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ADDITIVITY OF THE PINTEGRAL
GEORGE CROSS

1. Introduction. It is known that the P*-integral as originally defined is not
additive on abutting intervals. This paper offers a slight modification in the
definition of the integral and develops necessary and sufficient conditions for
the integral to be additive.

The following example is given in [2]:

If # is odd, let

Flx) = {gcos 1/x, ;c;;é(())

and if # is even, let

o e 224

Define a function f by

PP (%), forx € (0,1/x]
J6) = {0, forx € [—i/m, 0],

where 1 = 2 if # is odd and 1 if # is even.

It is easy to see that f is P**l-integrable over each of the intervals [ —i/m, 0]
and [0, /7] but not over [ —1/=, 7/x]. The function f fails to be P*+'-integrable
over [ —1/w, 1/7] essentially because F(x) is not #-smooth at 0.

In the case n = 2 Skvorcov [6] obtained necessary and sufficient conditions
for the P%-integral of a given function to exist on an interval [«, ] where it is
known that the P2-integral of that function exists on the two abutting intervals
[a, ¢] and [c, b]:

THEOREM [6, Theorem 2]. Let the function f(x) be P2-integrable on the closed
intervals [a, c] and (¢, d] and have F1(x) and Fa(x), respectively, for its P2-integral
on these intervals. Then f(x) is P*-integrable on [a, b) if and only if there exists
a number a such that the function

a

5F1(x) + x—a), x€la,c]

F(x) =
1F2(x) +- = 5 (—10), x€leb]

c—a
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is smooth at the point c. If such a number « exists, then the function F(x) is the
Pantegral of f(x) on [a, b].

Smoothness of F at ¢, of course, imposes certain constraints on F (and on f)
in a neighbourhood of ¢. The proof of Skvorcov’s result depends on the
following:

LEMMA [6, Lemma 3]. Let f(x) be P*integrable on [a, b] and have F(x) for its
Pintegral. Then for any € > 0 there exists a majorant M (x) and a minorant
m(x) such that if R(x) = M(x) — F(x),r(x) = F(x) — m(x), we have

[Rx)| < ¢ [rix)] <e [RS(a)] <e [RID)] <k
r (@) < ¢ |r/ ()| < e

It is not known how to prove the lemma that would be required to obtain
the corresponding additivity result for the P*-integral [see the remark at the
end of this paper]. In the following we obtain necessary and sufficient condi-
tions that a function f be P™-integrable on an interval [a, b] phrased in terms
of a different kind of neighbourhood property of f(x).

2. Definitions. In the original definition of the P"-integral there is a difh-
culty with the condition B,_. [4, p. 150] since it is not linear on the set of major
and minor functions. As a result, the proof of Lemma 5.1 [4] fails since the dif-
ference Q(x) — ¢(x) need not satisfy the conditions of Theorem 4.2 [4].

It was shown in [3] that a simple modification of the definition of major
and minor functions avoids this difficulty and leads to a definition of an in-
tegral which is strong enough to solve the coefficient problem in trigonometric
series under the conditions imposed by James [5].

Let F(x) be a real-valued function defined on the bounded interval [a, b].
If there exist constants a;, @, . . . , «, which depend on x, only and not on &,
such that

T k
(1) PG+ h) = Fa) = 3 ak%-' o), ash—0,
= .

then ay, 1 £ k = 7, is called the Peano dertvative of order k of F at xy and is
denoted by F,(xo). If F possesses derivatives Fy(x,), 1 £k <7 — 1, we
write

r 7—1 k

(2.2) %'y,(F; X0, k) = F(xo 4+ h) — F(xo) — Z Z, Fao (x0).

By restricting & to be positive (or negative) in (2.1) we can define one-
sided Peano derivatives, which we write as F, (x9+) (or Fgy(x0-)).

If there exist constants B, 83, . .., B2, which depend on x,, and not on #,
such that
F(x h F(xo — h ;
(0+ )";‘ (xo ) Zﬁ2k(2k)]+ (hz), ash— 0,
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then By, 0 = k = ris called the de la Vallée Poussin derivative of order 2k of F

at x¢ and is denoted by D% F(x,).
If F has derivatives D?* F(x,), 0 < k <7 — 1, we write

2r

n . _ Fo+h) + Fao—h) =BT
(2 ), elr(ﬁ Xo, h) - 2 E (»Z_k_)T D F(xﬂ)
and define

D¥F(xy) = lim sup q,(F; xo, 1)
DY F(xo) = 11m inf 04, (F; x0, h).

