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Abstract

In the so-called lightbulb process, on days r = 1, . . . , n, out of n lightbulbs, all initially
off, exactly r bulbs, selected uniformly and independent of the past, have their status
changed from off to on, or vice versa. With X the number of bulbs on at the terminal
time n, an even integer, and µ = n/2, σ 2 = var(X), we have supz∈R |P((X − µ)/σ ≤
z) − P(Z ≤ z)| ≤ n�0/2σ 2 + 1.64n/σ 3 + 2/σ , where Z is a standard normal random
variable and �0 = 1/2

√
n + 1/2n + e−n/2/3 for n ≥ 6, yielding a bound of order

O(n−1/2) as n → ∞. A similar, though slightly larger bound, holds for odd n. The results
are shown using a version of Stein’s method for bounded, monotone size bias couplings.
The argument for even n depends on the construction of a variable Xs on the same space
as X that has the X-size bias distribution, that is, which satisfies E[Xg(X)] = µ E[g(Xs)]
for all bounded continuous g, and for which there exists a B ≥ 0, in this case B = 2,
such that X ≤ Xs ≤ X + B almost surely. The argument for odd n is similar to that
for even n, but one first couples X closely to V , a symmetrized version of X, for which
a size bias coupling of V to V s can proceed as in the even case. In both the even and
odd cases, the crucial calculation of the variance of a conditional expectation requires
detailed information on the spectral decomposition of the lightbulb chain.
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1. Introduction

The problem we consider here arises from a study in the pharmaceutical industry on the
effects of dermal patches designed to activate targeted receptors. An active receptor will become
inactive, and an inactive one active, if it receives a dose of medicine released from the dermal
patch. Let the number of receptors, all initially inactive, be denoted by n. On each day of the
study, some number of randomly selected receptors will each receive one dose of medicine,
changing their statuses between the inactive and active states. We adopt the following, somewhat
more colorful, though equivalent, ‘lightbulb process’ formulation from [8]. Consider n toggle
switches, each connected to a lightbulb, all of which are initially off. Pressing the toggle switch
connected to a bulb changes its status from off to on and vice versa. The problem of determining
the properties of X, the number of light bulbs on at the end of day n, was first considered in [8]
for the case where on each day r = 1, . . . , n, exactly r of the n switches are randomly pressed.
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More generally, consider the lightbulb process on n bulbs with some number k of stages,
where sr ∈ {0, . . . , n} lightbulbs are toggled in stage r , for r = 1, . . . , k; we refer to the
vector s = (s1, . . . , sk) recording the number of bulbs affected on each study day as the ‘switch
pattern’. In order to consider quantities that depend on some subset of size b of the n bulbs, we
define

λn,b,s =
b∑

t=0

(
b

t

)
(−2)t

(s)t

(n)t
and λn,b,s =

k∏
r=1

λn,b,sr , (1.1)

where (n)k = n(n− 1) · · · (n− k + 1) denotes the falling factorial, and the empty product is 1.
Generalizing the results in [8], writing Xs for the number of bulbs on at the terminal time when
applying the switch pattern s = (s1, . . . , sn), the martingale method in Proposition 4 of [12]
shows that if the process is initialized with all bulbs off then

E Xs = n

2
(1 − λn,1,s) and var(Xs) = n

4
(1 − λn,2,s) + n2

4
(λn,2,s − λ2

n,1,s), (1.2)

where, from (1.1),

λn,1,s = 1 − 2s

n
and λn,2,s = 1 − 4s

n
+ 4s(s − 1)

n(n − 1)
for s = 1, . . . , n. (1.3)

Letting n = (1, . . . , n), we call the standard lightbulb process the one where s = n, and
in this case we will write X short for Xn. In particular, (1.2) with s = n recovers the mean
µ = E X and variance of σ 2 = var(X) as computed in [8]. Other results in [8] include
recursions for determining the exact finite sample distribution of X. Though computational
approximations to the distribution of X, including by the normal, were also considered in [8],
the quality of such approximations, and the asymptotic normality of X, was left open.

