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ADDITIVITY OF THE P -INTEGRAL 

GEORGE CROSS 

1. I n t r o d u c t i o n . I t is known tha t the PMntegra l as originally defined is not 
addit ive on abut t ing intervals. This paper offers a slight modification in the 
definition of the integral and develops necessary and sufficient conditions for 
the integral to be additive. 

T h e following example is given in [2] : 
If n is odd, let 

w v jx cos 1/x, x 9e 0 
F(X) = to. x = 0, 

and if n is even, let 

\x sin 1/x, x 7^ 0 

^ - ' o , * = o. 

Define a function / by 

> + 1 ) ( x ) , lorxe (0,i/ir] (F(1 
f(x) = io for x G [ — i/ir, 0], 

where i = 2 if n is odd and 1 if n is even. 
I t is easy to see t h a t / is Pw + 1-integrable over each of the intervals [ — i/r, 0] 

and [0, i/ir] bu t not over [ — i/ir, i/ir]. The func t ion / fails to be Pw + 1- integrable 
over [ — i/ir, i/w] essentially because F(x) is not ^-smooth a t 0. 

In the case n = 2 Skvorcov [6] obtained necessary and sufficient conditions 
for the P2- integral of a given function to exist on an interval [a, b] where it is 
known tha t the P2- integral of tha t function exists on the two abut t ing intervals 
[a, c] and [c, b]: 

T H E O R E M [6, Theorem 2]. Let the function f (x) be P2-integrable on the closed 
intervals [a, c] and [c, d] and have Fi(x) and F2(x), respectively, for its P2-integral 
on these intervals. Then f(x) is P2-integrable on [a, b] if and only if there exists 
a number a such that the function 

F(x) = 
\Fi(X) H —— (x — a), x G [a, c] 

\ 
F2(x) H (x - 6), x G [c, b] 
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784 GEORGE CROSS 

is smooth at the point c. If such a number a exists, then the function F(x) is the 
P2-integral of f(x) on [a, b]. 

Smoothness of F at c, of course, imposes certain constraints on F (and o n / ) 
in a neighbourhood of c. The proof of Skvorcov's result depends on the 
following: 

LEMMA [6, Lemma 3]. Letf(x) be P2-integrable on [a, b] and have F(x) for its 
P2-integral. Then for any e > 0 there exists a majorant M(x) and a minorant 
m(x) such that if R(x) = M(x) — F(x),r(x) = F(x) — m(x), we have 

\R(x)\ < e, \r(x)\ < e, \R+'(a)\ < e, \RJ(b)\ < e, 
\r+

f{a)\ < e, \rJ(b)\ < e. 

It is not known how to prove the lemma that would be required to obtain 
the corresponding additivity result for the Pw-integral [see the remark at the 
end of this paper]. In the following we obtain necessary and sufficient condi­
tions that a function/ be Pw-integrable on an interval [a, b] phrased in terms 
of a different kind of neighbourhood property of f(x). 

2. Definitions. In the original definition of the P^-integral there is a diffi­
culty with the condition Bn_2 [4, p. 150] since it is not linear on the set of major 
and minor functions. As a result, the proof of Lemma 5.1 [4] fails since the dif­
ference Q(x) — q(x) need not satisfy the conditions of Theorem 4.2 [4]. 

It was shown in [3] that a simple modification of the definition of major 
and minor functions avoids this difficulty and leads to a definition of an in­
tegral which is strong enough to solve the coefficient problem in trigonometric 
series under the conditions imposed by James [5]. 

Let F(x) be a real-valued function defined on the bounded interval [a, b]. 
If there exist constants «i, a2, . . . , ar which depend on x0 only and not on h, 
such that 

(2.1) F(x0 + h) - F(pco) = Z ak~ + o(hr), as h -> 0, 
k= 1 ^ • 

then ak1 1 ^ k ^ r, is called the Peano derivative of order k of F at x0 and is 
denoted by F(k)(x0). If F possesses derivatives F(k)(x0), 1 ^ k ^ r — 1, we 
write 

(2.2) \ yr(F; xo, h) = F(x0 + h) - F(x0) - £ % F«,(*.). r. A.=1 #! 

By restricting h to be positive (or negative) in (2.1) we can define one­
sided Peano derivatives, which we write as F(k)(x0+) (or F(k)(x0~)). 

