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EQUALITY OF DECOMPOSABLE SYMMETRIZED
TENSORS

RUSSELL MERRIS

Let IV be an n-dimensional vector space over the field F. Let @™ ' be the
mth tensor power of 1. If ¢ € S, the symmetric group, there exists a linear
operator P(¢7!) on ®™ V such that

Pl H)xi ®...0xn =%, @ ... ® Xy(my,

for all xy,..., x, € V. (Here, 1 ® ... ® x,, denotes the decomposable
tensor product of the indicated vectors.) If ¢ is any function of S,, taking its
values in F, we define

1) 6= 2 c()P(o).

g€ Sm
The linear operator § on @™ V is called a symmetrizer. Symmetrizers provide
the vehicle for connecting the irreducible representations of .S,, with those of
the full linear group [1]. In the form

@ Y& Aere),

cEG
where G is a subgroup of S, and \ is an irreducible F-character of G, sym-
metrizers have proved useful in the discovery of inequalities for certain matrix
functions (e.g. [3]). In this latter connection, the following questions arise very
naturally: Let

B) xi*x...%xx, =010 ... QR X

For which vectors xi, ..., x, € V, is it the case that x;*...xx, = 0?
Moreover, when can it happen that x; *...*x, = y;*...x*y, # 02 (Nat-
urally, such information is very important to the study of these decomposable
symmetrized tensors (3). Surpringly, the answers are not known in general.)

1. Example. If G = §,,, and \ is the alternating character in (2), the range

of 6 is the space of skew symmetric tensors. In this case, x; * . . . * x,, is com-
monly written x; A ... A x,. It is a classical result that x; A ... A x, # 0
if (and only if) %, ..., x, are linearly independent. \loreover, if
XIA AKXy =N o AV #Z0, then (xy, ..., Xn) = 1, ooy Yn )
i.e., the space spanned by x;, ..., x, is the same as the space spanned by

ylr .. 'vym'
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Recently, Marcus and Gordon [3, Lemma 1] extended the above result as
follows: Let F be the field of complex numbers. Let 6 be defined by (2), where

N is a linear character on G (N(id) = 1). If x1% ... %%, = Y1 % ... % Yy,
m < n, and if {x1, ..., x,} @5 a linearly independent set, then (x1, ..., %, ) =
Gy o v vy Y )

In his book [2, p. 136], Marcus reproves the result in the more general case
that F is an arbitrary field of characteristic 0. He also makes clear that if
m = nand x1*%...xx, = 0, then x1, . . ., x,, ave linearly dependent.

In this note, we extend the classical skew symmetric theorem still further.

2. THEOREM. Let F be an arbitrary field. Let ¢ : S,, — F be an arbitrary func-
tion. Let 0 ve defined as n (1). If x1%...%x, = yi*x...%y, # 0,
then (X1, ..., %m) = Y1, . - ., Ym ). Moreover, if ¢ is not identically zero, and if
X1y -« .y X are linearly independent, then xy * . . . * x, # 0.

Proof. We will make use of the fact that the dual space of the space of
m-linear functionals on 1" is a model for ®™ V, in which

X1® ... Q xu(p) = ¢lxr, ..., xXn).

Suppose first that x; % ... %%, = y1%...%y, 0. Let W = (x1, ..., Xpn).
Since x; * ... *x,, # 0, there exists an m-linear ¢ : W X ... X W — F such
that x; % ... x*x,(¢) # 0. Since every m-linear ¢ is a linear combination of
products of linear functionals, there exist fi, ..., f, in the dual space of W
such that

xl**xm(n f,) # 0.
=1

Now, if y; ¢ W, we may extend each f, to (W, y;) by defining f,(y;) = 0,
1 =t =< m. Then

Oyéxl*...*xm(H f,)
=1
yn*u-*ym([rzllf,)

Z C(U-l) 1:7_:11 Fi(¥en)

o€ Sm
= O,
since for each ¢ there is a ¢ such that ¢(¢) = 7, and f,(y;) = 0. This contradic-
tion proves that {(y;, ..., yn) C (X1, ..., x,). Clearly the proof is sym-
metric.
Suppose, now, that x1, . . ., x, are linearly independent. Then

(o) ® . @ Xy : ¢ € Sp)
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is a linearly independent set. Thus,

X1k .ok Xy = Z c(a_l)x,(1)® e ® Xeemy =0

g€ Sm

if and only if ¢(¢) = 0 for all ¢ € S,.
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