⊂A(Zur
p ).

Therefore Lemma 4.7(v) implies that Q ∈A(R)tors.
To complete our proof, we need to check that Φ† /∈ k.
Assume first that we are in the modular-elliptic case. By (4.40),

δf [∞ ∈ (q′, q′′)R((q))̂ [q′, q′′ ]̂ . (4.78)

Upon taking δ-Fourier expansions in (4.75), taking \ (i.e., setting q′ = q′′ = 0), and using (4.40)
and (4.78), we obtain

Φ†x∞ = (f ]x∞)\. (4.79)
Let e be the ramification index of Φ: X →A at x∞. Then the be ∈ F0 of § 4.6.1 is nonzero. We
may assume that p is large enough that e, be 6≡ 0 (mod p). By (4.79) and (4.15), the coefficient
of qe in Φ†x∞ is be/e or −u(be/e), where u 6≡ 0 (mod p); in either case, this coefficient is nonzero

mod p. Thus Φ†x∞ /∈ k. Hence Φ† /∈ k.
Finally, assume that we are in the Shimura-elliptic case. By (4.64),

δf [x0
∈ (q′, q′′)R[[t]][t′, t′′ ]̂ . (4.80)

By (4.5),
q′ = t′ −G1(t) and q′′ = t′′ −G2(t, t′) (4.81)

for some G1(t) ∈ Z[t] and G2(t, t′) ∈ Z[t, t′]. Denote by G 7→G\ the substitution homomorphism

R[[t]][t′, t′′ ]̂ →R[[t]]
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sending t′ to G1(t) and t′′ to G2(t, t′). Then (q′)\ = (q′′)\ = 0, so (4.64) and (4.80) imply that
(f [x0

)\ = (δf [x0
)\ = 0. Upon taking δ-Serre–Tate expansions in (4.75), taking \, and substituting

(4.25), we obtain

Φ†x0
=


ψ(z0) +

1
p

∑
n≥1

(
bφ

2

n

n
((tφ

2
)\)n − ap

bφn
n

((tφ)\)n + p
bn
n
tn
)

if A is not CL,

ψ(z0) +
1
p

∑
n≥1

(
bφn
n

((tφ)\)n − up
bn
n
tn
)

if A is CL.

(4.82)

Substituting the two formulas

(tφ)\ = (qφ − 1)\ = (qp + pq′ − 1)\ = qp − 1 = (1 + t)p − 1 = pt+ · · ·+ tp and

(tφ
2
)\ = (qφ

2 − 1)\ = ((qp + pq′)p + p((q′)p + pq′′)− 1)\ = qp
2− 1 = (1 + t)p

2− 1 = p2t+ · · ·+ tp
2
,

and recalling from § 4.6.2 that b1 = 1, we deduce that the coefficient of t in Φ†x0 is 1− ap + p if
AR is not CL, and 1− u if AR is CL. This coefficient is nonzero mod p, since our non-anomalous
assumption implies ap 6≡ 1 (mod p) and we have ūāp = 1 in the CL case. So Φ†x0 /∈R+ pR[[t]].
Hence Φ† /∈ k. 2

Proof of Theorem 3.17. Assume, in the proof of Theorem 3.5, that our modular-elliptic
correspondence S

Π←−X Φ−→A is such that S =X =X1(N), Π = Id, and Φ is a modular
parametrization attached to a newform f . We may choose g := Ep−1 in § 4.7; then X̄† =

Y1(N)
ord \ {x | j(x) = 0, 1728}. Now (4.19) and (4.79) give the formula for Φ†∞. 2

The following lemma was needed to prove Theorem 3.24; the notation is as in Theorem 3.24.

Lemma 4.83. Suppose that Θ ∈ F . Assume that for every P ∈ P and every prime l 6= p, we have∑
i

Θ(P̄ (l)
i )− alΘ(P̄ ) = 0. (4.84)

Then Θ = λ̄f (−1) for some λ̄ ∈ k.