All the above symbols are defined similarly for odd-numbered indices (see,
for example, (4, pp. 163—-164].

We denote the ordinary derivative of F(x) at xo of order £ by F® (x,).

The function F will be said to satisfy condition 4,* (n = 3) in [a, b] if it is
continuous in [a, b], if, for 1 < k = n — 2, each F,(x) exists and is finite in

(a, b) and if
(2.3) lim 0, (F;x, k) = 0,
h—0

for all x € (a, b) — E where E is countable.
When a function F satisfies condition (2.3) at a point x, F is said to be
n-smooth at x.

TaEOREM 2.1. If F satisfies condition Aop*(Aemir®) 10 [a, b], then Foyy(x) =
D™ F(x) (Faren (x) = D1 (x)) does mot have an ordinary discontinuity in
(a,b) for0 =k =m — 1.

Proof. This is Lemma 8.1 [4].

Note. Condition 4,,,* is a stronger form of James’ condition A, [4], in that
it replaces the requirement that D?* F(x) exist and be finitefor1 < k. <m — 1
by the same condition on the Peano derivatives. Theorem 2.1 then shows that
Aqy* also implies James’ condition Ba,_s, [4].

We shall make extensive use of the theory of n-convex functions in the
following. For the definition and properties of n-convex functions we refer the
reader to [1].

THEOREM 2.2. If F satisfies A,*, n = 3, in [a, b] and

@)D'F(x) 20, x€ (a,0) — E, |E| =0,
(b) D*F(x) > —o0, x € (a,b) — S, Sa scattered set,
(c) 11m sup k0, (F;x, h) = 0 = lim inf 46,(F; x, h), x € S,

h-0

then F is n-convex.
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Proof. In [1, Theorem 16] Bullen proves a similar result which implies this
theorem. In place of condition A,* he uses a condition C, which is just 4,
together with B,_,, but as was noted above these are implied by 4,*.

Definition 2.1. Let f(x) be a function defined in [a, b] and let 4 = {a;, 7 = 1,

2,...,n} be fixed points such that ¢ = ¢; < a2 < ... < a, = b. The func-
tions Q(x) and ¢(x) are called P"-major and minor functions (respectively) of
fx) over («;) = (ay, as, ..., ay), or with respect to the basis A, if

(2.4.1) Q(x) and ¢(x) satisfy condition 4,* in [a, b];
(24.2) Qay) =qlay) =0, 1=1,2,...,n;
(24.3) D"Q(x) = f(x) = D'q(x), «x¢€ [a,b] = E, |E| = 0;
(2.44) D"Q(x) # —oo,D'q(x) # 4+, x € [a,b] — S, Sascattered set;
(2.4.5) (i) lim sup 46,(Q; x, k) = 0 = lim inf #6,(Q; x, k), x € S

h->0 h0

(i) lim sup k6,(g; x, k) = 0 = lim inf #6,(q; x, k), x € S.
N hs0
Levva 2.1, For every pair Q(x) and q(x) the difference Q(x) — g(x) s

#n-convex 1n |a, b].

Proof. The proof follows from Theorem 2.2 above.

Definition 2.2. For each major and minor function of f(x) over («;)%—y = 4
the functions defined by

Q*(x) = (=1D)7Q(x), ¢*(x) = (=1)7g(x), ar = x <

are called associated major and minor functions, respectively, of f(x) over (a,)
or on [a, b] with respect to the basis A.

The proofs of the following lemmas and theorems are given in [3] and [4].

LEMMA 2.2, For every pair of associated major and minor functions of f(x)
over (a;),

Q*(x) —q*(x) 20
for all x in [a, D).

Definition 2.3. Let ¢ be a point in (a1, a,) such thatc¢ # a, 1 =1,...,n. If
for every € > 0 there is a pair Q(x), ¢(x) such that

(2.5) Q) — qlo)] <,
then f(x) is said to be P"-integrable over (a,, c).

LEMMA 2.3. If the inequality (2.5) holds, then
10(x) — qlx)| < ek

for all x tn (a1, a,] where k is independent of x.
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THEOREM 2.3. If f(x) 1s Pr-integrable over (u;; ), there is a function F*(x)
which 1s the inf of all associated major functions of f (x) over (a;) and the sup of all
associated minor functions.

