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SOME OPEN SETS FOR WHICH THE HEAT EQUATION
IS SIMPLICIAL

PETER D. TAYLOR

1. Introduction. Let us associate to each open set U C R™ the space
Hy of real functions f which are twice continuously differentiable in x; . . . x,
and once continuously differentiable in x,;; and which satisfy the heat equa-
tion: Af = 9f/0x,41 where A = >7.,0?/dx?2. Then we have what in the
axiomatic of Bauer is called a strong harmonic space (2, p. 61]. We will call
functions of Hy harmonic in U.

If w is a bounded open subset of R"! we will denote by 4 (w) the space of
continuous functions on @ which are harmonic in w. We ask whether 4 (w) is
simplicial (i.e. a simplex space). That is to say, is the state space of 4 (w) a
simplex? Our intuition tells us that the answer is always yes, but we have been
unable to answer the question in general. In this paper we prove that the
answer is yes if irregular points of dw can only occur at finitely many values
of the time coordinate x,41.

In § 2 we prove that 4 (w) is simplicial if the irregular points are all at the
top of w and all have half neighbourhoods below them in w. In this case the set
of regular boundary points is closed and 4 (w) is just the space of continuous
functions on this compact set. In particular the regular points and the Choquet
boundary coincide.

In § 3 we remove the “half neighbourhood” restriction. We do this by ap-
proximating w by open sets of the type in § 2 using the idea of inverse limit of
compact convex sets in Jellett [5]. The set of regular points is no longer closed
but is still equal to the Choquet boundary.

In § 4 we allow w to have irregular points at a finite number of values of the
time coordinate. We do this by cutting w up into horizontal slices, each of which
is of the type in § 3. We use some results of split faces and quotients of compact
convex sets to put the pieces back together as a simplex.

Now a word about notation and terminology. If x € R"1 we will let A (x) =
(x1, X2, ..., x,) and t(x) = x,41. We call the last coordinate axis the time
axis and think of it as vertical. Harmonic space notation follows Bauer [2].
w will always denote a bounded open subset of R**1. We denote by dw the
topological boundary of w and by d,0 the subset of regular boundary points
[2, p. 128]. If x € & we will write u,* (or simply u, if there is no ambiguity) for
harmonic measure on dw. This is defined in [2, § 4.1] to be the balayaged mea-
sure €,% [2, § 3.5]. (cw denotes the complement of w.) If w is a regular set then
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this definition gives us the usual harmonic measure [2, p. 12]. The map x — p,®
is called balayage and is a dilation for 4 (v) [3, Theorem 3.2].

Finally if K is a compact convex set we let A (K) denote the Banach space
of continuous affine (real) functions on K. We always assume that K is
embedded in a locally convex topological vector space, so that 4 (K) separates
points of K. If X is a compact Hausdorff space and 4 is subspace of C(X)
which contains the constants then the state space of 4 is the set

K={kcA*k=0,kQ1) = 1},

endowed with the weak*-topology. Then K is a compact convex subset of the
unit ball of 4* and the closure of 4 is isometrically isomorphic to 4 (K).
If x € X, let #(x) denote the evaluation functional, f — f(x), on 4. Then =
is a continuous map from X into K. The Choquet boundary of A is the set of
x € X such that 7w (x) is in E(K), the set of extreme points of K. Phelps’ book
[6, § 6] gives a discussion of these ideas.

I am indebted to Professor Effros for bringing the general problem to my
attention and for several valuable discussions about the heat equation. His
paper with Kazdan [3] provides a very readable introduction to the problem.

2. The simplest case. As always w denotes a bounded open subset of R™+1,
We let

T = T(w) = sup {{(x):x € a}.

Suppose that x € dw and £(x) = 7. Suppose there is a neighbourhood N of x
such that

(2.1) {y € N:it(y) < t(x)} C o

Then «x is the midpoint of the top of some box contained in w and it follows
from (3, § 7, Observation 2.] that x is an irregular point of dw. The following
Proposition assumes that all irregular points are of this type.

ProrosiTiON 1. Suppose that whenever x is an irregular point of dw then t(x) =
T (w) = T and thereis a neighbourhood N of x satisfying (2.1). Then 8,0 1s compact
and the restriction map A (w) — C(9,w) 1s an isometric isomorphism onto C(9,w).

Proof. First of all 9,w is compact. Indeed if x € dw is irregular, then the
interior of the neighbourhood N of (2.1) cannot contain any regular point of dw
(by the remark immediately preceeding the proposition). So 9,w is a closed
subset of the compact set dw.

Now we show that if x € & then p, lives on 9,0. First we note that x, always
lives on {y:t(y) = t(x)}. Indeed if we define s(y) to be 0 if (y) < #(x) and 1
if £(y) > t(x) then s is superharmonic and

=s(x) = Rsm(x) = pz(s),

[2, Kor. 3.4.2], so that p, lives on the set {s = 0}. Thus if {(x) < T, then
us lives on dw M {y:¢(y) < T} which is contained in d,w by assumption. If
t(x) = T the result follows from [3, Lemma 3.1].
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If f € A(w) then f(x) = p,(f) for any x € @ by [3, Theorem 3.2] and with
what we have just shown, we deduce that the restriction map 4 (w) — C(8,w)
is an isometry. It remains to show that it is onto.

If g € C(9,w) we define f on @ by f(x) = p,(g). Then g is the restriction of f
to d,w by [2, Satz 4.3.1]. We will show that f € 4 (w). By [2, Satz 4.1.1] f is
harmonic in w. We must show that f is continuous at points of dw. The con-
tinuity of f at irregular points of dw follows from Lemma 2 below. Suppose x is
a regular point of dw and take any e > 0. Choose 6§ > 0 so that if z € w and
|z — x| < & then | f(z) — f(x)| < € (use the regularity of x). We claim that if
Yy € dw, |y — x| <& then |f(y) — f(x)| £ e Indeed there are points of w
arbitrarily close to y. If ¥ is regular our claim follows from the definition of
regularity; if y is irregular it follows from the continuity of f at irregular points
just proven. Thus f is continuous at x.