Theorem 1.1 below settles the matter of the asymptotic distribution of X by providing a
bound to the normal which holds for all finite n, and which tends to 0 at the rate n−1/2 as n

tends to ∞. We consider the cases of even and odd n separately. In the even case we directly
couple the variable X to a variable having the X-size bias distribution, as described later on in
this section. In the even case (1.3) yields λn,1,n/2 = 0, and, therefore, λn,1,n = 0; hence, from
(1.2) we find that E X = n/2, and also that σ 2 = var(X) is given by

σ 2 = n

4
(1 − λn,2,n) + n2

4
λn,2,n. (1.4)

To state our result for odd n, let

λn,b,r =
{

1
2 (λn,b,m + λn,b,m+1), r ∈ {m, m + 1},
λn,b,r , otherwise,

and λn,b,n =
n∏

r=1

λn,b,r ,

that is, λn,b,n is obtained from λn,b,n by replacing λn,b,m and λn,b,m+1 in the product (1.1) by
their average. In the odd case, we proceed by first coupling X to a more symmetric random
variable V with mean and variance given respectively by

µV = n

2
and σ 2

V = n

4
(1 − λn,2,n) + n2

4
λn,2,n. (1.5)

Then, with V in hand, we couple V to a variable with the V -size bias distribution, and proceed
as in the even case. In Theorem 1.1, and the remainder of the paper, Z denotes a standard
normal random variable.
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Theorem 1.1. Let X be the number of bulbs on at the terminal time n in the standard lightbulb
process. Then, for all even n, with σ 2 as given in (1.4),

sup
z∈R

∣∣∣∣P
(

X − n/2

σ
≤ z

)
− P(Z ≤ z)

∣∣∣∣ ≤ n

2σ 2 �0 + 1.64
n

σ 3 + 2

σ
for all n ≥ 6, (1.6)

where

�0 = 1

2
√

n
+ 1

2n
+ 1

3
e−n/2,

and, for all odd n,

sup
z∈R

∣∣∣∣P
(

X − n/2

σV

≤ z

)
− P(Z ≤ z)

∣∣∣∣
≤ n

2σ 2
V

�1 + 1.64
n

σ 3
V

+ 2

σV

(
1 + 1√

2π

)
for all n ≥ 7,

where σ 2
V is given in (1.5) and

�1 = 1√
n

+ 1

2
√

2
e−n/4. (1.7)

In the even case, as λn,2,n decays exponentially fast to 0, the variance σ 2 is of order n and
the bound (1.6), therefore, of order 1/

√
n; analogous remarks hold for the case where n is odd.

We now more formally describe the lightbulb process on n bulbs with k stages. With n ∈ N

fixed and s = (s1, . . . , sk) with sr ∈ {0, . . . , n} for r = 1, . . . , k, we will let Xs = {Xrj :
r = 0, 1, . . . , k, j = 1, . . . , n} denote a collection of Bernoulli variables. The initial state of
the bulbs is given deterministically by {X0j , j = 1, . . . , n}, which will be taken to be state zero,
that is, all bulbs off, unless specifically stated otherwise; in fact, nonzero initial conditions are
considered only in Corollary 4.1. For r ∈ {1, . . . , k}, the components of the switch variables
Xs have the interpretation that

Xrj =
{

1 if the status of bulb j is changed at stage r ,

0 otherwise.

At stage r , sr of the n bulbs are chosen uniformly to have their status changed, and the stages
are independent of each other. Hence, with e = {erj }1≤r≤k, 1≤j≤n an array of {0, 1}-valued
variables, the distribution of Xs is given by

P(Xs = e) =

⎧⎪⎪⎨
⎪⎪⎩

k∏
r=1

(
n

sr

)−1

if
∑n

j=1 erj = sr , r = 1, . . . , k,

0 otherwise.