Definition 2.4. If f(x) is P"-integrable over («; ¢) and if F*(x) is the function
of Theorem 2.3, define FF(x) by

F*(x) = (=1)"F(x), a, £x < a1

If ay < ¢ < a4, the P-integral of f(x) over (ay; ¢) is defined to be (—1)°F(c).
Since (—1)°F(a;) = F(a;) = 0, the integral is defined to be zero if ¢ = a,
1=1,2,...,n We write

(—1)°F(c) = f( ) F(0)dot.

THEOREM 2.4. If f(x) is P"-integrable over (ay; c) it is also P"-integrable over
(a;; x) for every x in (a1, a,). If F(x) is the function of Definition 2.4 then for
ar = x < Gy,

(=1)F(x) = f(: )f(t)dnt.

In view of Theorem 2.4, if f(x) is integrable over (a;; ¢) we shall say it is
integrable on [a, b] with respect to the basis 4. We shall refer to the function
F(x) of Definition 2.4 as the associated (P"-)integral of f over (a;; x) (or with
respect to the basis 4).

THEOREM 2.5. If f(x) is P -integrable over (a,; x), it is also P"-integrable over
(b;; x), where a1 < by < ... <b, £ a, In addition if F(x) is the associated
Prantegral of f over (a;; x), and by £ x < by, then

@26) (-1’ f( @ = F@) = 3 NG 0)FG),
where

Ax; b)) = gj (x — b))/ (b; — bx)

1s a polynomial of degree n — 1 at most.

Because of Theorem 2.5 we shall sometimes use the phrase “f(x) is P"-
integrable over [a, b]”’ without explicit reference to a basis (a;).

COROLLARY. If f(x) 1is P -integrable over [a, b], Q(x), q(x) are P*-major and
minor functions of f(x) and F(x) s the associated P -imtegral of f(x), then
Q(x) — F(x) and F(x) — q(x) are n-convex.

3. Some preliminary considerations. We assume throughout the re-

mainder of the paper that # is even; obvious modifications must be made in
the notation to cover the case when # is odd.
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THEOREM 3.1. The function F(x) of Definition 2.4 possesses derivatives
Pﬂ(k)(x)y 1 é k é n — 21 X € (Uy b)

Proof. 1f Q(x) denotes a P"-major function of f(x) over (a;) then Q(x) —
F(x) is n-convex in [a, b]. By Theorem 7 [1], we have (Q(x) — F(x))® =
(Q(x) — F(x))g exists (1 £k =n — 2, x € [¢, b]) and since by definition
Quy(x) exists (1 £k =n—2, x € (¢, b)), the statement in the theorem
follows.

Tueorem 3.2. (1, Corollary 8]. If F is n-convex in |a, b], |F| £ K then
AK
0 < . .
I[(“(?C){ = min {(b _ x)lv’ (x _ a)/x} y

x € (a,)), where A is a constant independent of k, I and x, and where, if
k=n — 1, the derivative is to be interpreted as max(|Fo,—y (x+)|, | Foen (x—)]).

0k=n-—1,

THEOREM 3.3. The function F(x) of Definition 2.4 has the property that
(3.1)  limsup 48,(F;x, h) = 0 = lim inf 46, (F; x, h), x € (a,b).
h0 "0

Proof. Corresponding to arbitrary e > 0 there exists a P”-major function
Q(x) and a P"-minor function ¢(x) such that the n-convex functions

R(x) = Qx) — F(x), r(x) = Flx) — q(x)
satisfy [R(x)| < ¢, [r(x)] < ¢ x € [«, b]. The major and minor functions have
the property further that D"Q(x) > —oo and D"q(x) < 4+, x € [¢, ] — S,
where S is a scattered set, while Q(x) and ¢(x) satisfy 2.4.5 in S. Thus for each
fixed x € [«, b] — S, there exist finite numbers C;(x) and C.(x) such that
h6,(Q; x, h) > h Ci(x)
hen((]; X, h) < hC?(x)
for all sufficiently small positive 4. But, for x € (a, ),
hon(ley X, h) = (n//‘z){‘)lrz—l(]{; o h) - ’Yn—l(je; X, _h)}
and
h(),,(r; X, h) = (11,/2){7"‘1(7'; X, h) - 'Yn—l(r; X, _h)}v
and since R(x) and r(x) are n-convex, it follows that

lim hgn(le, X, ]l) = (n/ZZ){R(,,_D (’C+) - .R(,,_l) (V—)} = H(n, .‘C),

ho0+
and

lim A, (r; x, ) = (n/2){ra-v (x+) — r-n@=)} = h(n, x).