Proof. Since Θ is regular on X1(N)
ord

, there exists m ∈ Z≥1 such that Ḡ := Ēmp−1Θ is a modular
form over k on Γ1(N). Let us view modular forms as functions on the set of triples (E, α, ω)
where E is an elliptic curve over k, α : Z/nZ ↪→ E(k) is an injective homomorphism, and ω
is a nonzero 1-form on E. Given P ∈ P and a prime l 6= p, choose (E, α, ω) such that (E, α)
represents P , and choose (Ei, αi, ωi) such that (Ei, αi) represents P (l)

i and ωi pulls back to
ω under the l-isogeny E→ Ei. Then Ēp−1(Ei, αi, ωi) = Ēp−1(E, α, ω) by [Bui05, p. 269], for
instance. Multiplying (4.84) by this yields∑

i

Ḡ(Ei, αi, ωi) = alḠ(E, α, ω).

By [Gro90, p. 452] or [Kat73, p. 90], the left-hand side equals (lT (l)Ḡ)(E, α, ω). Since P is
infinite, it follows that lT (l)Ḡ= alḠ for all l 6= p. On the other hand, Ḡ(q) = Θ(q) and UΘ = 0, so
UḠ= 0. Furthermore, Ḡ is invariant under the diamond operators. Thus Ḡ is a Hecke eigenform
with the same eigenvalues as θp−2f̄ ; therefore, by [Gro90, p. 453], we have Ḡ(q) = λ̄ · (θp−2f̄)(q)
for some λ̄ ∈ k. Thus Θ(q) = λ̄f (−1)(q), so Θ = λ̄f (−1). 2
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Proof of Theorem 3.25. Assume that we have a modular-elliptic correspondence. Pick Q ∈ C
represented by (EQ, αQ) where EQ is given by y2 = x3 +Ax+B. By Lemma 4.55(i), there exists
λ ∈R× such that fλ(A, B) = 0. Let X† ⊂X satisfy the conclusions of Lemmas 4.45 and 4.61.
Viewing f [λ and f ] as elements of O2(X†), we have f [λ, f

] ∈ O1(X†)⊗R k by (4.57) and (4.23),
respectively. Let Φ‡ be the image of f ] in the ring A‡ =O(X̄‡) of (4.58).

Claim. Φ‡ is non-constant on each irreducible component of X̄‡.

If not, there would be a minimal prime P of A‡ such that the image of Φ‡ in A‡/P, and hence
in (A‡/P)⊗A† k((q)), is in k. By Lemma 4.59, (A‡/P)⊗A† k((q)) would be a nonzero product
of copies of k((q)). By (4.60), the element

f ]x∞ ∈ k[[q]][q′]⊂ k((q))[q′]

is sent into an element of k by at least one of the k((q))-algebra homomorphisms

k((q))[q′]→ k((q)), (4.85)

denoted by s 7→ s∗ and defined by (q′)∗ := λiq
p. Since q = qM , we have

q′ = δ(qM ) =
(qp + pq′)M − qpM

p
≡Mqp(M−1)q′ (mod p),

so q′ ≡M−1q−p(M−1)q′ (mod p). Thus

(q′)∗ =M−1q−p(M−1)λiq
p =M−1λiq

p ∈ qpk[[q]].

Hence

(f ]x∞)∗ ∈ (f ]x∞)\ + qpk[[q]],

where we recall that \ means setting q′ = 0. Let e be the ramification index of Φ at x∞. Exactly
as in the proof of Theorem 3.5, since p� 0, the coefficient of qe in (f ]x∞)\ must be nonzero. It

follows that (f ]x∞)∗ is not in k, which is a contradiction. This ends the proof of our claim.