If there exist constants 0O, ft2, . . . , p2r which depend on x0, and not on h, 
such that 

F(x0 + h) + F(x0 -h) ^ h2k , (h2r, , n 
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then 02*, 0 ^ k ^ r is called /fte ^ /a Vallée Poussin derivative of order 2k of F 
at x0 and is denoted by Z)2* F(x0). 

If F has derivatives Du F(x0), 0 ^ k ^ r — 1, we write 

and define 

D2rF(xo) = lim sup 02rCF; ffo, ft) 

^ rF(x0) = lim inf B-iT{F\ #o, ft). 

All the above symbols are defined similarly for odd-numbered indices (see, 
for example, [4, pp. 163-164]. 

We denote the ordinary derivative of F(x) at x0 of order k by F{k)(x0). 
The function F will be said to satisfy condition An* (n ^ 3) in [a, b] if it is 

continuous in [a, b], if, for 1 ^ k ^ n — 2, each F{1c)(x) exists and is finite in 
(a, 6) and if 

(2.3) lim hdn(F)x,h) = 0, 

for all x £ (a, b) — E where E is countable. 
When a function F satisfies condition (2.3) at a point x, F is said to be 

n-smooth at x. 

THEOREM 2.1. 7/ F satisfies condition A2m*(A2m+i*) ^ [#» &], ^ w F(2k)(x) = 
D2kF(x) (77(2A;+i) (x) = D2k+l (x)) does wo/ fta^ aw ordinary discontinuity in 
(a, b) for 0 ^ k ^ m - 1. 

Proof. This is Lemma 8.1 [4]. 

Note. Condition A2m* is a stronger form of James' condition A 2m, [4], in that 
it replaces the requirement that D2fc F(x) exist and be finite for 1 ^ k ^ m — 1 
by the same condition on the Peano derivatives. Theorem 2.1 then shows that 
A2m* also implies James' condition B2m-2, [4]. 

We shall make extensive use of the theory of w-convex functions in the 
following. For the definition and properties of w-convex functions we refer the 
reader to [1]. 

THEOREM 2.2. If F satisfies An*, n ^ 3, in [a, b] and 

(a) DnF(x) è 0, x € (a, b) - E, \E\ = 0, 
(b) DnF(x) > -co , x £ (a, b) — S, S a scattered set, 
(c) lim sup hdn(F; x, ft) ^ 0 ^ lim inf hdn(F; x, ft), x £ S, 

/ftew F w n-convex. 
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Proof. In [1, Theorem 16] Bullen proves a similar result which implies this 
theorem. In place of condition An* he uses a condition Cn which is jus t An 

together with Bn_2, bu t as was noted above these are implied by An*. 

Definition 2.1. L e t / ( x ) be a function defined in [a, b] and let A = {ai}i = 1, 
2, . . . , n) be fixed points such t h a t a = ci\ < a2 < . . . < an = b. T h e func­
tions Q(x) and q(x) are called Pn-major and minor functions (respectively) of 
f(x) over (di) = (ai, a2, . . . , a„), or w/fe respect to the basis A, if 

(2.4.1) <2(x) and q(x) satisfy condition An* in [a, b); 

(2.4.2) Q(a<) = g(a<) = 0 , i = 1 , 2 , . . . , » ; 

(2.4.3) £n<2(*) ^ / ( x ) ^ 5 n g(* ) , x G [a, 6] » £ , \E\ = 0; 

(2.4.4) Z)n<2(x) ^ - o o , 5 n g(x) ^ +oo , x 6 [a, 6] - 5 , 5 a scattered set; 

(2.4.5) (i) lim sup hdn(Q; x, h) ^ 0 ^ lim inf A0n((?; *, A), x G 5 

(ii) lim sup hdn(q; x, /z) ^ 0 ^ lim inf hdn(q\ x, A), x G S. 

LEMMA 2.1. For every pair Q(x) and q(x) the difference Q(x) — q(x) is 
n-convex in [a, b]. 

Proof. T h e proof follows from Theorem 2.2 above. 

Definition 2.2. For each major and minor function of f(x) over (a t)
n
i=i = A 

the functions defined by 

Q*(x) = ( - i r < 2 ( x ) , q*(x) = ( - l ) r ç ( x ) , ar è x < a r + i 

are called associated major and minor functions, respectively, of f{x) over (a<) 
or on [a, b] with respect to the basis A. 