(1.8)

Clearly, the vectors of stage r switch variables, (Xr1, . . . , Xrn), are exchangeable and the
marginal distribution of the components Xrj are Bernoulli with success probability sr/n. In
general, for j = 1, . . . , n, the variables

Xj =
( k∑

r=0

Xrj

)
mod 2 and Xs =

n∑
j=1

Xj (1.9)

https://doi.org/10.1239/aap/1316792673 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1316792673


878 L. GOLDSTEIN AND H. ZHANG

are the indicator that bulb j is on at the terminal time k, and the total number of bulbs on at that
time, respectively. For the standard lightbulb process, we will write X and X for Xn and Xn,
respectively.

The lightbulb process, where the individual states of the n bulbs evolve according to the
same marginal Markov chain, is a special case of a class of multivariate chains studied in [12],
known as composition Markov chains of multinomial type. As shown in [12], such chains
admit explicit full spectral decompositions, and in particular, the transition matrices for the
stages of the lightbulb process can be simultaneously diagonalized by a Hadamard matrix.
These properties were put to use in [8] for the calculation of the moments needed to compute
the mean and variance of X. Here we put these same properties to somewhat more arduous
work, the calculation of moments of fourth order.

That no higher-order moments are required for the derivation of a finite sample bound holding
for all n is one distinct advantage of the technique we apply here, Stein’s method for the normal
distribution, brought to life in the seminal monograph [11]. By contrast, the method of moments
requires the calculation and appropriate convergence of moments of all orders, and yields only
convergence in distribution. Stein’s method for the normal is based on the characterization of
the normal distribution in [10], which states that Z is a standard normal variable if and only if

E[Zg(Z)] = E[g′(Z)] (1.10)

for all absolutely continuous functions g for which these expectations exist. The idea behind
Stein’s method is that if a mean 0, variance 1 random variable W is close in distribution to Z,
then W will satisfy (1.10) approximately. Hence, to gauge the proximity of W to Z for a given
test function h, we can evaluate the difference E h(W) − Nh, where Nh = E h(Z), by solving
the Stein equation

f ′(w) − wf (w) = h(w) − Nh

for f and evaluating E[f ′(W) − Wf (W)]. A priori it may appear that an evaluation of
E[f ′(W)−Wf (W)] would be more difficult than that for E h(W)−Nh. However, the former
form may be handled through couplings.

Here we consider size bias couplings to evaluate E[f ′(W)−Wf (W)]. Given a nonnegative
random variable Y with positive finite mean µ = E Y , we say that Y s has the Y -size bias
distribution if P(Y s ∈ dy) = (y/µ) P(Y ∈ dy), or more formally, if

E[Yg(Y )] = µ E[g(Y s)] for all bounded continuous functions g. (1.11)

The use of size bias couplings in Stein’s method was introduced in [1], where it was applied
to derive bounds of order σ−1/2 for the normal approximation to the number of local maxima
Y of a random function on a graph, where σ 2 = var(Y ). In [6] the method was extended to
multivariate normal approximations, and the rate was improved to σ−1, for the expectation of
smooth functions of a vector Y recording the number of edges with certain fixed degrees in a
random graph. In [4] the method was used to give bounds in the Kolmogorov distance of order
σ−1 for various functions on graphs and permutations, and in [5] for two problems in the theory
of coverage processes, with bounds of this same order. A more complete treatment of Stein’s
method and its applications can be found in [2].

