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Abstract. We present the first results of a series of Monte-Carlo simulations investigating the
imprints of a central black hole on the core structure of globular clusters. We investigate the
three-dimensional and the projected density profile of the inner regions of idealized as well
as more realistic globular cluster models, taking into account a stellar mass spectrum, stellar
evolution and allowing for a larger, more realistic, number of stars than was previously possible
with direct N-body methods. We compare our results to other N-body simulations published
previously in the literature.
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1. Introduction
As recently as 10 years ago, it was generally believed that black holes (BHs) occur

in two broad mass ranges: stellar (M ∼ 3 − 20M�), which are produced by the core
collapse of massive stars, and supermassive (M ∼ 106 − 1010M�), which are believed to
have formed in the center of galaxies at high redshift and grown in mass as the result
of galaxy mergers (see e.g. Volonteri, Haardt & Madau 2003). However, the existence
of BH with masses intermediate between those in the center of galaxies and stellar BHs
could not be established by observations up until recently, although intermediate mass
BHs (IMBHs) were predicted by theory more than 30 years ago; see, e.g., Wyller (1970).
Indirect evidence for IMBHs has accumulated over time from observations of so-called
ultraluminous X-ray sources (ULXs), objects with fluxes that exceed the angle-averaged
flux of a stellar mass BHs accreting at the Eddington limit. An interesting result from
observations of ULXs is that many if not most of them are associated with star clusters.
It has long been speculated (e.g., Frank & Rees 1976) that the centers of globular clusters
(GCs) may harbor BHs with masses ∼ 103M�. If so, these BHs affect the distribution
function of the stars, producing velocity and density cusps. A recent study by Noyola &
Gebhardt (2006) obtained central surface brightness profiles for 38 Galactic GCs from
HST WFPC2 images. They showed that half of the GCs in their sample have slopes for the
inner 0.5” surface density brightness profiles that are inconsistent with simple isothermal
cores, which may be indicative of an IMBH. However, it is challenging to explain the full
range of slopes with current models. While analytical models can only explain the steepest
slopes in their sample, recent N-body models of GCs containing IMBHs (Baumgardt et al.
2005), might explain some of the intermediate surface brightness slopes.

In our study we repeat some of the previous N-body simulations of GCs with central
IMBH but using the Monte-Carlo (MC) method. This gives us the advantage to model
the evolution of GCs with a larger and thus more realistic number of stars. We then
compare the obtained surface brightness profiles with previous results in the literature.
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Figure 1. The imprints of an IMBH on the stellar distribution of a GC. On the left-hand side,
the radial number density profile of an evolved single-mass GC is shown (solid) together with a
power-law fit to its inner region (dashed line). The right hand side shows its velocity dispersion
profile (solid) and the Keplerian velocity profile of the IMBH. The dotted line marks its radius
of influence.

2. Imprints of IMBHs
The dynamical effect of an IMBH on the surrounding stellar system has first been

described by Peebles (1972) who argued that the bound stars in the cusp around the BH
must obey a shallow power-law density distribution to account for stellar consumption
near the cluster center. Analyzing the Fokker-Planck equation in energy space for an
isotropic stellar distribution, Bahcall & Wolf (1976) obtained a density profile with n(r) ∝
r−7/4 , which is now commonly referred to as the Bahcall-Wolf cusp. The formation of this
cusp has been confirmed subsequently by many different studies using different techniques
and also, more recently, by direct N -body methods (Baumgardt et al. 2004). In Fig. 1
such a profile from one of our simulations is shown (for initial cluster parameters see
Baumgardt et al. (2004) (run16)). As can be clearly seen, the density profile of the inner
region of the evolved cluster can be very well fitted by a power-law and the power-law
slope α we obtain is, with α = 1.72, in good agreement with the value found by Bahcall &
Wolf (1976). Also the extent of the cusp profile is given by the radius where the Keplerian
velocity of a star around the central BH equals the velocity dispersion of the cluster core,
the radius of influence of the IMBH.