LemMA 2. Suppose x € dw and for some open neighbourhood N of x

{y € Nit(y) < t(x)} C w.

Then for any continuous function g on dw,
pz(g) = lim {1, (g):y € &,¢(y) < t(x)}.
V-7

Proof. By [2, Satz 2.7.4] it is enough to show this when g is the restriction of
a finite continuous potential p. In this case our requirement becomes
R (x) = lim {R,"(y)ty € a,1(y) < t(x)},
V-7

where E = R*1 — .

Let o = @ \U Nand E' = R — &', We will show that R,%(y) = R,Z (y)
for every y € N with t(y) £ t(x). Since E’ C E we have at least that R,®' <
R,%. We will first show that R,Z(y) < R,® (v) if t(y) < t(x). Indeed if t(y) <
¢t(x) and u is hyperharmonic with # = p on E’, define ' as follows:

sy _ Ju(z), ift(z) = t(y)
u'(@) = {oo, if 1(z) > t(y).

Then %' is hyperharmonic and %’ = p on E. Since #'(y) = u(y) we deduce
R,E(y) £ R, (y). Now suppose y € N and i(y) = t(x).
Then
R,* (y) = lim inf {R,¥ (2):2 € N, t(2) < t(x)}
25y
(since R,* is continuous in NV)
> liminf {R,*(2):2 € N, t(z) < t(x)}
25y

(by what we have just proven)

= RE().

https://doi.org/10.4153/CJM-1974-045-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-045-3

458 PETER D. TAYLOR

Thus R,Z coincides with R, at points y € N with ¢(y) £ t(x). Since x € o/,
R,®’ is continuous at x and our result for R,” is immediate.

COROLLARY 3. If w satisfies the hypotheses of Proposition 1, then A (w) is
simplicial and the Choquet boundary of A(w) is the set of regular boundary
points of w.

3. An intermediate case. Our objective in this section is to strengthen
Corollary 3 by removing the hypothesis (2.1) in Proposition 1. This is to say,
we will prove that 4 (w) is simplicial if the irregular points of dw all live on a
horizontal line above w. Our method is to approximate an open set w with this
property by sets which also contain half neighbourhoods of every irregular
point (condition 2.1). The approximation argument uses the notion of inverse
limit found in [5] and [13].

Suppose that A is a directed set. Suppose that for each @ € A we are given a
compact convex set K, and for a, 8 € A, « = 8, we are given a continuous
affine map m.5:Ks — K,, so that the following conditions are satisfied:

(1) for each a, w4, is the identity map;

(i1) if @ < B < v then Ty = o O gy
Then we say that (K,,mas)a.pea is an inverse family of compact convex sets.
The tnverse limit K, of the family is defined as

K, = {{ks} € [[sKa:if a < B then mu(ks) = k).

K, is a closed subset of [ [K, (product topology) and so is a compact convex
set (coordinatewise operations) and the coordinate projection e :K, — K,
is continuous and affine.

Let us denote by Tos: 4 (K,) — A (Kg) fora £ B, and Toy:4 (K) — A(K,)
the operators induced by the maps m,s and 7. These are positive linear oper-
ators of norm 1 mapping 1 into 1. From (ii) we have the property 7o, =
Tg.,OTagifa < 6 <7.

We remark that K_ has the expected universal property with regard to
{K.}. Suppose K is a compact convex set and for every a € A there is a con-
tinuous affine map m,:K — K,, such that if « < 8 then m,s 0 73 = m,. Then
there is a continuous affine map w:K — K_ such that for every a € A 7, =
T O . Indeed we simply let 7 (k) = {m,(k)} and do the necessary verifica-
tions.

The following proposition is found in [13, Proposition 7.1]. It also occurs in
[5, Theorem 2] with a different proof, but with the additional assumption that
the maps mqg are onto. Our proof follows [5], except that we need a lemma to
make up for the fact that the operators T, need not be injective.

ProrosiTION 4. If K, is the inverse limit of a family {K,.} of simplexes then
K, is a simplex.

Proof. Following [5] we will use the fact that K is a simplex if and only if
A (K) has the weak Riesz separation property (R.S.P.)ie.ifa;...a, € A(K)
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and a; A az > a3 V a4 then there is as € A (K) such that a; A as > a5 >
a3 V a4 It is enough to check this for a dense subspace of 4 (K,,) containing
the constants and L = UaT e, (4 (K,)) is such a subspace since it separates
points of K, [5, Lemma].

Let Taiw(fo)(@ =1, ... 4) be four elements of L such that T, (f:) A
Tayo (f2) > Tapo(fs) V Tapw(fs). Choose B > a;fori =1,...4and seta; =
T4;5(fs). Then our inequality reads

Tgm(al) N Tgm(ag) > Tﬂm(a?,) Vv Tgm(a4).

LEMMA. Suppose a € A(Kg) and Tp,(a) > 0. Then there exists ag > B such
that Tea(a) > 0 for all a > a.

Proof. Suppose not. Then A’ = {a@ € Ata = 8 and T4, (a) is not strictly
positive} is cofinal in A (and hence is directed). For each o € A’ choose k, € K,
such that Tg,(a) (k) < 0. Choose a directed set I' and a map 7: T' — A’ so that
{k:¢p:v € T} is a universal subnet of {k,:a € A’} [11, Chapter 2, Exercise J].
Then for every a € A the net

{Waf(‘y) (kr('y)):'Y €T, r(y) 2 0‘}

converges in K, (since 7 is universal and K, is compact). Let i, € K, be the
limit of this net. We assert first of all that {4,} € K. Indeed if A < a then

Mal(lta) = ‘na( lim 7arcy) (k,(.,)))
vel

;

= lim Tag O Tartyy (Bryy) (continuity of ma)
4

= lim mey) (Ben)) = I
Y

Next we assert that T, (a)({#}) < 0, a contradiction. Indeed,

T (@) ({ha}) = a(mpes({Pa})) = allg) = 1i£n a(mgren (Brny))
= liin Tr(vy (@) (kriyy) < 0.