Here we prove and apply Theorem 2.1 below for bounded, monotone size bias couplings,
which requires that the random variable Y of interest, and a random variable Y s , having the
Y -size bias distribution, be constructed on a common space such that, for some nonnegative
constant B,

Y ≤ Y s ≤ Y + B
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with probability 1. Loosely speaking, Theorem 2.1 says that, given any such coupling of Y and
Y s on a common space, an upper bound on the Kolmogorov distance between the distribution
of Y and the normal can be computed in terms of E Y , var(Y ), B, and the quantity

� = √
var(E[Y s − Y | Y ]). (1.12)

Theorem 2.1 is based on a concentration-type inequality provided in Lemma 2.1 below.
For the standard lightbulb process, a size bias coupling of X to Xs is achieved in the even

case by the construction, for each i = 1, . . . , n, of a collection Xi from the given X as follows.
Recalling (1.9), where, for s = n, we have k = n, if Xi = 1, that is, if bulb i is on at the
terminal time, we set Xi = X. Otherwise, let J be uniformly chosen from all j for which
Xn/2,j = 1 − Xn/2,i and let Xi be the same as X but with the values of Xn/2,i and Xn/2,J

interchanged. Let Xi be the number of bulbs on at the terminal time when applying the switch
variables Xi . Then, with I uniformly chosen from 1, . . . , n, the variable Xs = XI has the
X-size bias distribution, essentially due to the fact, shown in Lemma 3.2 below, that

L(Xi ) = L(X | Xi = 1).

Owing to the parity issue, to handle the odd case when n = 2m + 1, we first construct a
coupling of X to a more symmetric variable V . The variable V is constructed by randomizing
stages m and m + 1 in the switch variables that yield X. In particular, at stage m we add an
additional switch with probability 1

2 and, independently, at stage m + 1 we remove an existing
switch with probability 1

2 . A size bias coupling of V to V s can be achieved as in the even case,
thus yielding a bound to the normal for X. We remark that the size-biased couplings developed
here are used in [3] to show that the distribution of X, in both the even and odd cases, obeys
concentration-of-measure-type inequalities.

In Section 2 we present Theorem 2.1, which gives a bound to the normal when a bounded,
monotone size-biased coupling can be constructed for a given X. Our coupling construction
and the proof of the bound for the even case of the lightbulb process are given in Section 3.1.
Symmetrization, that is, the construction of V from X, coupling constructions for V , and an
outline of the proof of the bound in the odd case are given in Section 3.2. Calculations of
the bounds on the variance � in (1.12) require estimates on λn,b,s in (1.1). These estimates,
given in Section 4, are based on the work of [12] and yield the spectral decomposition of the
underlying transition matrices of the chain. Complete detailed calculations can be found in the
technical report [7].

2. Bounded monotone couplings

Theorem 2.1 for bounded, monotone size bias couplings depends on the following lemma,
which is in some sense the size bias version of Lemma 2.1 of [9]. With Y having mean µ and
variance σ 2, both finite and positive, with some slight abuse of notation in the definition of Ws ,
we set

W = Y − µ

σ
and Ws = Y s − µ

σ
. (2.1)

Lemma 2.1. Let Y be a nonnegative random variable with mean µ and variance σ 2, both finite
and positive, and let Y s be given on the same space as Y , having the Y -size bias distribution,
and satisfying Y s ≥ Y with probability 1. Then, with W and Ws given in (2.1), for any z ∈ R

and a > 0,
µ

σ
E[Ws − W ]1{Ws−W≤a}1{z≤W≤z+a} ≤ a.
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Proof. For fixed z ∈ R, let

f (w) =

⎧⎪⎨
⎪⎩

−a, w ≤ z,

w − z − a, z < w ≤ z + 2a,

a, w > z + 2a.

