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A GENERALIZATION OF HILBERT’S THEOREM 94

HIROSHI SUZUKI

In this paper we shall prove the following theorem conjectured by
Miyake in [3] (see also Jaulent [2]).

THEOREM. Let k be a finite algebraic number field and K be an
unramified abelian extension of k, then all ideals belonging to at least
[K: k] ideal classes of k become principal in K.

Since the capitulation homomorphism is equivalently translated to a
group-transfer of the galois group (see Miyake [3]), it is enough to prove
the following group-theoretical verison:

TaeoreM (The group-theoretical version). Let H be a finite group
and N be a normal subgroup of H containing the commutator subgroup
Hc< of H. Then [H: N] divides the order of the kernel of the group-transfer
Vyoy: H*® — N°°,

Hilbert’s theorem 94 and the principal ideal theorem immediately

follow from our theorem.

§1. Notations and two lemmas

For a group H, we denote the commutator group of H by H°¢, and
the augmentation ideal of the integral group algebra Z[H] by I,. Put

also
H* = H/H®,
Try = >, geZ[H],
gEeEH
and

Ay = Z[H]/(Try) .

For a Z[H]-module M, we denote the Z[H]-submodule consisting of all
the H-invariant elements of M by M¥ and the Pontrjagin dual of M by
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M». The Z[H]-module generated by v, --,v,eM 1is denoted by
Uy, +++, Upy. We denote the cardinality of a finite set S by *S.
In this section we shall prove the following two lemmas:

LEmMA 1. Let G be a finite abelian group and M be a monogenerated
Z[G]l-module of finite order. Then the order of H %G, M) divides the order
of HYG, M).

Proof. For a natural number r, we define a standard perfect pairing
on the group algebra over the quotient ring Z/rZ,

Z/rZ[G] X Z|rZ[G] —> Q/Z
by (g, h) = 1/r-8,,, for g, he G. Then for v, w, w € Z/rZ[G], we can see
(uw) w,) = (w3 inv (u) w/) B

where inv: Z[G] = Z[G] is the inverted isomorphism given by inv(g) = g™*
for ge G. Since Z/rZ[G] is self-dual by this pairing, we have an injective
homomorphism i: M = @™ Z/rZ[G], by taking the dual of a Z/rZ[G]-
presentation of rank m of M” for some natural numbers r and m; here
@™ Z/rZ[G] is a direct sum of m-copies of the algebra Z/rZ[G]. We
define a perfect pairing

® Z/rZIG] x & Z/rZ[G) —> Q/Z
by

(w, w) = 3w, w),
where
W=, -, w), w=wW,- - w)edLrLlG].

Take a generator v = (v, - -+, v,) € @™ Z/rZ[G] of M. Then for w =
(wy, -+, w,) e @ Z/rZIG] and a e Z[G],

(av, w) =0 Va e Z[G))
& ((avy, - -+, avy), Wy, -+, w,) =0 (Va e Z[G))
& 3 (av, w) = 0 (vae Z[G))
& (a, Zl inv (v)-w,) = 0 (Va e Z[G])

= iinv(vi)-wi =0.
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Hence the orthogonal M+ of M is given by
ML = Ker (inv (v) - : é—n) Z/rZ[G] —> Z/rZ[G)) ,
where inv (v)- is the homomorphism defined by
inv(v)-w = i inv (v;) - w;,
for w = (w,, -, w,) € P™Z/rZ[G]. Then we have
M» = Iminv (v)-,
and
(MéN = Iminv (v)-/I; Iminv (v)- .

Since we have inv (I;) = I;, tbe isomorphism inv: Z[G] = Z[G] induces an
isomorphism

MAN=Imv-/I;Imv-,
where v-: @™ Z/rZ[G] — Z/rZ[G] is the homomorphism given by

Ms

VW=, U; W,

Il
-

for w = (w,, -+ -, w,) e ™ Z/rZ[G).
Put

qg = Imv.-/[I;Imv- .
Then we have

qg="*mv-[I;jImv-
= *Im inv (v)-/I; Iminv (v) -
— &(MG)/\
— sME .

Now there exist two matrices Ue M(m, Z) and J e M(m, I;) such that
vU=vJ and detU = ¢,

because Imv. = (v, -+, v,) =2v, + --- + Zv,, + I;)Imv-, and I;Imv-
= I,v, + -+ + I,v,. Therefore we have

det(U—dJw=0 in ®Z/rZG].