The proofs of the following lemmas and theorems are given in [3] and [4]. 

LEMMA 2.2. For every pair of associated major and minor functions of f(x) 
over (ai), 

Q*(x) - q*(x) ^ 0 

for all x in [a, b}. 

Definition 2.3. Let c be a point in (cii, an) such t h a t c ^ a u i — 1, . . . , » . If 
for every e > 0 there is a pair Q(x), qfx) such tha t 

(2.5) |0(c) - q(c)\< e, 

t h e n / ( x ) is said to be Pn-integrable over (au c).. 

LEMMA 2.3. If the inequality (2.5) holds, then 

|<2(x) - q(x)\ < ek 

for all x in [a-i, an] where k is independent of x. 
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THEOREM 2.3. If f(x) is Pn-integrable over (at\ c), there is a function F*(x) 
which is the inf of all associated major functions off(x) over (at) and the sup of all 
associated minor functions. 

Definition 2.4. lif(x) is Pn-integrable over (at; c) and if F*(x) is the function 
of Theorem 2.3, define F(x) by 

F*(x) = ( —l) rP(x), ar S x < ar+i. 

H as < c < as+i, the Pw-integral oif(x) over (au c) is defined to be ( — l)sF(c). 
Since ( — l)sF(cii) = F (at) = 0, the integral is defined to be zero if c = ai} 

i = 1, 2, . . . , n. We write 

(-l)sF(c) = f f(t)dnL 
J (ai) 

THEOREM 2.4. If f(x) is Pn-integrable over (at; c) it is also Pn-integrable over 
(at; x) for every x in [ai, an]. If F(x) is the function of Definition 2.4 then for 
ar ^ x < ar+u 

(-i)rF(x) = P f(t)dnt. 
J (a,) 

In view of Theorem 2.4, if f(x) is integrable over (au c) we shall say it is 
integrable on [a, b] with respect to the basis A. We shall refer to the function 
F(x) of Definition 2.4 as the associated (Pn-)integral of/ over (at\ x) (or with 
respect to the basis A). 

THEOREM 2.5. If f(x) is Pn-integrable over (a^ x), it is also Pn-integrable over 
(bj\ x), where ci\ ^ b\ < . . . < bn ^ an. In addition if F(x) is the associated 
Pn-integral of f over (af; x), and bs ^ x < bs+i then 

(2.6) ( -1 )* I j(x)dnx = F(x) - é X(x;^-)P(^), 
J (bj) ; = 1 

where 

\(x; bj) = I I (% ~ bk)/(bj - bk) 

is a polynomial of degree n — 1 at most. 

Because of Theorem 2.5 we shall sometimes use the phrase uf(x) is Pn-
integrable over [a, b]" without explicit reference to a basis (at). 

COROLLARY. If f(x) is Pn-integrable over [a, 6], Q(x), a(x) are Pn-major and 
minor functions of f(x) and F(x) is the associated Pn-integral of f(x), then 
Q(x) — F(x) and F(x) — q(x) are n-convex. 

3. Some preliminary considerations. We assume throughout the re­
mainder of the paper that n is even; obvious modifications must be made in 
the notation to cover the case when n is odd. 
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T H E O R E M 3.1. The function F(x) of Definition 2.4 possesses derivatives 

F{k)(x), 1 ^ * ^ n - 2, x G (a, 6). 

Proo/ . If Q(x) denotes a P n -major function of f(x) over (a*) then Q(x) — 
F(x) is w-convex in [a, b]. By Theorem 7 [1], we have (Q(x) — F(x)){k) = 
(QW — F(x))(k) exists (1 S k ^ w — 2, x £ [a, 6]) and since by definition 
Qu)(x) exists (1 ^ H n - 2, x f (a, 6)) , the s t a t ement in the theorem 
follows. 

T H E O R E M 3.2. [1, Corollary 8]. If F is n-convex in [a, 6], \F\ ^ K then 

AK 

mm {(p — x) , (x — a) J 

x Ç (a, 6), where A is a constant independent of k, F and x, and where, if 

k = ft — 1, /fee derivative is to be interpreted as max( |F ( n _i)(x + ) | , | F U _ D ( X — ) | ) . 

T H E O R E M 3.3. The function F{x) of Definition 2.4 has the property that 

(3.1) lim sup hdn(F; x, fe) ^ 0 ^ lim inf hOn(F; x, fe), x £ (a, b). 