Then, using |f (w)| ≤ a for all w ∈ R, var(W) = 1, and the Cauchy–Schwarz inequality to
obtain the first inequality, followed by definition (2.1) and the size bias relation (1.11), we have

a ≥ E[Wf (W)]
= 1

σ
E[Y − µ]f

(
Y − µ

σ

)

= µ

σ
E[f (Ws) − f (W)]

= µ

σ
E

∫ Ws−W

0
f ′(W + t) dt

≥ µ

σ
E

∫ Ws−W

0
1{0≤t≤a}1{z≤W≤z+a}f ′(W + t) dt,

where in the final inequality we have used Ws ≥ W and f ′(w) ≥ 0 for all w ∈ R. Noting
that f ′(W + t) = 1{z≤W+t≤z+2a}, and that 0 ≤ t ≤ a and z ≤ W ≤ z + a imply that
z ≤ W + t ≤ z + 2a, we have

1{0≤t≤a}1{z≤W≤z+a}f ′(W + t) = 1{0≤t≤a}1{z≤W≤z+a},

and, therefore, we obtain

a ≥ µ

σ
E

∫ Ws−W

0
1{0≤t≤a}1{z≤W≤z+a} dt

= µ

σ
E[min(a, Ws − W)1{z≤W≤z+a}]

≥ µ

σ
E[Ws − W ]1{Ws−W≤a}1{z≤W≤z+a},

as claimed.

Theorem 2.1. Let Y be a nonnegative random variable with mean µ and variance σ 2, both
finite and positive, and let Y s be given on the same space as Y , with the Y -size bias distribution,
satisfying Y ≤ Y s ≤ Y + B with probability 1, for some positive constant B. Then, with W

and Ws given in (2.1), we have

sup
z∈R

|P(W ≤ z) − P(Z ≤ z)| ≤ µ

σ 2 � + 0.82
δ2µ

σ
+ δ,

where

� = √
var(E[Y s − Y | Y ]) and δ = B

σ
. (2.2)

Proof. For z ∈ R arbitrary, let h(w) = 1{w≤z} and let f (w) be the unique bounded solution
to the Stein equation

f ′(w) − wf (w) = h(w) − Nh, (2.3)

where Nh = E h(Z). Substituting W into (2.3), and using definition (2.1) and the size bias
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relation (1.11) yields

E[h(W) − Nh]
= E[f ′(W) − Wf (W)]
= E

[
f ′(W) − µ

σ
(f (Ws) − f (W))

]

= E

[
f ′(W)

(
1 − µ

σ
(Ws − W)

)
− µ

σ

∫ Ws−W

0
(f ′(W + t) − f ′(W)) dt

]
. (2.4)

As compiled in Lemma 2.3 of [2], we have the following bounds on the solution f from
Lemma 2 of [11, Chapter II]:

0 < f (w) <

√
2π

4
and |f ′(w)| ≤ 1. (2.5)

Also, as previously noted in [9], as a consequence of (2.5) and the mean value theorem, we
obtain

|(w + t)f (w + t) − wf (w)| ≤
(

|w| +
√

2π

4

)
|t |. (2.6)

Noting that E Y s = E Y 2/µ by (1.11), we find that

µ

σ
E[Ws − W ] = µ

σ 2

(
E Y 2

µ
− µ

)
= 1.

Therefore, taking the expectation by conditioning, and then applying (2.5) and the Cauchy–
Schwarz inequality, we bound the first term in (2.4) as∣∣∣∣E

[
f ′(W) E

[
1 − µ

σ
(Ws − W)

∣∣∣∣ W

]]∣∣∣∣ ≤ µ

σ

√
var(E[Ws − W | W ]) = µ

σ 2 �.

To bound the remaining term of (2.4), using (2.3), we have

µ

σ

∫ Ws−W

0
(f ′(W + t) − f ′(W)) dt = µ

σ

∫ Ws−W

0
[(W + t)f (W + t) − Wf (W)] dt

+ µ

σ

∫ Ws−W

0
(1{W+t≤z} − 1{W≤z}) dt. (2.7)

Applying (2.6) to the first term in (2.7), and using 0 ≤ Ws − W ≤ δ and E W 2 = 1, shows that
the absolute value of the expectation of this term is bounded by

µ

σ
E

[∫ Ws−W

0

(
|W | +

√
2π

4

)
t dt

]
= µ

2σ
E

[
(Ws − W)2

(
|W | +

√
2π

4

)]

