
Proceedings of the Edinburgh Mathematical Society (2006) 49, 505–511 c©
DOI:10.1017/S0013091504001506 Printed in the United Kingdom

AN EXISTENCE THEOREM FOR QUASILINEAR SYSTEMS

HAIYAN WANG∗

Department of Mathematics, University of Central Arkansas,
Conway, AR 72035, USA

(Received 10 December 2004)

Abstract This paper deals with the existence of positive radial solutions for the quasilinear system
div(|∇ui|p−2∇ui) + λf i(u1, . . . , un) = 0, |x| < 1, ui(x) = 0, on |x| = 1, i = 1, . . . , n, p > 1, λ >

0, x ∈ R
N . The f i, i = 1, . . . , n, are continuous and non-negative functions. Let u = (u1, . . . , un),

‖u‖ =
∑n

i=1 |ui|,

f i
0 = lim

‖u‖→0

f i(u)
‖u‖p−1

,

i = 1, . . . , n, f = (f1, . . . , fn), f0 =
∑n

i=1 f i
0. We prove that the problem has a positive solution for

sufficiently small λ > 0 if f0 = ∞. Our methods employ a fixed-point theorem in a cone.
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1. Introduction

In this paper we consider the existence and non-existence of positive radial solutions for
the quasilinear elliptic system

div(|∇u1|p−2∇u1) + λf1(u1, . . . , un) = 0 in B,
...

div(|∇un|p−2∇un) + λfn(u1, . . . , un) = 0 in B,

ui = 0 on ∂B, i = 1, . . . , n,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.1)

where p > 1, B = {x ∈ R
N : |x| < 1, N � 2} and λ > 0 is a parameter.

When p = 2, (1.1) becomes

∆u1 + λf1(u1, . . . , un) = 0 in B,
...

∆un + λfn(u1, . . . , un) = 0 in B,

ui = 0 on ∂B, i = 1, . . . , n.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.2)
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When n = 1 and p = 2, (1.1) becomes

∆u + λf(u) = 0 in B,

u = 0 on ∂B.

}
(1.3)

System (1.3) has been the subject of extensive investigation over the past several
decades. Lions [5] discussed the existence and non-existence of positive solutions of (1.3)
in a general bounded regular domain in R

N . The results of [5] are also interpreted in
terms of bifurcation diagrams.

Joseph and Lundgren [4] determined the number of solutions for (1.3) in the case
f(u) = eu and f(u) = (1 + αu)β for α, β > 0. If 0 < β < 1, it is understood that
f(u) = (1 + αu)β (or uβ) is sublinear. If we define

f0 = lim
u→0+

f(u)
u

,

then f0 = ∞ for f(u) = (1 + αu)β (or uβ), 0 < β < 1. Note that

f0 = lim
u→0+

f(u)
u

= ∞

for f(u) = eu. Also f0 = ∞ can apply to the case in which f(0) = 0 (for instance,
f(u) =

√
u). For n-dimensional system (1.1), we define f0 in (1.4), which is a natural

extension of f0. As in the scalar case, f0 = ∞ can also apply to f(0) = 0, and thus
zero is a trivial solution in this case. We shall prove that (1.1) has a positive solution for
sufficiently small λ > 0 if f0 = ∞, regardless of the behaviour of f at ∞.

Our arguments are based on the fixed-point index. Many authors have used the fixed-
point index to prove the existence of positive solutions of differential equations (see, for
example, [1, 3, 6–8]). Variational methods have frequently been used for Hamiltonian
systems and gradient systems. However, there is apparently no possibility of using vari-
ational methods for the n-dimensional quasilinear elliptic system (1.1), and one has to
use topological methods.

We now turn to general assumptions made in this paper. Let R = (−∞,∞), R+ =
[0,∞) and

R
n
+ = R+ × · · · × R+︸ ︷︷ ︸

n

.

Also, for u = (u1, . . . , un) ∈ R
n
+, let ‖u‖ =

∑n
i=1 |ui|. We make the following assumption.

(H1) f i : R
n
+ → R+ is continuous, i = 1, . . . , n.

In order to state our results we introduce the notation

f(u) = (f1(u), . . . , fn(u)) = (f1(u1, . . . , un), . . . , fn(u1, . . . , un)),

f i
0 = lim

‖u‖→0

f i(u)
‖u‖p−1 ,
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where u = (u1, . . . , un) ∈ R
n
+,

f0 =
n∑

i=1

f i
0. (1.4)

Our main result is the following theorem.