ho 0+

We have further, for each fixed x, the inequality (Theorem 3.2).

max HR(n~1)(x+)Ir ‘R(n—l) (x—)], }7(n-1)(x+)lv |”(n—1>(x—)i}
(3.2) < Ae
“min {(b —x)" ' (x — a)""}
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where 4 is a constant independent of ¢, R(x), r(x), and x. Then since

(3.3)  h8,(q;x,h) + hO,(r;x, h) = h0,(F;x, k) = h0,(Q;x,h) — ho,(R;x,h),
we have

(3.4)  hColx) —hb,(r; %, h) > W, F; x, h) > hCi(x) — ho,(R; x, ),

for all sufficiently small positive k. Similar inequalities hold for negative k& and,
since e is arbitrary in (3.4), it follows that

ling ho,(F;x,h) =0, x€ [a,b] — S

=Y
If x € S, then
lim sup £6,(F; x, k) = lim sup 76,(Q; x, k) — H(n, x)
h=0 h—0
= —H(?’L, x)
and
lim inf #6,(F; x, k) < lim inf 26,(q; x, k) + h(n, x)

h-0 h->0
<0+ hn,x),
and the result follows because of (3.2).
Now suppose f is a function defined on [a, b], and let ¢« < ©# < ¢ < v < b. If
fis P*-integrable on [«¢, v] with respect to some basis, then f is P"-integrable on
[a, v] with respect to the basis

Ai} = (C()y Cay C3y v v vy Cp—1, Cn) = ((I’v C2y v v vy Cp—1y v)y
(Theorem 2.5) where, for convenience and without affecting the generality of
what we prove, we may assume that (u, ¢, ¢3, ..., 41, ¥) is a partition of

(%, v] into subintervals of equal length, # < ¢sand ¢,2 < ¢ < ¢oyn+1- Likewise
if f is P"-integrable on [u, b] with respect to some basis, then it is P"-integral
on [u, b] with respect to the basis

Ay = (c1, €0y ooy Cne1y &) = (1, Coy €3y . .., Cye1, D).
Now if f is P*-integrable on [«, v] and on [«, b] then f is P"-integrable on the
interval [u, v] with respect to the basis
As = (c1, ¢, ... Cpe1y C) = (U, Coy v o vy Cue1, V).
Also f is P™-integrable on the interval [a, ¢] with respect to the basis
Ar = (co,dr, coydoy Cay o v vy By, Cupay dy2) = {a)
when ¢ =0 <di <c2<de < ... < dps1 < Cp2<dys = ¢, and on the
interval [¢, 0] with respect to the basis
4. = (dn/ZY Coyn+1y Buj21, Cayn42r + -+« s Cne1y Gpe1, 0) = {04}
where
¢ =dpyr < Cntr < dnir < ..o < G < ey < D
On the other hand if f is P*-integrable on {a, b] with respect to the basis
(@, cay €3y ..oy Cuery, b) = (I3, Iy, . . ., 1,) then it is P™integrable on [«, b] with
respect to any basis.
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For an arbitary set 4 = {xy, X1, ..., %,} of distinct numbers we define a
function X\ by

MNA;xx) =[] (’“ 1’”—1) .

i=r Xy — Xy

If F3(x), Fi(x) and F;(x) denote the associated integrals of f over [«, v],
[#, b] and [u, v] with respect to the bases 43, A4, and 43, respectively, then for
x € [u, v], we have (Theorem 2.5)

(3.5) Fy(x) = Fs(x) 4+ NAs; x, u) Fs(u),
and
(3.6)  Fy(x) = Fs(x) + Nds; x, 0) Fu(v).

Let F be defined on [«, b] as follows:

Pi) + A 0| £ + (220 R |

(v - “) (u —b)

XI: — ﬁ_"i x € [a, 9],
1 b

(37) ]“(‘\") (U IL) (( )

I

Fi(x) + Ndy; x, zt)[ﬁ (u) + (-————4)1' (v):l

_ {F;;(x) + Mdy; %, 0Ky,
Fy(x) + NAy; x, 1)Ko,

We must show that /" is well-defined on |u, #]. Since f is integrable on [u, v]
with respect to the basis 4; we have from (3.5), (3.6) and (3.7),

(38)  Fle) = 1O+ N v ) FaGo + M 0, 0) K
' )\F,-,(x) + N5 x,0)Fi(@) + NAyx,u)Ky, ifx € [u,v].