Proof. Corresponding to a rb i t ra ry e > 0 there exists a Pw-major function 
Q(x) and a Pn-m'mor function g(x) such t ha t the w-convex functions 

R(x) = Ç(x) - P (x ) , r (x) - F(x) - q(x) 

satisfy \R(x)\ < e, \r(x)\ < e, x G [a, b]. The major and minor functions have 
the proper ty further tha t DnQ(x) > —oo and Dnq(x) < + o o , x Ç [a, 6] — 5, 
where 5 is a scattered set, while Q(x) and a(x) satisfy 2.4.5 in S. T h u s for each 
fixed x Ç [a, 6] — S, there exist finite numbers Ci(x) and C2(x) such t ha t 

hdn(Q;x, fe) > fe d ( x ) 

hdn(q;x, fe) < feC2(x) 

for all sufficiently small positive fe. But , for x G (a, 6), 

hdn(R; x, fe) = ( n / 2 ) { 7 w - i ( # ; x, fe) - 7,-1 (/* ; *, -h)\ 
and 

fe0n(r; x, fe) = (w/2){7w_!(r; x, fe) - yn-i(r; x, - f e ) j , 

and since R(x) and r(x) are n-convex, it follows tha t 

lim h6n(R;x,h) = (n/2)\Rin_1)(x + ) ~ ^ ( n _ 1 } ( x - ) } =H(n,x), 

and 

lim h6n(rix, fe) = (n/2){r ( n_i)(x + ) - r ( n _ i ) ( x - ) } = h(n,x). 

W e have further, for each fixed x, the inequali ty (Theorem 3.2). 

max {\R(n_1)(x + ) \ , | ^ ( , _ D ( X - ) | , |r(n_i)(x + ) | , | r ( „ _ i ) ( x - ) | j 

(3.2) < Ae 
= m i n { ( 6 - x ) n ~ T ( x - a)n~l\ 
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where A is a constant independent of e, R(x), r(x), and x. Then since 

(3.3) hdn(q;x,h) + h6n(r;x,h) = hdn(F;x,h) = hdn(Q;x,h) - hdn(R;x,h), 

we have 

(3.4) hC2{x) — hdn(r; x, h) > hdnF; x, h) > hCi(x) - hdn(R\ x, h), 

for all sufficiently small positive h. Similar inequalities hold for negative h and, 
since e is arbitrary in (3.4), it follows that 

lim hdn(F; x, h) = 0, x £ [a, b] — S. 
ft-»0 

If x £ S, then 

lim sup hBn(F\ x, h) ^ lim sup hdn(Q; x, h) — H(n, x) 

è -H(n,x) 
and 

lim inf hdn(F; x, h) ^ lim inf hdn(q; x, h) + h(n, x) 

< 0 + h(n,x), 

and the result follows because of (3.2). 
Now suppose/ is a function defined on [a, b], and let a < u < c < v < b. If 

/ is PMntegrable on [a, v] with respect to some basis, then / is P^-integrable on 
[a, v] with respect to the basis 

A% = (co, c2, Cz, . . . , cn-i, cn) = (a, c2l . . . , cn-it v), 

(Theorem 2.5) where, for convenience and without affecting the generality of 
what we prove, we may assume that (u, c2, £3, . . • , £w-i> v) is a partition of 
[u, v] into subintervals of equal length, u < c2 and cn/2 < c < C(n/2)+i. Likewise 
if/ is PMntegrable on [u, b] with respect to some basis, then it is P^-integral 
on [u, b] with respect to the basis 

A4 = [Ci, C2, • • • , Cn-ij Cn
f) = (W, C2, C3, . . . , Cw_i, b). 

Now if/ is PMntegrable on [a, v] and on [u, b] t hen / is Pw-integrable on the 
interval [u, v] with respect to the basis 

A5 = (ci, c2, . . . cw_i, cn) = (u, c2, . . . , cn_i, y). 

Also/ is Pw-integrable on the interval [a, c] with respect to the basis 

A\ = (Co» di, C2, d2, C3, . . . , dn/2-U cn/2, dn/2) = {di} 

when Co = a < ^1 < c2 < ^2 < • • . < dn/2_i < cw/2 < dn/2 = c, and on the 
interval [c, b] with respect to the basis 

A 2 = (dw /2 , C(n/2) + l, dn/2+lj C(n/2) + 2, . . . , C w - l , < 4 - l , b) = {&*} 

where 
C = C^/2 < C(w/2) + l < d(n/2) + i < . . . < Cn_i < ^w_i < b. 

