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A SIEVE ON ANALYTIC FUNCTIONS

KEITH RAMSAY

ABSTRACT. A sieve lemma is found, applicable to certain families of analytic func-
tions on the unit disk, analogous to a large sieve lemma of P. X. Gallagher for sets of
integers.

The following version of the large sieve is due to P. X. Gallagher [2]:

LEMMA 1. Let A be a subset of {0,...,N} such that for each prime power q in a

finite set S, we have that A lies in at most r, residue classes modulo q. Then
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provided the denominator of the right-hand side is positive. Here A(q) is von Mangoldts

Jfunction, which is log p where q is a power of p, and 0 for non-prime-powers.

Lemma 1 has various applications, several of which can be found in [3]. A careful
examination of the (short) proof reveals that it uses little beyond the product formula,

lInlloo TTp ||l = 1.

Consider Jensen’s formula for a holomorphic function f in the disk D(r) of radius r,

where f(0) # 0 ([4], p. 15 or [1], p. 206):

2n o dO R
0 =logf(0)| - [ log R - + %(j ordef log‘;'.
zeD(r

Such a formula yields, by reasoning parallel to that used to prove Gallagher’s lemma,

the following “sieve lemma”:

LEMMA 2. Let A be a set of holomorphic functions on the disk D(R), uniformly
bounded in norm by X. Suppose that for points z in a finite set S C D(R) at most r, values
are assumed at z by functions in A. Suppose also that for any two function f,g € A4,

f # g, we have |f(0) — g(0)| > . Then
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provided that the denominator is positive.
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PROOF. Let f and g be two distinct elements of 4. Consider Jensen’s formula ap-
pliedto f — g:
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Averaging over all pairs of distinct f, g € A4 and throwing away multiplicities gives us
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The inner sum may be bounded below by using the fact that the functions of 4 have
only r, distinct values at z. By Cauchy-Schwarz, or some related inequality, the number
of (not necessarily distinct) pairs (f, g) of elements of 4 that are equal at z is at least

|42 / r.. Hence
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It follows that Ri(14] oy
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from which the lemma follows immediately.
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