Now we return to the proposition. From our inequality 7, is strictly positive
on the four functions a; — a3, a; — a4, a3 — as, as — as. By the lemma there
is a large enough @ > B such that T, is strictly positive on these four functions:

Tsa(a1) A Tpa(az) > Tgalas) V Tpa(as).

By the weak R.S.P. for 4 (K,) there is a5 € A (K,) such that
Tpa(@1) A Tga(az) > as > Tpalas) V Tga(as).

Apply T., and use the fact that T, 0 Ts. = T, to get
Too(@1) A Tan(a2) > Taw(as) > Tpo(as) V The(as).
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Now we return to » and prove a few lemmas.

LEMMA 5. Suppose xo € w and o C {x:t(x) = t(xo) — 2/m?®} for some
integer m. Then all but at most (m™® — (m — 1)*)/(m" — 1) of the mass of the
measure u, 1S concentrated in the cylinder

{x:|Ax — x0)|2 < (4n log m)/m?, t(x) < t(x0)}.
Proof. Choose coordinates so xo = (0, 1/(m — 1)?). Then
o C {x:t(x) = 1/m?}.
Indeed if x € w then

1 2 1 _ 2m—1)
t(x) 2 (m _ 1)2 - m?. é (m _ 1)2 (m _ 1)2m2
> 1 __@m—1)
=m—-1)°  (m—1)m

1 1 1 1
_(m—l)z—(m—1)2+W=W'

Define f(, t) = t™/2 exp (—|\?/4t) for ¢t > 0. Then f|o € A (w). If (\, ) € o
but does not lie in the above cylinder, then |\|*> > 4n log m/m? and

Fn )

"2 exp (—n log m/m?)
(1/m?)—"2 exp (—n log m/m?(1/m?)) =1
(since t = 1/m? and f is decreasing in £).

Also if (\, £) € w then f(), t) < f(0, 1/m?) = m". Suppose the u,,-measure of
the cylinder is 1 — e. Then

b (f) S e+ (1= .
Since f € A (w), pso (f ) = f(x0) [3, Theorem 3.2], and so

e+ (1 —em" = f(xo) = f(0,1/(m —1)?) = (m — 1)~
Solve for e to get e = (m" — (m — 1)*)/(m" — 1).

I\ lIA

LemMA 6. Suppose f is continuous on the open set w. For some fixed T let
w1 = {x € wit(x) < T} and ws = {x € w:it(x) > T}. Suppose f is harmonic in
w1 and wy. Then f is harmonic in w.

Proof. By [2, Satz 1.1.3] it is enough to take an arbitrary regular open set u
such that # C » and to show that for each x € u, p*(f) = f(x). If u is such
a set let u; = u M w; for ¢ = 1, 2. Since # is regular and f |du is continuous
there is a unique function g which is harmonic in #, continuous on # and
coincides with f on du.

Let ¢ denote the space of functions continuous on #% and harmonic in %; and
us. Then £ separates points of 4% and f — g € £ so that we can apply the mini-
mum principle [2, p. 7] to deduce that f — g attains its minimum on #% at a
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point yo € % for which ¢, is the only {-representing measure. We will show
that yo € du. If not then y, € u and since clearly y, is not in u; or u; we must
have ¢(yo) = T and yy € du,. Since yy € u, y, is the midpoint of the top of a
box contained in #; and by [3, § 7, Observation 2.] is an irregular point of du.
Hence ¢,,%! is an £-representing measure for y, different from ¢y, [2, Satz 4.3.1],
a contradiction.

Thus f — g attains its minimum on # in du and since f = g on du we deduce
f = g. The same argument applied to g — f tells us g = f. Hence for x € u

flx) = g(x) = ut(g) = w*(f),
the middle equality a consequence of the definition of g.

The following lemma is a basic tool which we shall use a number of times.
Let us fix some notation. If w is an open set in R"*!, fix an open ball S(w) in
R” which contains all spatial coordinates of points in w, i.e., AM(w) C S(w).

Now let T = T(w) and if ¢y < T let

wy =\ [S(w) X (b, T)].
Since S(w) is open, w,, is open.

LEmMmA 7. Let " =T (w) and suppose f is a function continuous on oM {t < T’}
and harmonic in w. Suppose X is a compact set containing &, and h and k are
continuous functions on X. Suppose h < f < kin oM {t < T}. If ¢ > 0 then

there is t' < T such that if ' < to < T then we can find a € A(w,)) witha = f
at points of @ M {t S to},and h — e < a < k + € at points of @,, M X.

Proof. We may suppose ||k|| =1 and ||k|| £ 1, and e > 1. Let & = ¢/3.
Since k and £ are uniformly continuous on X we may choose 6 > 0 so that if
x,y € X then

lx —y]| £86=>|h(x) — k()] < ex and |k(x) — k()| < €.
Choose an integer m with the properties:

Al G2l V [4n 102g_"¢] +2 <,
m — 1 m m

Let " > ty = T — 2/m3. Let u be the open set S(w) X (o, I'). We now define
two functions on #. If y € 4 let

N(y) = {x € X:fx —y| = 5}.
For y € 4 define

bi(y) = {inf {k(x) + eix € N(y)}, if N(y) =0
1) =1 4+ ¢, if N(y) =0

_ Jsup {h(x) —ea:x € N(y)},if N(y) # 0

hi(y) = {_1 — e, if N(y) = 9.