On the other hand if/ is P^-integrable on [a, b] with respect to the basis 
(a, c2, C3, . . . , Cn-u b) = (/1, l2, . . . j ln) then it is PMntegrable on [a, fr] with 
respect to any basis. 
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For an arbitary set A = {x0, Xi, . . . , xn) of distinct numbers we define a 
function X by 

X(A ;x,xr) = n (—_r~) -
If Fz(x), FA(X) and Fb(x) denote the associated integrals of/ over [a, v]} 

[u, b] and [u, v] with respect to the bases A3, AA, and A5, respectively, then for 
x (z [u, v], we have (Theorem 2.5) 

(3.5) F,(x) = FÔ(X) + XU6 ; x, u)F,(u), 

and 

(3.6) Iu(x) = F5(x) + X U B ; x, v)FA(v). 

Let F be defined on [a, b] as follows: 

(3.7) F(x) = 

\Fz(x) + \(Az;x,v) 

JFi(x) + X(^44; x, u) 

Fi{v) + 

X 

\_Ft(u) + 

X 

(v — a)(u — b )1 
)J 

)1 

Fi{v) + 

X 

\_Ft(u) + 

X 

_{v — u) (a — 6 

\v — a! 
(v — a) (u — b 

)1 
)J 

)1 

Fi{v) + 

X 

\_Ft(u) + 

X L (v — it) (a — b )J 

x G [a, v], 

x G [w, 6] 
l_ \v — aj\a — u ) _j 

^3(x) + XG43; x, v)Ki, 
.Ft(x) + X(.44; x, u)K2. 

We must show that F is well-defined on [u, v]. Since/ is integrable on [u, v] 
with respect to the basis A5 we have from (3.5), (3.6) and (3.7), 

(o o\ F(r\ = iF*(x) + XUÔJ x, u)Fz(u) + XG43; x, ^)i^i 
^ 1^5(*) + X ^ - x , t;)F4(v) + \(AA;xJu)K2, iîx G [a,*/]. 

Since zi — c< = z; — CW_M_I, i = 2, 3, . . . , n — 1, it is easy to see that 

\(A»; x, v)F\(v) + X(,44; x, a)i£2 

= g(x) 
(x — u)FA(v) (x — 6) 

(i» - u) (u - b) 
F\{u) + \l±—-)F4(v) 

\v — a; 

X 
(v — a) (it — b) 

L (v — it) (a — b). 

/.j .A / \f(x — v)bs(u) . /x - a \ f „ , . . /i; - b\ ,, , 
I (zi — z;) U» — a J L vzi — bJ 

X 

0 

_(« — b)(v — a) 
(z; — /0(« — b)J 

= \(A5;x, u)F\(u) + A U 3 ; X , ^ I , 

(x — Co) (x — c3) . • . (x — cn_i) 
where g(x) 

(v - c2)(fl - c3) . . • (v - cn_i) 
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LEMMA 3.1. If f is integrable on [a, v] and on [u, b] and u < c < v, then 
corresponding to e > 0, there exists a major function Q\{x) on [a, c] and a major 
function Q2(x) on [c, b] such that if 

Ri(x) = Çi(x) - Fx(x), R2(x) = Q2(x) - F2(x), 

where I\(x) and F2(x) denote the associated integrals of f over [a, c] and [c, b], 
respectively, then 

(3 .10) \Rx(x)\<e, | # 2 ( * ) | < €, \RUk)(c~)\ < e, \R2(k)(c+)\ < e, 

k = 1, 2, . . . , (n — 1). Minor functions qi(x), q_i{x) exist satisfying similar 
inequalities. 