Since #t —¢; =0 — iy, 1 = 2,3,...,n — 1, it is easy to see that

MNAs;x,0)Fs(w) + NAy; x, u)Ks
= ] E TR0 <” =0y + (22 o |

(0 — @@;;b_)]
X |:(v —u)(a — b) }

w0 o528 =9+ ()]
(. — 0)(v — a)
X [@1—5‘(0 — b):l}

= Nds;x, u)F3(u) + N(A4s; x,0)K,,

(x — ca)(x —c3) ... (x — Cpey)
=)@ —c3)...@— Ca1)

where g(x) =
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Lemma 3.1. If f 1s antegrable on [a, v] and on [u, b] and v < ¢ < v, then
corresponding to € > 0, there exists a major function Qv(x) on [a, ¢] and « major
Sfunction Q2(x) on [c, b] such that if

Ri(x) = Qi(x) — Fi(x), Ra(x) = Qulx) — Faolx),

where I'1(x) and Fo(x) denote the associated integrals of f over [a, c] and [c, b],
respectively, then

(3.10) |Ri(x)| < e [Re(x)] <&, [Rin(c—)] < & [Roylc+)| < e

k=1,2,...,(n —1). Minor functions q:(x), q2(x) exist satisfying similar
inequalities.
Proof. Let Q3(x), Q:(x) be major functions on [¢, v] and [u, b] respectively.
Then
Qilx) = Qs(x) — Zl ANy x, a)Qslay),
and

Q:(x) = Qulx) — Zl A Ao %, 04)Qu(by)
are major functions of f on [a, ¢] and [¢, b] respectively. Now if

Ri(x) = Qilx) — Fi(x), x € [a, c],
Ry(x) = Q2(x) — Falx), x € [c, b],

we may write

Ra() = Q) = A = 2 Adiix a)(Qslad) — Fuled)

= Ry(x) — 2 MAyx, a)Rs(as), x € a,cl,
i=1

and

Ry(®) = Qu) = Fulo) = 2 A, 000 — Fu(b)

n

= R,(x) — Z NAg;x,b)Ry(by), x € [c,dl.

Since R;(x) and R,(x) are n-convex on [a, v] and [u, b], respectively, then
Riuy(€); Ragy(c), 1 £k £ m — 2, exist, as do Ryp—n(c—) and Ry (c+).
It follows that Ry (c—) and Rapy(c+) exist for 1 < k < n — 1. Moreover
by Theorem 3.2 we may choose R;(x) and Ri(x) so that all the one-sided
derivatives of R;(x) and R, (x) satisfy the inequalities (3.10).

4. The main result. We are now ready to state and prove our theorem on
the additivity of the P"-integral.
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THEOREM 4.1. The function f is P'-integrable on [a, b] if and only if f s
Pr-integrable on [a, v] and on [u, b] where a < u < v < b. Moreover in the
notation of the preceding section we have for Iy < x < lgy1, s =1,2,...,n—1,

B S Fy(x) + Nds; x,9)Kiy, a =x=v
o liﬂ;(x) + NAyx, u)Keyy, u = x =20,

where F(x) denotes the associated integral of f on [a, b] with respect to the basis
(COy Coy v vy Cy—1,y Cn/) = (ll) l2y LR yln*lv ln)

1) F(x)

Proof. The necessity of the condition follows from Theorem 2.5, and verifi-
cation of (4.1) is a direct result of straightforward calculations. Indeed if F(x)
denotes the associated P"-integral of f over [¢, b] then for [, £ x < [y,

\ L . . <
“42)  Flx) = {P‘a(x? + NAs;x,0)F@), a = x=v
Folx) + NAy;x,u)Fu), u<x=b
Now substituting x = » in both equations of (4.2) and equating we obtain

(since F3(v) = 0, (43;0,v) = 1)

Fi@) = Flv) — ANdy; 0, 0)F(u) = Flv) — (%}%) Fu).
Solving for F(v) and substituting in the first equation of (4.2) gives

. . L — . — b
43)  F) = Fa) + (;;5—_—»3)[1«4@) + (2’7:—5) F<u>] L aSy =

Substituting x = # in (4.3) yields

Fu) = Fs(u) + (EL—E%)[M(W) + (%}‘%) F(lt)jlv

?

from which we obtain

A similar calculation may be made involving K.