Theorem 1.1. Assume that (H1) holds. If f0 = ∞, then (1.1) has a positive radial
solution for sufficient small λ > 0.

For the ordinary differential equation case (N = 1), Wang [8] proved that the exis-
tence, multiplicity and non-existence of positive solutions of (1.1) can be determined by
appropriate combinations of superlinearity and sublinearity of f(u) at zero and infinity.

2. Preliminaries

Let ϕ(t) = |t|p−2t; then, for t > 0, ϕ(t) = tp−1 and ϕ−1(t) = t1/(p−1). It is easy to see
that ϕ−1(σϕ(t)) = ϕ−1(σ)t for t > 0 and σ > 0.

A radial solution of (1.1) can be considered as a solution of the system

(rN−1ϕ(u′
1(r)))

′ + λrN−1f1(u) = 0, 0 < r < 1,
...

(rN−1ϕ(u′
n(r)))′ + λrN−1fn(u) = 0, 0 < r < 1,

u′(0) = u(1) = 0, i = 1, . . . , n.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.1)

We will deal with classical solutions of (2.1), namely a vector-valued function u =
(u1(r), . . . , un(r)) with ui ∈ C1[0, 1], and ϕ(u′

i) ∈ C1(0, 1), i = 1, . . . , n, which satis-
fies (2.1). A solution u(r) = (u1(r), . . . , un(r)) is positive if ui(r) � 0, i = 1, . . . , n, for
all r ∈ (0, 1) and there is at least one non-trivial component of u. In fact, it is easy to
prove that such a non-trivial component of u is positive on (0, 1).

The following well-known result of the fixed-point index is crucial in our arguments.

Lemma 2.1 (see [2, 3]). Let E be a Banach space equipped with a norm ‖ · ‖∗ and
let K be a cone in E. For r > 0, define Kr = {u ∈ K : ‖x‖∗ < r}, and ∂Kr = {u ∈
K : ‖x‖∗ = r}, which is the relative boundary of Kr with respect to K. Assume that
T : K̄r → K is completely continuous.

(i) If there exists a x0 ∈ K \ {0} such that

x − Tx �= tx0, for all x ∈ ∂Kr and t � 0,

then
i(T, Kr, K) = 0.

(ii) If ‖Tx‖∗ � ‖x‖∗ for x ∈ ∂Kr and Tx �= x for x ∈ ∂Kr, then

i(T, Kr, K) = 1.
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In order to apply Lemma 2.1 to (2.1), let X be the Banach space

C[0, 1] × · · · × C[0, 1]︸ ︷︷ ︸
n

and, for u = (u1, . . . , un) ∈ X, define its norm by

‖u‖∗ =
n∑

i=1

sup
t∈[0,1]

|ui(t)|.

Define K to be a cone in X by

K = {(u1, . . . , un) ∈ X : ui(t) � 0, t ∈ [0, 1], i = 1, . . . , n}.

Also, define Ωr, for r a positive number, by

Ωr = {u ∈ K : ‖u‖∗ < r}.

Note that ∂Ωr = {u ∈ K : ‖u‖∗ = r}.
Let Tλ : K → X be a map with components (T 1

λ , . . . , Tn
λ ). We define T i

λ, i = 1, . . . , n,
by

T i
λu(r) =

∫ 1

r

ϕ−1
(

1
sN−1

∫ s

0
τN−1λf i(u(τ)) dτ

)
ds, r ∈ [0, 1]. (2.2)

It is straightforward to verify that (2.1) is equivalent to the fixed-point equation

Tλu = u in K.

Lemma 2.2. Assume that (H1) holds. Then Tλ(K) ⊂ K and Tλ : K → K is compact
and continuous.

Proof. The proof of the lemma is standard, and is omitted. �

Lemma 2.3. Assume that (H1) holds. If u ∈ ∂Ωr, r > 0, then

‖Tλu‖∗ � nϕ−1(λ)ϕ−1(M̂r),

where
M̂r = 1 + max{f i(u) : u ∈ R

n
+ and ‖u‖ � r, i = 1, . . . , n} > 0.

Proof. From the definition of Tλ, for u ∈ ∂Ωr, we have

‖Tλu‖∗ =
n∑

i=1

sup
t∈[0,1]

|T i
λu(t)|

�
n∑

i=1

∫ 1

0
ϕ−1

[
1

sN−1

∫ s

0
τN−1λM̂r dτ

]
ds

=
n∑

i=1

∫ 1

0
ϕ−1

[
1

sN−1

∫ s

0
τN−1 dτϕ(ϕ−1(λM̂r))

]
ds

� nϕ−1[ϕ(ϕ−1(λM̂r))].
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Then the fact that ϕ−1(ϕ(t)) = t implies that

‖Tλu‖∗ � nϕ−1(λM̂r)

= nϕ−1(λ)ϕ−1(M̂r).