Then k; and —#, are lower semicontinuous on # and if y € % /M X then
ki(y) 2 k(y) 2 h(y) 2 m(y).
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Indeed for such a y, N(y) # @, so that there are points x and z in N(y) such
that ki (y) = k(x) + &« = k(y) and ki (y) = h(z) — &1 < h(y), the inequalities

following from the choice of 8. In particular we have that k; = f = k, at points
of # M\ oM {t < T'}. We now define functions k, and %, on #:

ka(x) = ho(x) = f(x), ifx € @and t(x) = &;
ko(x) = ki(x) and he(x) = h1(x) otherwise.

Since f is continuous and & M {¢ = #o} is closed, &, is lower semicontinuous and
ho is upper semicontinuous. Also k; = ks = ks = ;. It follows from a theorem
of Hahn and Tong [12, § 6.4.4] that there is a continuous function g on 4 such
that ks = g = hs. Clearly ¢ = fon @ M {t =t} and ||g|]| £ 1 + e

Now define a on @,, as follows:

_ ), i t(x) < to
ale) = {ux“(g), if £(x) =t

We assert that « is continuous on &,, and harmonic in w,,. Indeed, f is harmonic
in {x € wy:t(x) < o} and continuous on the closure of this set. By Proposition
1, p#(g) is harmonic in » and continuous on #. Since f(x) = g(x) = p*(g)
whenever x € @ and ¢(x) = ¢, (such an x is a regular point of du), we deduce
that a is continuous. It follows from Lemma 6 that « is harmonic in w,,.

Now we show that in @, M X, a is between # — e and ¥ + €. This is true by
hypothesis if £(x) < #. Suppose x € @, M X and ¢(x) = £. Let

C, ={y € a:t(y) = t(x) and [N(y — x)|2 < 4n log m/m?}.

It follows from Lemma 5 that u,(C;) 2 1 — (m® — (m — 1)*)/(m* — 1). If
y € C, then

e =yl = N — )| + [t — 3)| = [4’1%—"—’]2 +£§ 8

IIA

and therefore x € N(y) and
g) S k() S ki(y) S k(x) + e,

and

g) = ha(y) =2 ha(y) = h(x) — e
Thus

a(x)

ua (g) = f gdu." + f gdu”
Cx Cz¢

(k(x) + e)u"(C) + |lg]lw" (C5)
Skx)+ea+ Q+ea)m — (m—1)"/(m" —1)
Skx)+ea+ 1+ ea)a

< k) + 3a=kx) +e

(C,° denotes the complement of C,.) By a similar calculation a(x) > k(x) — .

IIA
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In some sense, as ¢ approaches I' = T'(w), the sets w, approximate the set w.
The notion of inverse limit makes this precise.
If ¢t £ s < T let us denote by 7, the restriction map

Tt A (w;) = A(wy).

This is a positive linear operator which is norm decreasing and maps 1 into 1.
Let K, denote the state space of 4 (w,):

K,={k€ A(w)*:k =0 k(1) =1].

K, is a weak*-compact convex subset of 4 (w,)* and the adjoint map 7,* maps
K into K ,. Denote by 7, the map from K, to K, obtained by restricting 7,.*.
Then =, is continuous and affine, 7, is the identity and if ¢ £ s < r then
Ty O Tgr = 4 (since 7, 0 7,5 = 7). Thus (K, m4)1<s<r 1S an inverse family
of compact convex sets. Let K, denote the inverse limit of this family.

Now let 4 denote the space of functions continuous on & \J [S(w) X T7]
and harmonic on w. Let K be the state space of 4. We have the restriction maps

1A (;) > A (fort < T),
and these induce continuous affine maps
7rtIK i K,.

If t £s we have r,07,, = 7, and hence 7,;0 7, = 7,. By the universal
property of K there is a continuous affine map m: K — Ky such that rpom =
™5

ProposITION 8. The map w:K — Ky is a bijection.

Proaof. (1) m is surjective. Suppose & = {k,} is in Ky. For each ¢t < T choose
a probability measure u, on @, such that for each f € 4 (w,), k,(f) = u.(f).
Fix s < T and choose a subnet {u,¢y:v € T) of {u,:s <t < T} which con-
verges to a probability measure p on @,. Since u, lives on &, for every » =< ¢,
u lives on

N Gon = & U [S(w) X {T}].

Yy€T
Denote by /& the member of K given by the functional f — u(f) for f € 4.
We will show that = (k) = k.

It will be enough to show that 7 ,(k) = &k, for t < T (since myp 07 = m,).
For ¢t < T take any f € A(w,). If r = ¢ then we can integrate f with respect
to u,.

ﬂr(f) = ﬂr(7tr(f)) = Tzr(f)(kr)
= f(Wtr(kr)) = f(kt)

On the other hand for v € T the numbers p,¢,) (f ) converge to

p(f) =n@f)) =r(f)R) = f(m.(R)).
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We deduce that f(x,(k)) = f(k,) and since f is arbitrary we have that =,(k) =
k.

(ii) = is injective. Suppose x, ¥y € K and x £ y. Choose g € 4 and ¢ > 0
so that ||g|| = 1 and |x(g) — y(g)| > 2e. It follows from Lemma 7 (with f,
and k all equal to g and X equal to & \U S(w) X {T}) that thereisa € 4 (w,)
for some ¢t < T such that in @ N\ S(w) X {7} wehaveg — e < a < g+ e It
follows that ||7,(a) — g|| £ € and hence that

lri(x) (@) — 7, (y)(@)] = |[x(r.(a)) — y(r.(a))]
2 |x(g) — y(@)| — lx(r.(a) — )| = ly(rila) — g)|
>2¢ —e—e=0 since ||x|| = ||y]| = 1.

Thus 7,(x) # 7,(y) and hence 7 (x) # = (y).

THEOREM 9. Suppose that whenever x 1s an trregular point of dw then t(x) =
T(w). Then A (w) 1s simplicial.