Now consider the set C := Π−1(C) ∩X†(R) and let P1 ∈ C, Q1 := Π(P1). Let EQ1 be given
by y2 = x3 +A1x+B1. By the choice of X†, we have A1B1 6≡ 0 (mod p). By Lemma 4.55,
f [λ(P1) = 0. Therefore the homomorphism O1(X†)→R sending a function to its value at P1

induces a homomorphism A‡→ k, which may be viewed as a point σ(P1) ∈ X̄‡(k) mapping
to P1 ∈ X̄†(k). This defines σ : C → X̄‡(k). By definition of σ(P1) and Φ‡, f ](P1) = Φ‡(σ(P1)).
Now, for P1, . . . , Pn ∈ C,

n∑
i=1

miΦ‡(σ(Pi)) =
n∑
i=1

mif ](Pi)

=
n∑
i=1

miψ(Φ(Pi))

= ψ

( n∑
i=1

miΦ(Pi)
)
,

so the desired equivalence follows from Lemma 4.7(iv).

The case of Shimura-elliptic correspondences is entirely similar, given Remark 4.74. We skip
the details but point out one slight difference in the computations. The proof of the analogue of
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the claim above uses a k[[t]]-algebra homomorphism

k[[t]][t′]→ k[[t]],

denoted by s 7→ s∗ and defined by requiring (q′)∗ = λiq
q, where q = 1 + t and q′ = δ(1 + t). One

must then check that for f ]x0 as in (4.25), the coefficient of t in (f ]x0)∗ is nonzero mod p. This
coefficient can be computed explicitly, and, unlike in the modular-elliptic case, its expression has
contributions from all the terms with n≥ 1. Nevertheless, all the contributions from terms with
n≥ 2 turn out to be 0 mod p, and the coefficient in question turns out to be congruent mod p
to either 1− ap or 1− u, and hence is nonzero mod p. 2

The following will be used to prove Theorem 1.6.

Lemma 4.86. Under the assumptions of Theorem 1.6 there is a constant γ, depending only on
N , such that all the fibers of the reduction-mod-p map C→ C are finite of cardinality at most γ.

Proof. Assume that we are in the modular-elliptic case; the Shimura-elliptic case follows by the
same argument. Suppose that Q1, Q2 ∈ C are such that Q̄1 = Q̄2 ∈ S(k). Let Qi be represented
by (Ei, αi), so there is an isogeny u : E1→ E2 of degree

∏
l
ej
j where the lj are inert in KQ.

We claim that E1 ' E2. Since Ē1 ' Ē2, we may view ū as an element of End Ē1, which may
be identified with a subring of the ring of integers O of KQ. The norm of this element equals
deg ū= deg u, but the only elements of O whose norm is a product of inert primes are those
in Z · O×. Hence u factors as E1

n→ E1
ε→ E2 for some n ∈ Z and ε of degree 1. In particular,

E1 ' E2.
By the claim, Lemma 4.86 holds with γ equal to the number of possible Γ1(N)-structures on

an elliptic curve. 2

Proof of Theorem 1.6. By Lemma 4.86, the map

Φ(Π−1(C)) ∩ Γ→ Φ(Π−1(C)) ∩ Γ

has finite fibers of cardinality bounded by a constant that is independent of Γ. On the other hand,
by Corollary 3.29, the target of this map has cardinality at most cpr for some c independent
of Γ. 2

Proof of Theorem 3.32. Assume, in the proof of Theorem 3.25, that we have a modular-elliptic
correspondence arising from a modular parametrization attached to f . Part (1) follows from
Lemma 4.62. Part (2) follows upon comparing Fourier expansions of the two sides: apply the

substitution maps as in (4.85) to f ]∞ given in (4.14) to obtain the p different series

Φ‡∞i = (f ]∞)∗ = Φ†(q) + λiΦ††(q) ∈ k((q)),

where λ1, . . . , λp ∈ k are the zeros of xp − λ̄x as in the proof of Lemma 4.59. 2
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Appendix A. Non-existence of reciprocity in the global case

Let S Π←−X Φ−→A be a modular-elliptic or Shimura-elliptic correspondence, and let X† ⊂X be
a dense open subscheme. Ideally, we would like a description of the group of divisors

∑
miPi on

X† supported in Π−1(CM) such that
∑
miΦ(Pi) ∈A(Q)tors. More precisely, in analogy with the

‘local’ result, Theorem 3.5, one may ask if there exists a regular function Φ† on X† such that for
any divisor

∑
miPi on X† supported in Π−1(CM), we have that

∑
miΦ(Pi) ∈A(Q)tors if and

only if
∑
miΦ†(Pi) = 0. We could refer to such a Φ† as a reciprocity function for CM points.