Proof. Let Qz(x), Q\(x) be major functions on [a, v] and [u, b] respectively. 
Then 

n 

Qi(x) = Qz(x) — X) \iAx\x, a,i)Qz(ai), 

and 
n 

Q2(x) = Q*(x) - E \(A2;x,bi)Qdbi) 

are major functions of/ on [a, c] and [c, b] respectively. Now if 

Ri(x) = Qi(x) - Fi(x), x £ [a, c], 

R2(x) = Q2(x) — F2(x), x G [c, b], 

we may write 
n 

Ri(x) = Qz(x) - F3(x) - E M^iî *,<*<) (Gate,) - F3(a<)) 

n 

= Rz{x) - X) MA\,x,al)R?>(ai), x £ [a, c], 

and 
n 

R2(x) = QA(x) - F4(x) - £ \(A2;x,bi(Q4(bi) - F&t)) 
i=i 

n 

= R,(x) - X) X(A2;xibi)RA(bi)1 xG [c,d]. 
i=l 

Since Rz(x) and RA(x) are ^-convex on [a, v] and [u, b], respectively, then 
Rzw(c); RHk)(c), 1 ^ k g n - 2, exist, as do i?3(«-i) (c — ) and RHn_1)(c+). 
It follows that Ri(h)(c—) and i?2(*)(c + ) exist for 1 ^ & ̂  w — 1. Moreover 
by Theorem 3.2 we may choose Rz(x) and Ri(x) so that all the one-sided 
derivatives of Ri(x) and R2(x) satisfy the inequalities (3.10). 

4. The main result. We are now ready to state and prove our theorem on 
the additivity of the PMntegral. 
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THEOREM 4.1. The function f is Pn-integrable on [a, b] if and only if f is 
Pn-integrable on [a, v] and on [u, b] where a < u < v < b. Moreover in the 
notation of the preceding section we have for ls = x < / s + i , 5 = 1 , 2 , . . . ,n — 1, 

(±\\ p( \ = i F ^ + MA3',x,v)Ki, a ^ x ^ v 
{ ' } W

 \F,(X) + \(A*;x, u)K2, u^x^b, 

where F(x) denotes the associated integral of f on [a, b] with respect to the basis 

(CO, c2j • • • , Cn-li Cn ) — (^l> hi • • • , 'n- l> '« ) • 

Proof. The necessity of the condition follows from Theorem 2.5, and verifi­
cation of (4.1) is a direct result of straightforward calculations. Indeed if F(x) 
denotes the associated PMntegral of/over [a, b] then for ls ^ x < / s + i , 

(A 9) F(Y\ = iF*(x) + X(A*'> x, v)F(v), a ^ x ^ v 
{ "^ ^ }

 \F,(X) + \(AA; x, u)F(u), u g x = b 

Now substituting x = v in both equations of (4.2) and equating we obtain 
(since Fz(v) = 0, G43; i>, fl) = 1) 

F,(v) = F(v) - \{Ai\v,u)F(u) = F(v) - \^yF(u). 

Solving for F(v) and substituting in the first equation of (4.2) gives 

(4.3) F(X) = Mx) + (^-~J^)[MV) + (^-Er|)F(")J • a = x = v-
Substituting x = u in (4.3) yields 

F(ii) = F3(u) + 

from which we obtain 
v — a \« - bl ' 

Ft(v) + \~--y \F{u) 

w + fe^N") 
F(u) = 77—7777 — = K2. 

1 -

A similar calculation may be made involving Kx. 
To prove sufficiency we note first that for u < c < f and e > 0 there exists 

by Lemma 3.1 a major function Qi(x) with respect to the basis A\ on the in­
terval [a, c] and a major function Q2(x) with respect to the basis A2 on the 
interval [c, b] such that the functions R\(x) = Qi(x) — F\(x) and R2(x) = 
Qi{x) — F2(x) satisfy the following inequalities: 

| # l ( * ) | < €, |2? 2 (*) | < 6, | i ? l ( , ) ( c - ) | < 6, \R2{k)(c+)\ < 6, 

& = 1, 2, . . . , n — 1. Minor functions <?i(x), (72(x) satisfying analogous in­
equalities may be defined similarly, 
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Now define the functions R and r by 

/ n/2 

\Ri(x) + J2 MAi'tXtd^aj = Ri(x) + U(x), a ^ x ^ c 
\ 71-1 

IR2(X) + Y, \(A2\ x, dj)aj = R2(x) + V(x), c ^ x ^ b 

(4.4) R(x) = { iZl 

j=n/2 

n/2 

y\(x) + ^ \{A\\ x, dj)Pj = ri(x) + u(x), a^x^c 
(4.5) r(x)=( i l l 

rr2(x) + X^ \(A2\x,dj)l31 = r2(x) +v(x), c S x S b, 
V j=n/2 

where the constants a7 and Pj are to be determined so that R(k)(x), rw(x) 
exist at c, k = 1, 2, . . . , (n — 2) and i?(x) and r(x) are w-smooth at c. There 
are thus (n — 1) conditions to determine {n — 1) constants in each case (of 
course where the constants exist we will have the relations a;- = R(dj) and 
Pi = r(dj)). 