Proof. First we show that 4 (w,,) is simplicial for £y < T'(w), by showing that
w,, satisfies the hypotheses of Proposition 1. Clearly any x in S(w) X {7 (w)}
satisfies the neighbourhood condition (2.1) for w,,, so that it is enough to show
that all other boundary points of w,, are regular. Any such point is either on
the side or base of the cylinder S(w) X (fo, T'), or is in dw. If x is on the side of
the cylinder then there is an upward pointing cone in R**\w,, with vertex at x,
so that, by [3, 7.1], x is regular. If ¢(x) = #; and x ¢ dw then we have again
such a cone. Finally suppose t(x) =< ¢, and x € dw. It will be enough, by [2,
4.3.1] to show that R**\w,, is not thin at x (see 2, p. 107] for the definition of
thinness). First we remark that S(w) X (%, 1°) is thin at x: use the super-
harmonic function f(y) = 0if t(y) = 4, f(y) = 1if t(y) > . It follows that
the smaller set w;\w is thin at x and hence if R"*\w,, were thin at x then
R N\w C R N\w,) M (w;\w) would be thin at x (union of thin sets is thin
[2, 3.1, Exercise 5 and 3.3.3]) which would contradict the regularity of x in
dw [2, 4.3.1].

Thus K, is a simplex for every ¢ < T and Proposition 4 tells us that K, is a
simplex. Proposition 8 tells us that K is a simplex. Let K’ be the state space
of A(w). We shall show that K’ can be identified as a closed face of K, and
hence is a simplex. Let 7/ be the restriction map 7':4 — 4 (w). Then 7’ is
surjective and thus induces continuous affine injection on the state space
n': K’ — K. It is a general result that the annihilator in K of any subset of
A(K)*t is a closed face of K. Since 7' (K’) is clearly the annihilator in K of

ker («/)* = {f€ A:f =2 0and f|& = 0},

we deduce 7’ (K') is a closed face of K, hence is a simplex. Since #’ is injective,
K’ is a simplex.

Now let us identify the Choquet boundary of 4 (w) in case w satisfies the
hypothesis of Theorem 9. It turns out that this is again the set of regular
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points of dw. To see this we use the following criterion for an extreme point of
a simplex, which is a generalization of [5, § 2, Proposition].

ProposITION 10. Suppose K is a simplex and suppose x € K has the following
property: whenever we are giwen f1 and fy in A (K) such that f;(x) =< 0 for each 1,
and e > 0, then we can find g € A(K)* such that g = f; for each i and g(x) < e.
Then x 1s an extreme point of K.

Proof. We will use the criterion of the proposition of [5, § 2]. Suppose
f€ AK)and f(x) = 0. We must find g € 4(K)* such thatg = fand g(x) =
0. We will construct a sequence {g,} C A (K)* such that for n = 1, g, = f,
2.(x) < 1/2" and ||gu1 — gl = 1/2" if » > 1. We get g; immediately from
the hypotheses of the proposition. Suppose we have constructed g, ..., g,
with these properties. Then f and g, — 1/2" are both < 0 at x, so by hypothesis
we can find 2 € A(K)* such that k. = f, h = g, — 1/2*, and h(x) < 1/2"+1,
Then a =% A g, is a concave continuous function on K and b =
f Vv (g, — 1/2") Vv 0 is a convex continuous function on K and a = b, so by
the standard separation theorem for simplexes [4], we can find g,,; € 4 (K)
such that ¢ = g,4+1 = 8. Then g1 20, g1 = f, Zo1(x) £ h(x) < 1/20H1
and g, — 1/2" < g1 = g, from which ||g,+1 — gi|| = 1/2"

The sequence {g,} is Cauchy and thus converges uniformly to g € 4 (K)*.
Clearly g = fand g(x) = 0.

ProrosiTiON 11. Suppose that if x € dw and t(x) < T (w) then x is a regular
point of dw. Then the Choguet boundary of A (w) is the set of regular points of dw.

Proof. 1t follows from (3, Theorem 3.2] that Choquet boundary points of
A (w) are always regular points of dw. Suppose x is a regular point of dw. We
will use the criterion of Proposition 10 to prove that x is the Choquet boundary.

Suppose f; and f, are in 4 (w) and f;(x) = 0 for each 7. Choose ¢ > 0. For
z € @ define

h(z) = ¢/3 V (f1(2) + ¢/3) V (fa(2) + ¢/3),

and f(z) = u2(h). By [2, Satz 4.1.1] f is harmonic in w and by the hypothesis
of the proposition, f is continuous in ® M {t < T'(w)}. Also for z € @, f(z) =
h(z). Indeed f(z) = p~(h) and this is no smaller than the three numbers
k2(e/3), ue(f1 + ¢/3) and 2 (f2 + ¢/3). But these are equal to ¢/3, fi(z) +
¢/3 and f2(z) + ¢/3 and k(z) is the largest of these. Define f on @ as follows:

f(z), if £(z) < T'(w)
fz) = lﬂirrzl f@), ift@z) = T(w).
t(N<T () ,y€0

Then
F&) = lim {g,° (h):y € &, t(y) < T(W)} = h(x) = ¢/3,

-z
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since x is regular and % is continuous, and a simple argument shows that f is
upper semicontinuous on @. Thus f is the pointwise infimum of the continuous
functions which majorize it and hence we can choose k continuous on & such
that 2 = f and k(x) < f(x) 4+ ¢/3 = 2¢/3. Clearly & = fon & N {t < T(w)}
and so Lemma 7 (with X = &) givesusfy < T and @ € 4 (w,) such that, in &,

h—e¢/3=<a=k+ ¢3.
Then g = ¢|oisin 4 (w), g =2 0 V f1 V f: and
glx) S k(x) +¢/3 <e

By Proposition 10, x is an extreme point of the state space of 4 (w), hence is in
the Choquet boundary.

