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FACTOR-CORRESPONDENCES IN REGULAR RINGS
S. K. BERBERIAN

1. Introduction. Factor-correspondences are nothing more than a way
of describing isomorphisms between principal ideals in a regular ring.
However, due to a remarkable decomposition theorem of M. J. Wonen-
burger [7, Lemma 1], they have proved to be a highly effective tool in the
study of completeness properties in matrix rings over regular rings [7,
Theorem 1]. Factor-correspondences also figure in the proof of D.
Handelman’s theorem that an Ni-continuous regular ring is unit-
regular [4, Theorem 3.2].

The aim of the present article is to sharpen the main result in [7] and
to re-examine its applications to matrix rings. The basic properties of
factor-correspondences are reviewed briefly for the reader’s convenience.

2. Factor-correspondences. Throughout, R denotes a regular ring
(with unity).

Definition 1 (cf. [5, p. 209ff], [7, p. 212]). A right factor-correspondence
in R is a right R-isomorphism ¢ : J — K, where J and K are principal
right ideals of R (left factor-correspondences are defined dually).

With notation as in Definition 1, write J = eR, K = fR with e, f
idempotent. Defining ¥y = ¢(e), x = ¢7'(f ), one sees that ¢ (resp. ¢™!)
is left-multiplication by y (resp. x) on J (resp. K). (For example, ¢(er) =
e(eer) = p(e)er = yer for all r € R.) In particular, xyx = x(yx) =
¢ Hep(x)) = x and similarly y = yxy. One has J = xR, K = yR. (For
example,x = ¢~'(f) € J,soxR C J, whereasJ = ¢~ (K) = xK C xR,
thus J = xR.)

Conversely, if x, y are elements of R such that xyx = x and yxy =y,
one sees that x7 — y(xr) defines a right factor-correspondence ¢ : xR —
YR with ¢~ 1(yr) = x(yr).

We denote by R, (resp. R;) the ring R regarded as a right (resp. left)
R-module in the natural way. (Thus, in another notation, R; = Ry and
R, = gR.) One writes 2R, = R; @ R, for the right R-module of ordered
pairs of elements of R (and #R, for the module of n-tuples). If 4 is a
finitely generated projective right module over the regular ring R, one
writes L(A) for the set of all finitely generated submodules B of 4; L(4)
may also be described as the set of all direct summands of 4 [2, p. 6,
Theorem 1.11]. Ordered by inclusion, L(4) is a complemented modular
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lattice, with BV C = B+ Cand B A C = BN C [2, p. 15, Theorem

LeEMMA 1 [7, p. 212, Lemma 1]. If R is a regular ring and M € L(2R,),
one can write

M=[MMN0A,0R]® (a,a)R® [MMN (0,1)R]
with a,, as elements of R such that Ra; = Ra..

There is more to the statement of Wonenburger's lemma, as follows.
Since pri{M M (1, 0)R] and pro[M M (0, 1)R] are principal right ideals
of R [2, p. 1, Theorem 1.1], one can write

MM (1,0)R = (e1,00R, MM (0,1)R = (0, ex) R

with e;, e, idempotents of R, thus M is the direct sum of three cyclic
submodules:

M = (e1,0)R ® (a1, a2)R @ (0, e2)R.

The proof of [7, Lemma 1] shows, moreover, that the middle term
(ay, as)R may be prescribed to be the set {(r,s) € M : e;r = ess = 0}
and one can suppose further that a, is idempotent (thus a:a; = a.). Note
that M is the graph of a function (necessarily R-linear) if and only if
M M (0,1)R = 0; it is the graph of a bijection if and only if

MMN@O1HR=MMN(1,00R =0.

Since, in a regular ring R, Ra = (Ra)"" = {a}"" (the exponents denote
right and left annihilators), the condition Ra,; = Ra. signifies that a,
and @, have the same right annihilators; whence:

Lemma 2 (7, p. 212, Lemma 2]. If R is a regular ring and a, b are
elements of R such that Ra = Rb, then arv— br (r € R) defines a right
factor-correspondence aR — bR.

With notation as in Lemma 2, one writes (a:b) for the right factor-
correspondence ar — br; its graph is (e, b)R € L(2R;). The action of
the function (a:b) is indicated by (a:b)ar = br, r € R.

Conversely, suppose ¢ : J — K is any right factor-correspondence in
R. Choose elements x, y of R such that J = xR and ¢(s) = ys for all
s € J; then for all » € R one has ¢(xr) = y(xr), thus the graph of ¢ is
the cyclic submodule

{(x,yx)r: 7 € R} = (x,yx)R € L(2R,).