From this point on we shall restrict our discussion to the function R(x) — 
analogous statements and proofs hold for r(x). 

The first step in showing that the constants OLÔ with the required properties 
exist will be to show that the (n — 1) conditions mentioned above together 
with properties of Ri(x) and R2(x) are equivalent to the condition that 
i?(n_i)(c) exist. 

The condition of ^-smoothness for R(x) at x = c is given by 

(4.6) i R(c + h) + R(c - h) ( n / 2 ) - l -,2k 

D-kR(c) 0, as h -> 0. 
2 t i (2k)\ 

Assuming the existence of R(k) (c), k = 1, 2, . . . , (n — 2), the left hand side of 
(4.6) may be re-written as 

2A*-1 L R(c + h) - R(c) - j j T7-R<«(c+) 

1 i?(c - A) - R(c) - 2 y - ^ ) ( c - ) ] 2(-A)"-1 L 

~ î [ i ? 2 ( c + A) - i ? 2 ( c ) 

^ T [^(c + A) - K(c) - g g Kw(c+)] + 

7.-2 , * "I 

„-2 h« 

-Vf'1 L 2(-A) 
j? l ( c _ A ) - i?i(c) - £ - ^ i ? l t t ) ( c - ) ] 

fc-l A! 

^=i \U{c + h)- U(c) - £ ^ ^ t /« ) (c - ) 
2 ( -A)" - 'L ' ' " fcï A! 

Since the one sided derivatives of the polynomials U(x) and V(x) always 
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exist and since by construction 7 £ 2 ( W - D ( C + ) and 7?i(n_i)(c — ) exist, it follows 
t ha t if R(k)(c), k = 1, 2, . . . , (n — 2) exist, w-smoothness of R(x) a t c is 
equivalent to the existence and equal i ty of i? (n_i)(c + ) and R(V-D (C— ) . 

T h e next s tep is to obtain (n — 1) equat ions in the (w — 1) unknowns, aj} 

by differentiating equation (4.4) (n — 1) — times and set t ing R(k)(c — ) = 
R(/c)(c+), fe = 1, 2, . . . ,n — 1. This yields (where for simplicity in nota t ion 
we write A ^ U i i *, d3-)\x=c = q(k) (dj) and X(k)(A2; x, dj)\x=c = h(k)(dj), 
j = 1, 2, . . . , n — 1, and fe = l , 2, . . . , w — 1), 

w/2 n—1 

X (Xjgwidj) - Z l (xjhwidj) = R2w(c+) - Ri(k)(c-) = 6k, 
j=l j=n/2 

( ra /2 ) - l n - 1 

(g{k)(dn,2) - h(k)(dn/2))an/2 + X <Xjg(k)(dj) - Y, otjh^idj) = 0*, 
J '=l j= (« /2 ) + l 

ife = 1 , 2 , . . . , w - 1 . 
T o show tha t these (n — 1) equat ions have a unique solution we mus t show 

tha t the corresponding de te rminant is not zero, i.e., the de te rminan t which has 
as its ith column the following 

gd)(dn/2) - h(i)(dn/2) 

ga)(di) 

g(i)(dn/2-i) 

h(i)(dn/2+l) 

ha) (dn-i), 

for i = 1, 2, . . . , n — 1. But this is clearly equivalent to the condition t h a t 
the polynomials 

(4.7) \(Ai\x,c) — X(A2;x, c), X(A2;x, dj), dj > c, X{Ai\x, dj), dj < c, 

be linearly independent on [a, b]. 
If the polynomials (4.7) were linearly dependent there would exist cons tants 