A.1 Non-existence of global reciprocity functions for isogeny classes and CM points
The next theorem states that even in the ‘most classical’ case of modular-elliptic correspondences
arising from a newform, no such function exists.

Theorem A1 (Non-existence of reciprocity functions for CM-points). Let Φ :X1(N)→A be a
modular parametrization. Assume that there exist a non-empty open subscheme X† ⊂X1(N)
and a regular function Φ† ∈ O(X†) having the property that for any P1, . . . , Pn ∈ CM ∩X†(Q)
and any m1, . . . , mn ∈ Z,

n∑
i=1

miΦ(Pi) ∈A(Q)tors ⇒
n∑
i=1

miΦ†(Pi) = 0 ∈Q.

Then Φ† = 0.

Theorem A1 follows immediately from the following isogeny-class analogue applied to an
isogeny class of CM points.

Theorem A2 (Non-existence of reciprocity functions for isogeny classes). Let

Φ: S =X1(N)→A

be a modular parametrization. Let C ⊂ S(Q) be an isogeny class, and let Φ† be a rational function
on S, none of whose poles is in C. Assume that for any P1, . . . , Pn ∈ C and any m1, . . . , mn ∈ Z,

n∑
i=1

miΦ(Pi) ∈A(Q)tors ⇒
n∑
i=1

miΦ†(Pi) = 0 ∈Q. (A3)

Then Φ† = 0.

Proof. We use Hecke correspondence notation as in § 3.2. Extend Φ linearly to a homomorphism
Φ∗ : Div0(X1(N)(Q))→A(Q). Then Φ∗ ◦ T (l)∗ = al · Φ∗; see [DS05, p. 242]. For any point
P ∈ C, we have T (l)∗(P −∞) =

∑
P

(l)
i −

∑
P

(l)
i0 , with P

(l)
i0 being cusps. We get

al · Φ(P ) = al(Φ∗(P −∞))
= Φ∗(T (l)∗(P −∞))

= Φ∗

(∑
P

(l)
i −

∑
P

(l)
i0

)
=
∑

Φ(P (l)
i )−

∑
Φ(P (l)

i0 ). (A4)

By the Manin–Drinfeld theorem (see [Lan76, p. 62], for instance), Φ(P (l)
i0 ) ∈A(Q)tors; so (A4)

yields ∑
Φ(P (l)

i )− al · Φ(P ) ∈A(Q)tors. (A5)

By (A3), we obtain
∑

i Φ†(P (l)
i )− al · Φ†(P ) = 0. Now Lemma A6 below implies Φ† = 0. 2
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Lemma A6. Let S =X1(N), let f =
∑
anq

n be a weight-2 newform on Γ1(N), and let C ⊂ S(Q)
be an isogeny class. Let Φ† be a rational function on S, none of whose poles are in C. Assume
that for infinitely many primes l and for any P ∈ C, we have∑

i

Φ†(P (l)
i )− alΦ†(P ) = 0. (A7)

Then Φ† = 0.

Proof. Assume that Φ† 6= 0. The function

(T (l)Φ†)(x) :=
∑

Φ†(x(l)
i ),

defined for all but finitely many x ∈ S(C), is a rational function on S by [Ser88, p. 55]. For the
infinitely many given l, the rational functions T (l)Φ† and Φ† agree on the infinite set C, so they
coincide. Since Φ† may be viewed as a ratio of modular forms over Q, each of which is a Q-linear
combination of newforms whose Fourier coefficients are algebraic integers, the Fourier expansion
ϕ(q) of Φ† is in OK,S((q)) for some ring of S-integers in some number field K, with S finite.
We may restrict our attention to primes l -N not lying under any prime in S. We may assume
also that the leading coefficient of ϕ(q) is prime to l. The q-values corresponding to the elliptic
curves that are l-isogenous to the one corresponding to q itself are ql and the lth roots of q;
therefore, taking Fourier expansions in T (l)Φ† = Φ† yields

ϕ(ql) +
l−1∑
b=0

ϕ(ζbq1/l) = alϕ(q), (A8)

where ζ is a primitive lth root of 1. Let vq be the valuation on Q((q)). Comparing leading terms
in (A8) yields vq(ϕ)≥ 0; and if vq(ϕ) = 0, then l + 1 = al, which contradicts |al| ≤ 2

√
l < l + 1.