4. The main theorem. In this section we extend the results of Theorem 9
and Proposition 11 to the case where w has irregular points only at a finite
number of values of ¢(x). First some general concepts.

Suppose K is a compact convex set and F is a closed convex subset of K.
Let A7(K) denote the space of functions in 4 (K) which are constant on F.
Let K/F denote the state space of 4z(K). Denote by 7:4 z(K) — A (K) the
natural injection. Then 7 is a positive isometry mapping 1 into 1, hence 7
induces a continuous affine surjection 7: K — K/F of the state spaces.

Let us denote by F’ the complementary set of F, i.e. the union of all faces of
K disjoint from F. In the following lemmas we will assume that F is a split face
of K [1, § 2]. In this case F’ is a convex face.

LemMMA 12. Suppose F is a closed split face of K. Then the restriction of = to
F' 1s injective, w(F) and w(F') are faces of K/F, and w(E(K)) = E(K/F).

Proof. By [1, Corollary 3.8] 4 x(K) separates points of F’, so that = is
injective on F’. Let xr denote the characteristic function of F and let T' =
{a € A(K):a > xr}. Let gr = inf T. By [1, Theorem 3.3], for any a € T,
thereis ¢ € T'M A(K) such that ¢ £ a. Hence there is a function ® on K/F
(® = inf I N Ar(K)) such that xr = ® o 7. By [1, Theorem 3.5] I' is directed
down; hence T' M Ar(K) is directed down and & is affine. Since 0 £ & £ 1,
&1(0) and ®1(1) are faces of K/F. But ®1(0) = (3 '(0)) = «(F’) and
&1(1) = v(xz (1)) = n(F) by [1, Corollary 1.2].

Finally we show =(E(K)) = E(K/F). Since = is surjective, the inverse
image of an extreme point of K/F is a non-empty closed face of K, hence
contains an extreme point of K. Hence 7 (E(K)) DO E(K/F). For the converse
suppose x € E(K). Then either x € F or x € F/. In the first case
m(x) € E(K/F) since w(F) is a one-point face, hence an extreme point of K/F.
In the second case w(x) is an extreme point of w(F’) (since = is injective),
hence an extreme point of K/F (since w(F’) is a face).

ProrosITION 13. Suppose F is a closed split face of a compact convex set K.
Suppose F and K/F are simplexes. Then K is a simplex.
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Proof. We will use the criterion that a convex set X is a simplex if and only
if it is the base of a lattice cone. (This is actually the definition of simplex in
[6, § 9].) Let P be the positive cone of 4 (K)*. Then K is a base of P and F
and F’ are bases of subcones Q and Q’ of P. Since Fis a face of K, Q is a face of
P, and since F is split, @ is a face of P and P is the direct sum of Q and Q’.
Since F is a simplex, Q is a lattice cone. Since K/F is a simplex and = (F’) is
a face of K/F (Lemma 12), w(F’) is a simplex (a face of a lattice cone is a
lattice cone) and since 7| F’ is injective (Lemma 12), F’ is a simplex. Hence
Q' is a lattice cone, and P = Q @ (' is a lattice. (It is easy to verify that the
direct sum of lattice cones is a lattice cone.) Hence K is a simplex.

Now for some more general concepts. A function space on a compact convex
set X is a closed subspace of C(X) which contains the constants. If 4 is a
function space on X and Y is a subset of X we denote by Ay the space of
functions in 4 which are constant on Y. Then Ay is also a function space on X.
If K is the state space of 4, then we define

YL = {a € A:a|Y =0}
and
VAL = {k € K:k(a) = O for all a € V4.

We remark that K/Y* is (naturally isomorphic to) the state space of Ay.
Indeed if we identify 4 with 4 (K), it suffices to observe thata € A4 is constant
on Y if and only if a is constant on Y*L. For this we need only remark that a
is zero on Y if and only if a is zero on Y1t and use the fact that 4 contains
the constants.

Let A|Y = {a|y:a € A}. Then 4|Y is a space of continuous functions on ¥
which contains the constants and the restriction map p:4 — A|Y is a positive,
norm one, surjection mapping 1 into 1. Hence p induces an injection o: F — K
of the state space F of 4|V into K. Clearly ¢(F) C Y but the reverse in-
clusion need not hold.

LEMMA 14. Suppose that whenever a € A|Y and a = 0, there exists ¢ € A such
that c|Y = a and ¢ = 0. Then Y- 1is (naturally isomorphic to) the state space of
A|Y.

Proof. We will show that Y+ C ¢(F). Then Y = ¢(F) and since o is
injective, we are done. Suppose k € Y. Define a functional k, on 4|Y by
setting k1 (p(f)) = k(f) for any f € A. Since k € ker (p)*, ki is well-defined.
Clearly k; is linear and k;(1) = 1. By the hypothesis of the lemma %; = 0
(since & = 0). It follows that k; € F and hence & = o (k1) € o(F).

Now let us take an example. Suppose w is a bounded open set. Let us fix a
time ¢, < T'(w). Let w; denote the open set w M {¢ < £}, and suppose w; # ¢.
Let K be the state space of 4 (w), and wt, as usual, the double annihilator of
wi in K.
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LeMMA 15. ot is a closed face of K and 1s (naturally isomorphic to) the state
space of A (w1).

Proof. Let B be a closed rectangular box with its base in {¢ = #;} which
contains @ M {t = ¢;}. We remark that any continuous function defined on
the base and sides of B extends to a unique continuous function on B which is
harmonic in the interior of B. If the initial function is positive, so is the
extension.

First we show that wt is the state space of 4 (w;). Since 4 (w;) = 4 (w)|wy,
it is enough, by Lemma 14, to show that any f € 4 (w;)* can be extended to
a member of 4 (w)t. If f € A (w;)* let g be any positive continuous function
on the base and sides of B which agrees with f in @; M {{ = ;}. Let & be the
harmonic extension of g inside B. Then 2 = 0 and the function f on & defined
as f on @ and as & on @ M {t = #;} is positive and continuous on & and, by
Lemma 6, is harmonic in w. So f is an extension of f in 4 (w)*.