LeEMMA 3. Every right factor-correspondence in a regular ring R is of the
form (a, : as) for suitable elements a,, as of R with Ra, = Ra.,.

Proof. Let ¢ : J — K be a right factor-correspondence in R, M its
graph. Since M € L(2R,;) by the preceding remark, one may apply to
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it the decomposition of Lemma 1; since M is the graph of a bijection,
one has

MM (1,00R = MN (0,1)R = 0,

thus M = (a1, @) R with Ra; = Ra,. By Lemma 2, the pair a,, a, defines
a right factor-correspondence (a; : as) whose graph is (a;, a;)R = M; in
other words, (a;: a;) = ¢.

Remarks. 1t follows from Lemmas 1 and 2 that if M € L(2R;) is the
graph of a bijection, then it must be the graph of a right factor-corres-
pondence. More generally, if M € L(2R,;) is the graph of a function ¢,
then M M (0, 1)R = 0; writing M M (1, 0)R = (e, 0)R, e; idempotent,
Lemma 1 gives a decomposition

M = (e1,0)R ® (a1, a2)R, Ra, = Ra,,

and one can arrange to have e;a; = 0. The domain of ¢ is
priM = e:R 4+ a1R = 1R ® a,R

(the sum is direct because e;a; = 0), and the graph of ¢ is
M = {(exr + a1s, ass) : 7,5 € R},

so that ¢(err + a15) = ass for all 7, s in R; thus ¢le;R = 0 and ¢|a;R =
(a1 : as). The gist of what is going on is that it means a great deal for a
graph to be finitely generated. (For example, if 4 is a projective module
over a regular ring and if M is a finitely generated submodule of
24 = A ® A such that M is the graph of a function ¢, then the domain
priM and range proM of ¢ are finitely generated, hence are direct
summands of A [2, p. 6, Theorem 1.11], hence are projective; thus the
epimorphism ¢ : priM — proM splits.) The message of Lemma 1 is that
every finitely generated submodule of 2R, is the direct sum of the graph
of an isomorphism and two ‘‘defect’”” terms.

Definition 2. For right factor-correspondences ¢, ¢ in the regular ring
R, one writes ¢ = ¥ if ¥ extends ¢, that is, if the graph of ¢ is contained
in the graph of ¢. This is a partial ordering in the set of all right factor-
correspondences.

If ¢, ¢ are right factor-correspondences and one writes ¢ = (a; : a2),
Y = (by:0b,) via Lemma 3, then ¢ < ¢ signifies that (a;, a2)R C
(b1, b2)R; equivalently, a;R C b1R and ¢ (a1) = a..

3. Right X-continuousregular rings. Let X be an infinite cardinal. A
lattice L is said to be upper R-complete if every nonempty subset of L of
cardinality < X has a supremum in L; L is said to be upper RX-conttnuous
if it is upper NX-complete and if

a AN(V{b:b€EB}) =Vi{aAb:bc B}
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for every a € L and every nonempty, simply ordered subset B of L whose
cardinality is £ N. The terms ‘‘lower R-complete lattice’’ and ‘‘lower
X-continuous lattice’” are defined dually. A regular ring R is said to be
right X-continuous if L(Rg) is upper X-continuous (equivalently, the anti-
isomorphic lattice L(R) is lower X-continuous) ; left X-continuous if L(R;)
is upper continuous; and NX-conttnuous if it is both left and right X-con-
tinuous. A regular ring R is left X-continuous if and only if the opposite
ring R° is right X-continuous. For N finite, all of these conditions are
trivially fulfilled by every lattice (or regular ring).
The following lemma is contained in the proof of [7, Theorem 1]:

LEMMA 4. Let R be an infinite cardinal, R a regular ring such that the
lattice L(2R,) 1s upper NR-continuous. Let G be the set of graphs of the right
factor-correspondences in R (thus 9 C L(2Ry)). Then G is an R-inductive
subset of L(2R,), in the following sense: if # 1is an increasingly filtering
subset of G of cardinality £ Rand if M = V ¥ in L(2R,), then M € G .

Proof. Since L(2R,) is isomorphic to the lattice of principal right ideals
of the matrix ring M,(R) [2, p. 15, Proposition 2.4], the hypothesis on R
is that M, (R) is a right X-continuous regular ring (hence so is its “‘corner”’
R, cf. [2, p. 175, Proposition 14.6]). To say that.% isincreasingly filtering
means that for every pair G;, G, in ¥, there exists G; € ¥ containing
both G, and G,.

Since the modules in % are graphs of bijective functions, one has

GN (1,0)0R =GN (0,1)R = 0 for all G € .,

hence M M (1,0)R = M M (0,1)R = 0 by the upper X-continuity of
L(2Ry), cf. [2, p. 160, Proposition 13.1]. By Lemma 1, M = (a1, a2)R
with Ra; = Ra,, thus M € ¥ by Lemma 2.