Thus vq(ϕ)> 0.

The series
∑l−1

b=0 ϕ(ζbq1/l) is divisible by l, so

ϕ(ql)≡ alϕ(q) (mod lOK,S [[q]]). (A9)

The leading coefficient of ϕ(ql) equals that of ϕ(q), so it is prime to l. Then (A9) shows that al
is prime to l. Now (A9) contradicts vq(ϕ)> 0. 2

A.2 Non-existence of geometric reciprocity functions
Finally, we prove that there are no purely geometric reasons for the existence of reciprocity
functions; thus the existence of reciprocity functions in the local setting is a truly arithmetic
phenomenon.

Theorem A10 (Non-existence of geometric reciprocity functions). Let Φ: X →A be a non-
constant morphism between smooth projective curves over an algebraically closed field k of
characteristic p≥ 0, where A is an elliptic curve. Let n≥ 3, and let a1, . . . , an be nonzero integers
not all divisible by p. Suppose that X† ⊂X is an affine open subset and Φ† ∈ O(X†) is a regular
function such that for any P1, . . . , Pn ∈X†(k),

n∑
i=1

aiΦ(Pi) = 0 =⇒
n∑
i=1

aiΦ†(Pi) = 0. (A11)

Then Φ† is constant. In particular, if
∑n

i=1 ai is not divisible by p, then Φ† = 0.
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Remark A12. Theorem A10 fails for both n= 1 and n= 2. Let A be any elliptic curve over k,
let X =A, let Φ be the identity, and let X† (X be any non-empty affine open subset. For n= 1,
one obtains a counterexample by taking a1 = 1 and Φ† ∈ O(X†) to be any non-constant regular
function vanishing at the origin (if the origin is in X†). For n= 2, one obtains a counterexample
by taking a1 = 1, a2 =−1, and Φ† ∈ O(X†) any non-constant regular function. Alternatively, for
n= 2, one can take a1 = a2 = 1 and Φ† a non-constant rational function that is anti-invariant
for the negation map on X (shrinking X† if necessary), such as the y-coordinate on a short
Weierstrass model in characteristic not 2; this shows that the final sentence of Theorem A10 can
fail, too.

Proof of Theorem A10. Without loss of generality, p - a1. To prove that Φ† is constant, it will
suffice to show that Φ† is regular at every P ∈X(k).

Fix P . Let Y be the inverse image of {0} under the morphism

β : X × (X†)n−1 → A

(P1, . . . , Pn) 7→
∑

aiΦ(Pi).

Let πi : Y →X be the ith projection. The morphism π1 : Y →X is surjective since, given P1, if
we choose P4, . . . , Pn ∈X†(k) arbitrarily, then there are only finitely many choices of P2 ∈X†
such that the equation β(P1, . . . , Pn) = 0 forces P3 /∈X†. In particular, we can find a smooth
irreducible curve C and a morphism γ : C→ Y such that π1(γ(C)) is a dense subset of X
containing P .

By (A11), we have
∑
aiΦ†(Pi) = 0 for all (P1, . . . , Pn) ∈ Y ∩ (X†)n. In particular,

n∑
i=1

aiΦ†(πi(γ(c))) = 0

is an identity of rational functions of c ∈ C. Since Φ† is regular on X†, the last n− 1 summands
are regular on C. Therefore the first summand is regular too. So a1Φ† is regular on π1(γ(C)).
Since a1 6= 0 in k and P ∈ π1(γ(C)), the function Φ† is regular at P . 2
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