7i, i = 0, 1, 2, . . . , (n — 1), such t ha t 

( n / 2 ) - l 

(4.8) 7oAG4i;x,c) + S 7 ^ ( ^ i ; ^ ^ ) 

n - 1 

= 7oX(^2 ; x, c) + X 7j\(A2;x, dj), x £ [a, b], 
j=(n/2) + l 

where each side of the expression is a polynomial of degree n — 1 a t most. But 
then (4.8) may be rewrit ten (in the notat ion introduced in the previous section) 
as: 

n/2 n-1 

(x — a)m(x) I l (x — Ci) = (x — b)n(x) Yl (x ~ ct)> x £ [#> *] 
z=2 z=(n/2) + l 
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where m(x) and n(x) are polynomials of degree a t most (n/2) — 1. T h u s the 
left hand side has n/2 zeros and the right hand side has n/2 zeros, all distinct. 
This would imply tha t the left hand side which is a polynomial of degree a t 
most (n — 1), has a t least n zeros, an impossibility. I t follows t h a t the poly­
nomials (4.7) are linearly independent. 

This shows t ha t the constants a, = R(d/) may be determined so t h a t 
R(x) is w-smooth a t c and so tha t the unsymmetr ic derivatives up to order 
(n — 2) exist and are finite a t c. Moreover 

(4.9) R(dj) = £ Ak
j(R2{k)(c+) - Rm(c-)), 

and 

(4.10) rid,) = £ Ak
j(r2{k)(c+) - rHk)(c-)), 

k=i 

for each d3-, where the Ak
j depends on {dj} bu t not o n / , P i , R2, f\, or r2. 

I t is clear therefore tha t the original choice of R\(x) and R2(x), may be made 
so t ha t 

(4.11) \R(x)\ < e/2 and \r(x)\ < e/2, x e [a, b]. 

Now we claim tha t Q(x) = F(x) + R(x) is a Pw-major function for f(x) on 
[a, b] with respect to the basis (a, c2, c%, . . . , cw_i, b). 

Both F(x) and R(x) obviously satisfy conditions (2.4.2) of Définition 2.1. 
T h a t they are continuous and possess derivatives Fk(x), Rk(x), 1 ^ k ^ n — 2, 
follows from their definitions (cf. equations (3.7) and (4.4)). Moreover since 
we may write 

U 19Ï HM = (Fl^x) + Rl(*x) + 6 l ( x ) = C l ( x ) + 9 l ( x ) ' X ^ k C] 

1 } ^ } \F2(X) + R2(x) + 92(x) = Q2(x) + 6 2 (x) , x G [c, b] 

where 9 i (x ) and 6 2(x) are polynomials of degree a t most (n — 1), Q(x) 
inherits the required ^-smoothness property of condition (2.4.1) from Qi(x) 
and Q2(x). 

I t may be shown also from (4.12) t ha t Q(x) satisfies conditions (2.4.3) and 
(2.4.4) of Definition 2.1. Since F(x) satisfies condition (2.4.5) a t x = c [cf. 
(3.7) and Theorem 3.3] and R(x), by definition, is ^-smooth a t x = c, it 
follows t ha t Q(x) satisfies condition (2.4.5) (i). 

Similarly q(x) = F(x) — r(x) can be shown to be a Pw-minor function for 
f(x) on [a, b] with respect to the basis (a, c2, c3, . . . ,cn_i, b). 

Because of (4.11) we have furthermore t h a t 

\Q(x) - q(x)\ = \R(x) - r(x)\ < e, x £ [a, 6], 

which completes the proof t h a t / ( x ) is Pw-integrable on [a, b]. 
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Remark. The lemma corresponding to Skvorcov's Lemma 3 referred to in 
the introduction of this paper would say that if/ is integrable on [a, c] and on 
[c, b] then functions Ri(x) and R2(x) (as defined in Lemma 3.1) exist satisfying 
the inequalities (3.10). If such functions exist for integrable/our methods can 
be used to prove the result for Pra-integrals corresponding to Theorem 2 [6]: 

Let f(x) be Pn-integrable over {at\ x) with associated integral Fi(x) and over 
(bi\ x) with associated integral F2(x). Thenf(x) is Pn-integrable on [a, b] if and 
only if there exist constants {63\, j = 1, 2, . . . , n — 1 such that the function 

( nil 

)Fi(x) + J2 \{Aux}dj)ej, a ^ x ^ c, 
F{x) = < iz\ 

IF2(X) + X) HA2',x,dj)0j, c ^ x g b 
\ i=n/2 

is n-smooth and possesses Peano unsymmetric derivatives up to order n — 2 at 
x = c. If such numbers exist then the function F(x) is the associated Pn-integral 
of f(x) over (llf l2, . . . , ln). 
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