The following theorem sharpens a result in [7]:

TaEOREM 1 [7, Theorem 1]. Let R be an infinite cardinal, R a right
N-continuous regular ring, and let G be the set of graphs of the right factor-
correspondences 1n R, ordered by inclusion. The following conditions are
equivalent:

(a) the lattice L(2R,) of finitely gemerated submodules of 2R, is upper
X-complete;

(b) every increasingly filtering subset of G of cardinality < R has a
supremum in L(2R,);

(c) every simply ordered subset of G of cardinality < R has a supremum
in L(2R,),

(d) every well-ordered subset of G of cardinality £ R has a supremum
in L(2R;).

If the above conditions are fulfilled, then so are the following:
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(1) L(2Ry) is upper X-continuous (that is, Mo(R) s right R-continuous),
(2) If & is an increasingly filtering subset of G of cardinality £ N and
if M=V . in L2R,), then M € G (thus M is a supremum of & in G ).

Proof. The implications (a) = (b) = (c) = (d) are trivial.

(d) = (a): Let# be a nonempty subset of L(2R,) of cardinality £ N;
assuming (d), we are to show that.# has a supremum in L(2R;). By a
transfinite induction on the cardinality of #, we can suppose that.# is
well-ordered. (Sketch: Assume all’s well for cardinality < X, and suppose
M has cardinality X. Let Q be the least ordinal with cardinality X, and
index-# by Q, say M = {M,: a < Q}. For every a < Q define

Me =V {Ms:8<al,

which exists by the induction hypothesis. If one can show that v M=
exists, then it will serve as V M.) If 4 has a largest element, we are
through; otherwise, we can suppose A& = {M*:a < A}, where A is a
limit ordinal of cardinality £ X and where a £ 8 implies M> £ MB8.
Assuming (d), one shows, as in the proof of {7, Theorem 1], that the
family (M=) has a supremum in L(2R;) (for this, it is not necessary to
know that the supremum hypothesized in (d) is an element of ¥). (The
idea of the proof is to use Lemma 1 to replace .# by a well-ordered
subset of ¥.)

(a) = (1), (2): Since L(R,) is, by hypothesis, upper X-continuous, the
upper X-completeness of L(2R;) implies that L(2R;) is also upper N-
continuous, by [1, Theorem 4.3]; thus (a) implies (1), and then (2)
follows from Lemma 4.

LeEMMA 5. Let X be an infinite cardinal, R a regular ring such that L(R,)
is upper K-complete.
(i) If (J1)ier is any family in L(R;) with card I < R, then

vV J;= (U]i)” = (Zji)”'
(ii) If (K ;) ierts any famaly in L(R;) (note the subscript) with card [ £ R,
then N\ K, € L(R,).

Proof. (ii) Since the principal left ideal lattice L(R;) is anti-isomorphic
to L(R,), it is lower N-complete; thus A K, exists in L(R,). Then
A K; = N K, cf. (2, p. 161, proof of Proposition 13.2].

(i) Write J = V J; and set K; = J;%. Thus K; € L(R,), so by (ii)
onehasM K; = Kforsome K € L(R,). ThenK = N J;'! = (U J))} so

VI)r=K =(AK)' =V (K =V {U')=VI =]

Definition 3. Let X be an infinite cardinal, R a regular ring, and write
X for the set of right ideals J of R such that J is generated (as a right
ideal) by a set of cardinality £ X. One says that R is right R-tnjective, cf.
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[2, p. 105] if every R-linear mapping ¢ : J — Ry, where J € X, is exten-
dible to an R-linear mapping R; — R, (equivalently, there exists x € R
such that ¢(s) = xs for all s € J). Left R-injective rings are defined
dually.

The following lemma is a reworking (and extension to arbitrary
cardinals) of [4, proof of Theorem 3.2]:

LEMMA 6 (4, pp. 188-189]. Let X be an infinite cardinal. If R is a right
N-continuous, right R-injective regular ring, then the matrix ring M.(R)
is right R-continuous.

Proof. Let us verify criterion (b) of Theorem 1. Let. be an increas-
ingly filtering subset of & (the set of graphs of the right factor-corres-
pondences in R) with card.¥ £ X. Write. = {G;: 17 € I},card I £ N.
For each 7, we know from Lemma 3 that G; is the graph of some (a; : b;),
where Ra; = Rb,, thus G; = (a;, b)R. Let G = \U G; be the set-
theoretic union of the G;; since ¥ is increasingly filtering, G is the graph
of a right R-isomorphism «:J — K, where J = U a,R, K = Ub,R
(set-theoretic unions, both right ideals), and since G; C G we know that
a extends (a; : b,) for all 7. Since L(R,) is upper N-complete, there exist
idempotents e, f in R such that eR = V «¢;Rand fR = V b,R in L(R,).