This implies
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q-M[I,M =0,

because det (U — J)=det U= qmodl,. Since M = Z[Glv = Zv + I, M,
the order of M/I,M divides q = *M¢. Furthermore we have

*M/Ker (Trg: M —> M) = *Tr, M,
because *M is finite. Therefore
‘HY(G, M) = qf*Trs M
= *Ker (Trg: M —> M)/I,M-q*M|I,M
=*H G, M)-qf*M|I.M
is divisible by *H -G, M).
LemMmA 2. Let G be a finite abelian group, and put n = *G and A; =

Z[G}/(Txg). Then for any m-generated Z[Gl-submodule Y of ®™ ' Az ¥z Q,
the order of Y/I;Y divides n™".

Proof. Let {y;, -+, ¥.} be a set of generators of Y. For each maxi-
mal ideal m of A; ¥, Q, take an element ¢, € A\ m which belongs to all
the other maximal ideals of A; ®; Q. Then c, becomes 0 at every maxi-
mal ideal except m. If, for some m,

K1+ Y1) Rz Qu # (Y @2 Q)

the (4; ®; Q).~-dimension of the space in the left hand is less than m — 1.
If we take an omissible (A4; ®; Q).-generator and put i = i(n), then we
have

(<yh o Yeen Y CoVmr Yesrs * 'yym—1> ®Z Q)m = (Y®Z Q)m )

and we may change the generator y, to y; + ¢,y,.. Thus we may assume

(<y17 t 'aym-l> ®Z Q)m = (Y®Z Q)m

for every m, namely

Gy Y- R2Q=YR®:Q.

Let n: " 'A;®,;Q— YX;Q be the Z[G]-homomorphism which
maps the standard i-th generator ¢, =(0,---,0,1,0, ---,0) to y, for every
i=1-..,m— 1 Take an element ye @™ ' A; ®, Q such that z(y) = y,,
and put

Y = <éla ""ém~17y> < 6_9 AG ®ZQ
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Then n(Y’) = Y shows that the order *Y/I;Y divides the order *Y’[I,Y’.
Now taking Y’ in place of Y, we may further assume that

Y = ¢
is the standard i-th generator of ™' A; for each i =1, ..., m — 1, and
the last element

Ym =Y

is an arbitrary element of @™!A; ®; Q. Now we may naturally iden-
tify Az Xz Q with the direct summand I, X, Q of Q[G]; its unit element is

e=1—1/n-Tr, = Z_;,; —1/n(g—1).

&

Let

pr:m@lAa ®ZQ_—)M®1AG (S Q/Eélla
- B L,z

be the natural projection. In a direct forward way, it is easy to see that

(B L@ QLY = (pr@), -, pr En)> = & ZInZ.

In particular I, {pr (&), - - -, pr (€,-)>» = 0. Let M be the Z[G]-submodule
of ™11, ®,Q/Z generated by the single element pr(y). Then we have

*Y/I,Y = *pr (Y)/I, pr (Y)
MM+ (pr(@), - -, Dt @)D M
=M+ (® I, ®, QIZ)°),M
MILM M + (& I, ®, QIZ))M

MILM-AD I, R, QIZYIM 0 (D I, @, QIZ)°
= n""'*H-G, M)FH(G, M) .

I

Il

Since M is a monogenerated Z[G]-module of finite order, Lemma 1 im-
plies Lemma 2.

§2. Proof of the theorem

2.1. Put G = H/N. We may assume that G is an abelian p-group,
for some rational prime number p. Put n =*G.
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Let (f;,») be a 2-cocycle in the cohomology class of the group ex-
tension
1—> N —>» HIN  —>G—>1.

Let {x,|ge G\{1}} be a set of symbols parametrized by G\{1}, and W be
the Z[G]-module