To prove sufficiency we note first that for # < ¢ < v and ¢ > 0 there exists
by Lemma 3.1 a major function Q,(x) with respect to the basis 4, on the in-
terval [a, ¢] and a major function Q:(x) with respect to the basis 4, on the
interval [¢, b] such that the functions R;(x) = Q:(x) — Fi(x) and R.(x) =
Q2(x) — Fao(x) satisfy the following inequalities:

IRi(x)] <& [Ra(x)| <&, [Rigylc—)| < e [Roglc+)| < e

k=1,2 ...,n— 1. Minor functions ¢;(x), g»(x) satisfying analogous in-
equalities may be defined similarly,
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Now define the functions R and 7 by
n/2
‘Rl(x) + Zl MNAx,dj)a; = Ri(x) + Ux), a =«x
=

(44) Rx) = "1
1R2(x) + 3 Ao x,d)a; = Ro(x) + Vix), ¢ <x

j=n/2

[IA
o

<

fri) + 3 Aind)s, = n@) + 1), asrso
45)  rlx) = E
lm(x) + D Ndoix,d)B; = ra(x) +olx), ¢ Sx =0,
J=n/2

where the constants «; and §; are to be determined so that R, (x), 7y (x)
existatc, k=1,2,..., (n — 2) and R(x) and r(x) are n-smooth at c. There
are thus (z — 1) conditions to determine (# — 1) constants in each case (of
course where the constants exist we will have the relations a; = R(d;) and
B; = r(d,)).

From this point on we shall restrict our discussion to the function R(x) —
analogous statements and proofs hold for 7 (x).

The first step in showing that the constants a; with the required properties
exist will be to show that the (n — 1) conditions mentioned above together
with properties of Ri(x) and R.(x) are equivalent to the condition that
R (c) exist.

The condition of #-smoothness for R(x) at x = ¢ is given by

o L IRe+R) +Re—h) &K ]
(4.6) = [ 5 k; el D*R(c) | =0, ash— 0.
Assuming the existence of R, (c), k = 1,2,..., (n — 2), the left hand side of

(4.6) may be re-written as

1 [R(c +h) — R(c) — zl %“, R<k>(5+)]

20"
- s [R@ -1 - RO - 3 G R(k)(C—):,
= zh];l—l I:RZ(C 4+ 1) — Rs(c) — :2 %R2(k> (C—|—):|

1 n—2 k )
+ %TT[V(C +h) — Vi) — k; 7;—, V(k)(C-l'):I

1 n—2 (’"h)k
-~ S [Rl(c —h) = Rile) = 2 Rwo(c*)]

1 .2 (=
—2—(_—h)n‘:1|:U(C+h) - Ule) — ’; ﬁk!) U(k)(c")]-

Since the one sided derivatives of the polynomials U(x) and V(x) always
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exist and since by construction Rag_1(c+) and Rj_1 (c—) exist, it follows
that if Ryy(c), k=1, 2,..., (n — 2) exist, n-smoothness of R(x) at ¢ is
equivalent to the existence and equality of R, (c+) and R¢,—1 (c—).

The next step is to obtain (# — 1) equations in the (z — 1) unknowns, «;,
by differentiating equation (4.4) (# — 1) — times and setting Ryy(c—) =
Ryy(e+), k=1,2,...,n — 1. This yields (where for simplicity in notation
we write Ny (41 x, d)|=c = quy(d;) and N (42; x, dj)'x:c = hw(d;),
i=1,2...,n—1l,andk=1,2,...,n — 1),

n/2 n—1
Z‘ aigm (d;) — _leajhm(dj) = Raw (c+) — Ruw (c—) = bi
J= =n
(n/2)—1 n—1
(g (dns2) — hao (dus2) oy + Z‘l aigw (d;) — _ (;Hlajh(k)(dj) = bk,
J= J={n

k=1,2,...,n—1.