Finally we use (8, Proposition 1] to show that w/L is a closed face of K.
Suppose f € wt and € > 0. We must find g € wr such that g = | f| — e
Let p be a continuous function on the base and sides of B with p = |f| on
@M {t =t} and p > 0 otherwise. Let s be the harmonic extension of p inside
B. Then s is strictly positive in B M {t > £,}. Nows > | f| — eina M {t = t,}
so that there is fy > #; such that s > [f| — e in @M {t; = ¢ = t,}. Since
s> 0in BN {t = 5} we can choose a number M = 1 so that Ms > || f|| in
this set. Then Ms > |f| —ein oM {t = ¢} and Ms = 0 on & N {t = #,}
(since s = p = |[f| = 0 on this set). Then if g is defined as 0 on w; and as
Ms on @M {t = #}, then g € A(w) by Lemma 6, so that g € wt and
gz|fl—e

With an additional assumption we can prove that wil is a split face of K.

LEmMMA 16. With w and w, as in Lemma 15 suppose that if x € dw and
b < t(x) < T(w), then x € 9,(w). Then witis a closed split face of K.

Proof. By Lemma 15, o is a closed face of K. According to [1, Theorem
3.5], a closed face F of K is split if for every ay € A(F)*, the set
{a € A(K):a > 0 and a|r > ao} is directed downwards. We will show that
this condition holds for F = wt.

First let us restate the condition. We remark that we can identity A4 (w/)
and 4 (w;), since A (w1) is a function space and wyt is its state space by Lemma
15. Similarly, we identify 4 (K) and A4 (w). Secondly we point out that if
¢ € A(w) and ao € A(w1), then ¢|®; > ao if and only if c¢|lwst > ao. This
follows since both ¢|@; and a¢ are in 4 (w;) and wL is the state space of 4 (w;).
Thus we can restate the condition as follows: for every ay € 4 (w;)t the set
{a € A(w):a > 0 and a|@, > ao} is directed downwards.

Now let us prove this. Suppose a¢ € A (w;)* and a4, a2 € 4 (w) with a; > 0,
a; > 0 and a; A a2 > ap on w;. Choose € > 0 so that a; A a2 > 2¢ and
ao + 2¢ < a1 A ason @y Let G = w M {¢ > t;}. Choose a continuous function
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g on dG such that g = a9+ e on @, and ¢ £ g < (a1 A a2) — e. Define a
function f on & as follows:

_ Jag(x) + € if x € @y
I = {uﬂg), i€ G.

The two formulas for f(x) agree at points x € @ M G since such points are
regular points of G, hence u,%(g) = g(x). Clearly f is continuous on @; and f is
continuous on G M {¢{ < T'(w)} by our regularity hypothesis (x regular in
dw implies x regular in dG [2, Satz, 4.2.6]). Thus f is continuous on
@ N {t < T'(w)}. By Lemma 6 and [2, Satz 4.1.1], f is harmonic in w.

Let 2 = (a1 A a3) — e. Then for x € G,

f) = u%(0) = w%((ar Aaa) —€) S @i —¢) =ai— e

for 1 =1, 2, the last equality holding since p,¢ is an A4 (G)-representing
measure for x [3, Theorem 3.2]. Hence f < k in @. Also f = e since this is true
for g and ap = 0. So by Lemma 7 (with X = ¢ and 2 = €) we can find ¢, > 4
and a € 4 (w,) such that a(x) = f(x) > ao(x) if x € &1, (x € &1 = i(x) £
t; < tg), and

O=ece—e<a<k+e=a Aas
in @. Then ¢ = a|@ has the required properties.

THEOREM 17. Suppose w is a bounded open set and S is a finite set of numbers
such that if x is an trregular boundary point of w then t(x) € S. Then A (w) s a
simplex space and the Choquet boundary of 4 () is d,w, the set of regular boundary
points of w.

Proof. The proof is by induction on the number 7 of elements in S U {7'(w)}.
If » =1 the theorem follows from Theorem 9 and Proposition 11. Suppose
the result proved for #» and suppose S\J {71 (w)} contains #» + 1 elements.
We may assume that ¢t £ 7'(w) for all ¢ € s. Denote by ¢, the largest element
of S\U {T(w)} which is strictly less than T'(w). Let w; = w M {t < #;} and
w2 = w M {t > t;}. We may assume w; # ¢ (or we are finished by Theorem 9
and Proposition 11).

First of all the induction hypothesis applies to w;. Indeed if x is an irregular
boundary point of w; then #(x) = { or x € dw; in the second case x is an
irregular boundary point of w by [2, Satz 4.2.6]. In either case ¢(x) € S\{7T ()}
which has # elements (and contains ¢; = T'(w1)), so that 4 (w;) is a simplex
space and the Choquet boundary of A4 (w;) is the set of regular boundary
points of w;.

Secondly we show that the case # = 1 applies to w,. Suppose x is an irregular
boundary point of ws. Then t(x) # #; (since w; lies above ¢;) and so x € dw.
It follows from [2, Satz 4.2.6] that x is irregular for w. Hence t(x) € S and
since ¢(x) # t; we deduce that t(x) = T'(w) = T (w2). Thus 4 (ws) is a simplex
space, and the Choquet boundary of 4 (ws) is the set of regular boundary
points of ws.
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If @& M &, = ¢ then there is a natural isomorphism 4 (0) = A4 (w;) @ 4 (ws)
and since the direct sum of simplex spaces is a simplex space (use the R.S.P.
[5]), 4 (w) is a simplex space. Also 9.4 (w) = 9.4 (w1) U 3.4 (w2), where 9,
denotes Choquet boundary. Since 9,0 = 9,01 U 9,02 and we have the theorem
for w; and w2, we have 9.4 (w) = 9,0.