N*®D( @ Z-xp

gEG\{1}
with group action
8% = Xgn — X+ fen (8 he@).
Then we have an exact sequence
0—>NY s W [, —>0

by assigning g — lel, to x, for ge G\{1}; furthermore we also have

W/I,W = H**; and the trace homomorphism Tr,: W/I,W — N*® coincides

with the group-transfer V,_,: H* — N (see Artin-Tate [1] and Miyake

[3], §3, for example). Therefore it is enough to show *H YG, W) > n.
Let

H = WILW = ® Z/q,Z
i=1

and take a Z[G]-homomorphism ¢: @™ Z[G] - W which maps the i-th
generator ¢, = (0, ---,0,1,0, ---,0) of @™ Z[G] to a representative of the
i-th generator A, = (0, ---,0,1,0, ---,0) of @P™,Z/q,Z. Then we have a
commutative diagram

natoop

0 -—> Ker natogp —> é Z[G] —> L,

l -

0—> N® —> W ——sI1,—0

with exact rows. Moreover Nakayama’s lemma shows that the localiza-
tion of ¢ at (p) is surjective. Namely the cokernel of ¢ is a Z[G]-
module of finite order s prime to p. Hence there exists an element u, ¢
Ker ¢ such that u, = s-q,-e, mod " I; for each i =1,---,m. Put U=
{uy, -+, Uy, and denote the p-primary part of a finite Z[G]-module A by
A, in general. Then identifying by the isomorphism (H™Z[GI/(U +
@~ 1)), = (W/I;W), induced by ¢, we have
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H-G, & Z[Gl/U) = Ker (Try: @ ZIGINU + @ 1) —> Ker nato o/U),
< Ker (Try: W/, W —> N°?),.
Therefore it is enough to show *H-YG, ®™ Z[Gl/U) > n =*G. Put r =

natog, and ¢, = s-q, for each i.

2.2. The Z[G}-homomorphism z: @™ Z[G] — I, has a finite cokernel.
Therefore I, Im ¢ is also of finite index in I;. Since

0—>Kerz N éIGHéIG————)IGImT—)()

is exact and I, X, Q = A; ®; Q is a finite direct sum of finite field ex-
tensions of Q, we have

m m-1 m—1
(2.2.1) Kert N BL)RR: Q= PL R Q= P 4: ¥, Q.
In particular Lemma 2 holds for Kert N @™ I; in place of @™ ' A; R, Q.

We are now in the following situation.

(2.2.2) We may assume that there exist a natural number t, and an ele-
ment u;, of Kert such that u, =t,-e, mod @™ I; for each i=1, - --,m,
where e, is the standard i-th generator of @™ Z[G]. Put U = {uy, -+, Upy
and W, = @™ Z[G]/U.

Now it is enough to prove the following:

LEmMA 3. Under the situation (2.2.2), the order n of G divides the
order of H- (G, W,).

Proof. Since we have

H-Y(G, Wy) = H'(G, U)
= H(G, nU)

= H(G, @ ZIG/nU),

we may take nU instead of U. In particular, we may assume that n
divides #, for every i. Put d, = t,/n.

The fact Tr, = nmod I, shows that Ker Tr;, N W, /I, W, C (W, /I;W,),
where ,A means the submodule consisting of all the elements of A of
order dividing n. By the assumption n|t,, .(W,/I;W,) is isomorphic to
@™ Z/nZ and generated by the elements d;-e; i=1,.--,m. Put y, =
d;-Try-e; — u, for each i =1, ---, m, and let Y be the Z[G]-module gener-
ated by all the y,. Then we have
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Y:: <yl’ "',ym> gé[a ﬂ KerT,
and I,Y = I;U. By the choice of u,, we also have
UUN®L=U+ LIS
=&Z=UILU.

Therefore U N @™ I; must coincide with I,U = I;Y, because I,U < UN
@™ I,. By the following identification

Kerrt N (U+ @OLYU=Kere N DL/UNDIL N Kerr
= (Kert N & L)LY,

we have the commutative diagram

(WL W) 2% (Rer e 0 (U + @" 1))/U = Ker ¢/U

T

Kerc N @™ I;/I,Y

,7 T

e Zink —— Y/I.Y,

IR

where 7 is the Z[G]-homomorphism which maps the standard i-th gener-
ator (0, ---,0,1,0, ---,0) of @™ Z/nZ to y, mod I;Y. Then we have

Ker (Tr;: Wy/I, Wy —> Ker ¢/U) = Kery.

Since Y is a m-generated submodule of Kerz N @™ I;, (2.2.1) shows that
the order *Y/I,Y divides n™~'. Since we have

*H-YG, W,) = *Ker y
= n"HY/L;Y),

the order of H (G, W,) is certainly divided by n. Q.E.D.
Thus our theorem is also proved.

Remark. In the above proof, it is easy to see that there exists a
finite group H such that *Ker V., = [H: N}, if each g, is divisible by n.
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