To show that these (n — 1) equations have a unique solution we must show
that the corresponding determinant is not zero, i.e., the determinant which has
as its 7th column the following

gy (du2) — hepy(dy2)
4 (dy1)

2o (dyy2-1)
b (djovr)

b (dy—r),

for:=1,2,...,n — 1. But this is clearly equivalent to the condition that
the polynomials

(47) )\(Al;x,C) - )\(A2;x,5)y ’\(A2;xvdj)rdj>cr X(Al;xydj)’d.f<c'

be linearly independent on [«, b].
If the polynomials (4.7) were linearly dependent there would exist constants
y,1=20,1,2,..., (m— 1), such that

(n/2)—1

(4.8)  vyor(d1;x, ¢) + Zl YAy x, dy)
&

n—1
= 70>\(A2;x1 C) + Z 'Yj>‘(A2;xy dj)r X E [at b]y

i=(+1

where each side of the expression is a polynomial of degree n — 1 at most. But
then (4.8) may be rewritten (in the notation introduced in the previous section)

as:
G=ame [ =)= G-mne 1 @-c) v€lab)
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where m(x) and n(x) are polynomials of degree at most (#/2) — 1. Thus the
left hand side has /2 zeros and the right hand side has 1/2 zeros, all distinct.
This would imply that the left hand side which is a polynomial of degree at
most (n — 1), has at least n zeros, an impossibility. It follows that the poly-
nomials (4.7) are linearly independent.

This shows that the constants «; = R(d;) may be determined so that
R(x) is n-smooth at ¢ and so that the unsymmetric derivatives up to order
(n — 2) exist and are finite at ¢. Moreover

49) R@) = Z A (Ra (c4) — Ruw (c—)),

and

(4.10) (@) = Z A (rag () — 710 e=)),

for each d;, where the 4,7 depends on {d;} but not on f, Ry, Rs, 1, or 7».
It is clear therefore that the original choice of R;(x) and R»(x), may be made
so that

(4.11) |R(x)] < ¢/2 and |r(x)| < ¢/2, xe€la, ]

Now we claim that Q(x) = F(x) 4+ R(x) is a P*-major function for f(x) on
[a, b] with respect to the basis (a, ¢2, €3y . .., C4e1, D).

Both F(x) and R(x) obviously satisfy conditions (2.4.2) of Definition 2.1.
That they are continuous and possess derivatives Fy(x), R.(x),1 £ k < n — 2,
follows from their definitions (cf. equations (3.7) and (4.4)). Moreover since
we may write

JFi(x) + Ri(x) + 01(x) = Qu(x) + 01(x), x € [a, ]
(12) 000 = py(a) + Rele) + 0ax) = Q) + 020), € le, 6]

where 0;(x) and ©O.(x) are polynomials of degree at most (n — 1), Q(x)
inherits the required n-smoothness property of condition (2.4.1) from Q:(x)
and Q. (x).

It may be shown also from (4.12) that Q(x) satisfies conditions (2.4.3) and
(2.4.4) of Definition 2.1. Since F(x) satisfies condition (2.4.5) at x = ¢ [cf.
(3.7) and Theorem 3.3] and R(x), by definition, is #-smooth at x = ¢, it
follows that Q(x) satisfies condition (2.4.5) (z).

Similarly ¢(x) = F(x) — r(x) can be shown to be a P"minor function for
f(x) on [a, b] with respect to the basis (a, ¢, ¢3, . . . ,Cue1, D).

Because of (4.11) we have furthermore that

I0(x) — g(x)] = [R(x) —r(x)| < ¢ =€ [qa,0],

which completes the proof that f(x) is P*-integrable on [a, b].
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Remark. The lemma corresponding to Skvorcov's Lemma 3 referred to in
the introduction of this paper would say that if f is integrable on [«, ¢] and on
[c, b] then functions R;(x) and R,(x) (as defined in Lemma 3.1) exist satisfying
the inequalities (3.10). If such functions exist for integrable f our methods can
be used to prove the result for P*-integrals corresponding to Theorem 2 [6]:

Let f(x) be P"-integrable over (a;; x) with associated integral Fi(x) and over
(by; x) with associated integral Fo(x). Then f(x) 1s P'-integrable on [a, b] if and

only if there exist constants {6,},7 = 1,2,...,n — 1 such that the function
n/2
51*‘1(90) + Z NAyx,dy)0;, o Sx =,
=1

IA

]'(x) = n—1
11*‘2(90) + D MNAoyx,d)8;, c<x=b
2

j=n/

is n-smooth and possesses Peano unsymmetric derivatives up to order n — 2 at
x = c. If such numbers exist then the function F(x) is the associated P"-integral
of f(x) over (I3, Iy, ..., 1,).
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