Now assume w; M &2 # ¢. Let K be the state space of 4 (v). We will show
that K is a simplex. Let F = oy be the double annihilator in K of &;. Then
F is a closed split face of K by Lemma 8, and is the state space of 4 (w;) by
Lemma 15. Since 4 (w;) is a simplex space, F is a simplex. To show that K is
a simplex, it is enough, by Proposition 13, to show that K/F is a simplex.

Let 4; = A (w)3,, the space of functions in 4 (w) constant on @;, and let
Ay = A(w2)z,n5.- The restriction map A; — A4, is clearly an isomorphism,
hence the state spaces of 4; and A4, are isomorphic. By the remarks before
Lemma 14, 4, has state space K/F and A4, has state space K/ (@; M @),
where K, is the state space of 4 (w;). Thus, to show K/F is a simplex, it is
enough to show that K,/ (&1 M @2)++is a simplex. This follows from three facts:
(1) K1 is a simplex (since 4 (w2) is a simplex space), (2) (@1 M @2)Lis a closed
face of K, (the proof of this follows exactly the last paragraph of the proof of
Lemma 15 with w, instead of w and &; M @. instead of w;) and (3) the next
lemma.

LemMA 18. Suppose that K is a simplex and F is a closed face of K. Then
K|F is a simplex.

Proof. It is enough to show that 4 »(K) has the Riesz separation property
[4, condition (iii)]. Suppose f1, f2, g1 and gsarein 4 x(K) and fi A fo = g1 V go.
Since fi A fe: and g; V gs are constant on F we can choose a real number 7
such that if x € F then fi(x) A fo(x) = 7 = gi(x) V go(x). Define functions
a and b on K as follows: if x € F then a(x) = b(x) = r,if x ¢ Fthena(x) =
fix) A falx) and b(x) = gi(x) V ga2(x). Then ¢ is convex, lower semicon-
tinuous, b is concave, upper semicontinuous and ¢ = b, so that by a standard
separation theorem [4] (K is a simplex), thereisc¢ € 4 (K) such thata = ¢ = b.
Thenc =ron Fsothatc € Ap(K)andfi Afa=c=g1 V g

It remains to show that 9,0 = E(K) (by definition 9.4 (w) = E(K)). We
always have E(K) C 8,0 [3, Theorem 3.2], so suppose x € d,w. Suppose
x € dw;. Then x € 9,w; [2, Satz 4.2.6], so that x € E(F) since we have the
theorem for w;, hence x € E(K) since F is a closed face of K.

If x ¢ dw; then x € dws\@1. Then x € 9,ws [2, Satz 4.2.6], so thatx € E(K>)
since we have the theorem for w,. An argument identical to the proof of
Lemma 16 (with o, w; and 4 (w;) replaced by ws, @ M @ and C(@; M @2)
respectively) shows that (&; M &2)+ is a closed split face of K,. Thus, by
Lemma 12, 7y(x) is in E(Ks/ (&1 M &2)L) where 7, is the natural surjection
of K, onto K2/ (@1 M @2)L. Since this last set is naturally isomorphic to K/F,
w(x) € E(K/F) where = is the natural surjection of K onto K/F. Hence the
inverse image Q of w(x) under 7 is a closed face of K. Since w(x) # = (F)
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(shown below), QM F = ¢. Since Q is a face, Q C F’, the complementary
face of F. Since = is injective on F’ (Lemma 12), Q = {x}. Since Q is a face,
x € E(K).

Now we must show 7 (x) # = (F). Since x ¢ @;, we can find f € 4 (w) such
that f |@; = 0 and f(x) > 0. (Use the box B of Lemma 15; start with a func-
tion on the base and sides that is zero on 4B M &, and strictly positive else-
where.) Then f € A(w)z, and w(x)(f ) > 0. Butsince F = oL, #(F)(f) = 0,
so that 7 (F) # w(x).

We remark that Lemma 18 is a reformulation of the general result that a
closed ideal in a simplex space is a simplex space [14, 3.4], at least for simplex
spaces with unit. Indeed if K is a simplex then 4 (K) is a simplex space and
if Fis a closed face of K then

J ={a € A(K):a|F = 0}

is a closed ideal [14, p. 111] in A4 (K). Letting P, denote the intersection of the
closed unit ball of J* and the positive cone, we observe that P; is a copy of
K/F and is a simplex since J is a simplex space [14, 2.2].

Remarks. 1. The proof of Lemma 12 was provided by B. Hirsberg and T. B.
Andersen. The proof of Proposition 13 was suggested to me by M. Rogalski and
A. Goullet de Rugy.

2. The proof of Lemma 15 was provided by D. Gregory. Is it true that the
closed face Y11 is always split? Certainly the additional hypothesis of Lemma
16 is unnatural.

3. If w is a subset of the plane whose boundary consists of a finite number of
straight line segments, then w satisfies the hypothesis of Theorem 17. Hence
A (w) is a simplex space and 9.4 (w) = d,». Can we use this result to get at
other subsets of the plane? For example, what about the inside of a Jordon
curve or of a C! Jordon curve?

4. We conjecture that 4 () is always a simplex. This has been proved for
the Laplace equation by Boboc and Cornea [9, p. 521]. Essentially this proof
can be found in [3, Theorem 3.3]. There is no hope that the same method could
apply to our problem since balayage need not be an affine dilation for the
heat equation.

5. The equation 4.4 (w) = d,w is known to be false in general. A counter-
example was given by Kohn and Sieveking [10, § 5]. Essentially, this is their
example: let w be the setof x = (\(x), £(x)) in the plane such that 0 < A\ (x) < 1,
—1 < t(x) <0, and (x) # —1/n for all integers » = 1. Then the point
(1/2, 0) is regular but not Choquet.

6. I am grateful to the referee for correcting a flaw in the proof of Theorem 9.
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