However, Baumgardt et al. (2005) found that such a cusp in density might not be easily
detectable in a real star cluster, as it should be much shallower and difficult to distinguish
from a standard King profile. They find that this is mainly an effect of mass segregation
and stellar evolution, where the more massive dark stellar remnants are concentrated
towards the center while the lower-mass main sequence stars that contribute most of
the light are much less centrally concentrated. In their simulations they found power-
law surface brightness slopes ranging from α = −0.1 to α = −0.3. Based on these
results they identified 9 candidate cluster from the sample of Galactic GCs of Noyola
& Gebhardt (2006) that might contain IMBHs. However, the disadvantage of current
N -body simulations is that for realistic cluster models, that take into account stellar
evolution and a realistic mass spectrum, the number of stars is restricted to typically less
than 2 × 105 as these simulations require a large amount of computing time. However,
many GCs are known to be very massive, with masses reaching up to 1×106M� resulting
in a much larger number of stars one has to deal with when modelling these objects. In
previous N -body simulations, such large-N clusters have been scaled down to low-N
systems. Scaling down can be achieved in two ways (e.g. Baumgardt et al. 2005): either
the mass of the central IMBH MBH is kept constant and N is decreased, effectively
decreasing the total cluster mass MC l, or the ratio MBH /MC l is kept constant, while
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lowering both MBH and MC l . As both MBH /MC l and the ratio of MBH to stellar mass
are important parameters that influence the structure of a cluster, but cannot be held
constant simultaneously when lowering N , it is clear that only with the real N a fully
self-consistent simulation can be achieved. One such method that can evolve such large-N
systems for a sufficiently long time is the MC method.

3. Monte-Carlo Method with IMBH
The MC method shares some important properties with direct N -body methods, which

is why it is also regarded as a randomized N -body scheme (see e.g. Freitag & Benz 2001).
Just as direct N -body methods it relies on a star-by-star description of the GC, which
makes it particularly straightforward to add additional physical processes such as stellar
evolution. Contrary to direct N -body methods, however, the stellar orbits are resolved
on a relaxation time scale Trel , which is much larger than the crossing time tcr , the
time scale on which direct N -body methods resolve those orbits. This change in orbital
resolution is the reason why the MC method is able to evolve a GC much more efficiently
than direct N -body methods. It achieves this efficiency, however, by making several
simplifying assumptions: (i) the cluster potential has spherical symmetry (ii) the cluster
is in dynamical equilibrium at all times (iii) the evolution is driven by diffusive 2-body
relaxation. The specific implementation we use for our study is the MC code initially
developed by Joshi et al. (2000) and further enhanced and improved by Fregau et al.
(2003) and Fregau & Rasio (2007). The code is based on Hénon’s algorithm for solving
the Fokker-Planck equation. It incorporates treatments of mass spectra, stellar evolution,
primordial binaries, and the influence of a galactic tidal field.

The effect of an IMBH on the stellar distribution is implemented similar to
Freitag & Benz (2002). In this method the IMBH is treated as a fixed, central point
mass while stars are tidally disrupted and accreted onto the IMBH whenever their peri-
astron distances lie within the tidal radius, Rdisr , of the IMBH. For a given star-IMBH
distance, the velocity vectors that lead to such orbits form a so called loss-cone and stars
are removed from the system and their masses are added to the BH as soon as their
velocity vectors enter this region. However, as the star’s removal happens on an orbital
time-scale one would need to use time-steps as short as the orbital period of the star
in order to treat the loss-cone effects in the most accurate fashion. This would, how-
ever, slow down the whole calculation considerably. Instead, during one MC time-step a
star’s orbital evolution is followed by simulating the random-walk of its velocity vector,
which approximates the effect of relaxation on the much shorter orbital time-scale. After
each random-walk step the star is checked for entry into the loss-cone. For further de-
tails see Freitag & Benz (2002). Comparison with N -body calculations have shown that
in order to achieve acceptable agreement between the two methods, the MC time-step
must be chosen rather small relative to the local relaxation time, with dt � 0.01Trel(r)
(Freitag et al. 2006). While choosing such a small time-step was still feasible in the code
of Freitag & Benz (2002), to enforce such a criterion for all stars in our simulation would
lead to a dramatic slow-down of our code and notable spurious relaxation. The reason
is that our code uses a shared time step scheme, with the time-step chosen to be the
smallest value of all dti = f Trel(ri), where f is some constant fraction and the subscript
i refers to the individual star. In Freitag & Benz (2002) each star is evolved separately
according to its local relaxation time, allowing for larger time steps for stars farther out
in the cluster where the relaxation times are longer. In order to reduce the effect of spu-
rious relaxation we are forced to choose a larger f , typically around f = 0.1. This has
the consequence that the time-step criterion is only strictly fulfilled for stars typically
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Figure 2. Comparison of the stellar merger rate per crossing time with simulations of Baumgard
et al. (2004). In both cases the evolution of single-mass clusters were calculated and the tidal
radius of the IMBH was fixed to 1×10−7 in N-body units. Full circles with error bars are results
from our MC runs at selected times, while the solid line goes through all obtained points.