The sum J 4+ (1 — ¢)R is direct; define 8: J + (1 — e)R — R, by

BlJ = aand B|(1 — e)R = 0.
Since R is right R-injective, there exists y € R such that left-multiplica-
tion by y coincides with B on J + (1 — e)R; thus y(1 — ¢) = 0 and
ya; = ala;) = (a;:b;)a; = b, forallz € I.
Briefly, ye = y and ya,; = b, for all <. Similarly, there exists x € R such
that xf = x and xb; = a; for all <. Then yxya; = yxb; = ya,;, (yxy —
y)a; = 0 for all 7, therefore (yxy — y)J = 0; by Lemma 5, (yxy — y)eR
= 0, and since ye = y this means yxy — y = 0. Similarly xyx — x = 0.
Therefore the mapping ¢ : xR — yR defined by ¢(xr) = yxr (r € R) is
a right factor-correspondence with ¢=!(yr) = xyr. One has xR = ¢R and
yR = fR. (For example, ;R = ya;R C yR for all 7, hence fR C yR
because fR = V b;R. On the other hand,
¥ =80) =al) = KC[R,
so (1 — f)yJ = 0; by Lemma 5, (1 — f )yeR = 0, thus
(1—f)ye=0,(1—f)y=0,y=fy,yRCfR.

Thus yR = fR.) The domain xR = ¢R of ¢ contains every a;R, and
e(a,) = ya; = b, shows that (a;:b;) < ¢.
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The graph of ¢ is (x, yx)R € L(2R;); let us show that (x, yx)R serves
as sup G; in L(2R;). On the one hand, (a;: b,) £ ¢ shows that G; =
(ayy ;)R C (x, yx)R. On the other hand, suppose G; C M € L(2R;) for
all 7; it is to be shown that (x, yx)R C M, in other words that (x, yx) €
M. Define ¢ : R; — 2R, by

a(r) = (x,yx)r,7 € R;
o is right R-linear and
a(by) = (xby, yxb;) = (a; ya;) = (a,0:) € G; C M,

thus ;R C o~'(M) for all 4. Since o~'(M) is a principal right ideal of
R [2, p. 14, Lemma 2.1}, it follows that fR C ¢~1(M), thus (x, yx)f € M,
since xf = x this means (x, yx) € M and the proof is complete.

THEOREM 2. If R is a right X-continuous, right R-injective regular ring,
then every matrix ring M, (R) is right W-continuous.

Proof. The case for » = 2 (Lemma 6) implies the case of general n by
[3, Theorem 3.1 and its Corollary 3].

Problem. In Theorem 2, is M,(R) also right X-injective? The answer
is yes for X = Ro:

CorOLLARY 1 [2, p. 183, Proposition 14.19]. If R is a right Ro-con-
tinuous, right Ro-injective regular ring, then so is every matrix ring M,(R).

Proof. Let S = M,(R), which is right R,-continuous by Theorem 2;
since M1(S) = M., (R) is also right Ro-continuous, S is right Re-injective
[2, p. 180, Corollary 14.14]. (The basic reason that things go well for
Xo is that, over a regular ring, every countably generated submodule of
a projective module is projective [2, p. 20, Corollary 2.15].)

COROLLARY 2 (2, Proposition 14.19]. Let R be an infinite cardinal, R a
right X-continuous and right R-injective regular ring, A a finitely generated
projective right R-module, and T = End z(A4) the endomorphism ring of A.
Then T s right R-continuous and right Ro-injective.

Proof. If A is generated by 7 elements, one has nR; = A @ B for a
suitable right R-module B; then 7" = Endg(4) is a corner of M,(R),
that is, T = eM,(R)e for a suitable idempotent e. Since M,(R) is right
N-continuous (Theorem 2) so is its corner T [2, p. 163, proof of Pro-
position 13.7]. Also, 2nR,; = 24 @ 2B, so M.(T) = Endr(24) [6, p. 34,
Corollary 8] is a corner of M,,(R); since X = Ny, R is a fortiori right
No-continuous and right Re-injective, therefore so is Ms,(R) (Corollary
1), hence its corner M,(T) is right Ro-continuous [2, p. 175, Proposition
14.6]; therefore T is right Ne-injective 2, p. 180, Corollary 14.14].
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Added 1n proof. The question following Theorem 2 has been answered
in the affirmative by K. R. Goodearl.
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