�

3. Proof of Theorem 1.1

Proof. Fix a number r2 > 0. Lemma 2.3 implies that there exists a λ0 > 0 such that

‖Tλu‖∗ < ‖u‖∗, for u ∈ ∂Ωr2 , 0 < λ < λ0.

Since f0 = ∞, there exists a component f i such that f i
0 = ∞. Therefore, there is an

0 < r1 < r2 such that
f i(u) � ϕ(η)ϕ(‖u‖) (3.1)

for u = (u1, . . . , un) ∈ R
n
+ and ‖u‖ � r1, where η > 0 is chosen so that

ηϕ−1(λ)
2

ϕ−1
(

1
N4N

)
� 1. (3.2)

If u − Tλu = 0 for some u ∈ ∂Ur1 , we find the desired solution of (1.1). Therefore, we
assume that

u − Tλu �= 0, for all u ∈ ∂Ur1 . (3.3)

We now claim that

u − Tλu �= tv, for all u ∈ ∂Ωr1 and t � 0, (3.4)

where v = (θ(r), . . . , θ(r)), and θ ∈ C[0, 1] such that 0 � θ(r) � 1 on [0, 1], θ(r) ≡ 1 on
[0, 1

4 ] and θ(r) ≡ 0 on [12 , 1]. Thus, v ∈ K \ {0}. If there exists u∗ = (u∗
1, . . . , u

∗
n) ∈ ∂Ωr1

and t0 � 0 such that u∗ − Tλu∗ = t0v, we will show that this leads to a contradiction.
Since (3.3) is true, we have t0 > 0. Since Tλ(K) ⊂ K, we find that u∗

i (r) � t0θ(r) for all
r ∈ [0, 1]. Let

t∗ = sup{t : u∗
i (r) � tθ(r) for all r ∈ [0, 1]}.

It follows that t0 � t∗ < ∞ and u∗
i (r) � t∗θ(r) for all r ∈ [0, 1]. Now, for r ∈ [0, 1], we

have

u∗
i (r) = T i

λu∗(r) + t0θ(r)

=
∫ 1

r

ϕ−1
(

1
sN−1

∫ s

0
τN−1λf i(u∗(τ)) dτ

)
ds + t0θ(r).

Note that
n∑

j=1

u∗
j (r) � r1 for r ∈ [0, 1].
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Inequality (3.1) implies that, for r ∈ [0, 1
2 ],

u∗
i (r) �

∫ 1

1/2
ϕ−1

(
1

sN−1

∫ s

0
τN−1λϕ(η)ϕ

( n∑
j=1

u∗
j (τ)

)
dτ

)
ds + t0θ(r)

�
∫ 1

1/2
ϕ−1

(∫ s

0
τN−1λϕ(η)ϕ(u∗

i (τ)) dτ

)
ds + t0θ(r)

� 1
2ϕ−1

(∫ 1/4

0
τN−1λϕ(η)ϕ(t∗θ(τ)) dτ

)
+ t0θ(r)

= 1
2ϕ−1

(∫ 1/4

0
τN−1 dτϕ(ϕ−1(λ))ϕ(η)ϕ(t∗)

)
+ t0θ(r)

= 1
2ϕ−1

(
1

N4N
ϕ(ϕ−1(λ)ηt∗)

)
+ t0θ(r).

Now, in view of the fact that ϕ−1(σϕ(t)) = ϕ−1(σ)t, we have, for r ∈ [0, 1
2 ],

u∗
i (r) � t∗

ηϕ−1(λ)
2

ϕ−1
(

1
N4N

)
+ t0θ(r)

� t∗ + t0θ(r)

� (t∗ + t0)θ(r),

and hence
u∗

i (r) � (t∗ + t0)θ(r), r ∈ [0, 1],

which is a contradiction to the definition of t∗. Thus, in view of Lemma 2.1,

i(Tλ, Ωr1 , K) = 0.

i(Tλ, Ωr2 , K) = 1.

It follows from the additivity of the fixed-point index that i(Tλ, Ωr2 \ Ω̄r1 , K) = 1.
Thus, Tλ has a fixed point in Ωr2 \ Ω̄r1 , which is the desired positive solution of (1.1). �
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