outside of 0.1rh , where rh is the half-mass radius of the cluster. To arrive at the correct
merger rate of stars with the IMBH, despite the larger time step for the stars in the
inner region, we apply the following procedure: (i) for each star i with dt > 0.01Trel(ri)
we take n = dt/(0.01Trel) sub-steps. (ii) during each of these sub-steps we carry out the
random-walk procedure as in Freitag & Benz (2002) (iii) after each sub-step we calculate
the star’s angular-momentum J according to the new velocity vector (iv) we generate a
new radial position according to the new J. By updating J after each sub-step we approx-
imately account for the star’s orbital diffusion in J space during a full MC step, while
neglecting any changes in orbital energy. This is at least for stars with low J legitimate
(Shapiro & Marchant 1978), while for the other stars the error might not be significant
as the orbital energy diffusion is still slower than the J diffusion (Frank & Rees 1976).
A further assumption is that the cluster potential in the inner cluster region does not
change significantly during a full MC step, which constrains the size of the full MC step.

4. Comparison to N-body Simulations
In Fig. 2 the rates of stellar mergers with the central BH per crossing time from

two of our single-mass cluster simulations are compared to the corresponding results of
Baumgardt et al. (2004). The initial cluster parameters were the same as in their study
(run16 and run2). As can bee seen, the differences between our MC and the N -body
results are within the respective error bars and thus in reasonable agreement with each
other. However, the merger rates in the left panel of Fig. 2 seem to be consistently lower
than in the N -body calculations. This might indicate that the agreement gets worse for
other MBH /MC l than we considered here (0.25% − 1%) and a different choice of time-
step parameters for our MC code might be necessary in those cases. On the other hand,
the differences might also be caused by differences in the initial relaxation phase before
the cluster reaches an equilibrium state. This phase cannot be adequately modeled with
a MC code because the code assumes dynamical equilibrium. Further comparisons to
N -body simulations for different MBH /MC l and N are necessary to test the validity of
our method.

5. Realistic Cluster Models
In order to compare our simulations to observed GCs additional physical processes

need to be included. Here we consider two clusters containing 1.3 × 105 and 2.6 × 105
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Figure 3. Two-dimensional density profile of bright stars for two clusters with different numbers
of stars and BH to cluster mass ratios. The dashed line in the right panel is a power-law fit to
the inner region of the cluster, while the two dashed lines in the left panel are for orientation
only.

stars with a Kroupa mass function (Kroupa 2001), and follow the evolution of the single
stars with the code of Belczynski et al. (2002) (for all other parameter see Baumgardt
et al. 2005). Fig. 3 shows the two-dimensional density profiles of bright stars for the two
clusters at an age of 12Gyr. The profile in the left panel can directly be compared to
the corresponding result of Baumgardt et al.(2005) as N is the same. As was expected
from the discussion in §2, the profile shows only a very shallow cusp with a power-law
slope α between −0.2 and −0.3, consistent with the N -body results. The right panel
shows the resulting profile for a cluster that is also similar but twice as massive and,
consequently, has twice as many stars as in the N -body simulation. Here we still get a
very similar profile with α = −0.23 which is very close to the average slope of α = −0.25
found in Baumgardt et al. (2005). Therefore, based on these very preliminary results,
there seems to be no significant difference in cusp slopes for larger N clusters compared
to small-N ones, but the parameter space must certainly be explored much further in
order to confirm this finding.
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