≤ µ

2σ
δ2

(
1 +

√
2π

4

)

≤ 0.82
δ2µ

σ
.
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Taking the expectation of the absolute value of the second term in (2.7) we obtain

µ

σ
E

∣∣∣∣
∫ Ws−W

0
(1{W+t≤z} − 1{W≤z}) dt

∣∣∣∣ = µ

σ
E

[∫ Ws−W

0
1{z−t<W≤z} dt

]

≤ µ

σ
E[Ws − W ]1{z−δ<W≤z},

again using the fact that 0 ≤ Ws − W ≤ δ with probability 1. Lemma 2.1 with a = δ and z

replaced by z − δ shows that this term can be no more than δ. Since z ∈ R was arbitrary, the
proof is complete.

3. Normal approximation of X

The next lemma shows that the size bias distribution of a sum may be achieved by taking
certain mixtures. The result is a special case of Lemma 2.1 of [6], but we give a short direct
proof to make the paper more self-contained.

Lemma 3.1. Suppose that X is a sum of nontrivial exchangeable Bernoulli variables X1, . . . ,

Xn, and that, for i ∈ {1, . . . , n}, the variables Xi
1, . . . , X

i
n have joint distribution

L(Xi
1, . . . , X

i
n) = L(X1, . . . , Xn | Xi = 1).

Then

Xi =
n∑

j=1

Xi
j

has the X-size bias distribution Xs , as does the mixture XI when I is a random index with
values in {1, . . . , n}, independent of all other variables.

Proof. For i ∈ {1, . . . , n}, we first need to show that Xi satisfies (1.11), that is, that
E[X] E[g(Xi)] = E[Xg(X)] holds for a given bounded continuous g. Now, for such g,

E[Xg(X)] =
n∑

j=1

E[Xjg(X)] =
n∑

j=1

P(Xj = 1) E[g(X) | Xj = 1].

As exchangeability implies that E[g(X) | Xj = 1] = E[g(X) | Xi = 1] for all j = 1, . . . , n,
we have

E[Xg(X)] =
( n∑

j=1

P(Xj = 1)

)
E[g(X) | Xi = 1] = E[X] E[g(Xi)],

proving the first claim. The second claim now follows from

E g(XI ) =
n∑

i=1

E[g(XI ), I = i]

=
n∑

i=1

E[g(XI ) | I = i]P(I = i)

=
n∑

i=1

E g(Xi) P(I = i)
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=
n∑

i=1

E g(Xs) P(I = i)

= E g(Xs)

n∑
i=1

P(I = i)

= E g(Xs).

3.1. Even case

In this subsection we provide the proof of Theorem 1.1 for even n. We begin by describing
a coupling of X, the total number of bulbs on at the terminal time n in the standard lightbulb
process, to a variable Xs with the X-size bias distribution. Throughout, we let U(S) denote
the uniform distribution over a finite set S.

Theorem 3.1. With even n ∈ N, let the collection of switch variables X = {Xrj : r, j =
1, . . . , n} and X satisfy (1.8) and (1.9), respectively, with s = n. For every i = 1, . . . , n,
let Xi be given from X as follows. If Xi = 1 then Xi = X. Otherwise, with L(J i | X) =
U{j : Xn/2,j = 1 − Xn/2,i}, let Xi = {Xi

rj : r, j = 1, . . . , n}, where

Xi
rj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xrj , r 	= n/2,

Xn/2,j , r = n/2, j 	∈ {i, J i},
Xn/2,J i , r = n/2, j = i,

Xn/2,i , r = n/2, j = J i,

and let Xi = ∑n
j=1 Xi

j , where

Xi
j =

( n∑
r=1

Xi
rj

)
mod 2.

Then, with I uniformly chosen from {1, . . . , n} and independent of all other variables, the
mixture XI = Xs has the X-size bias distribution and satisfies

Xs − X = 21{XI =0, X
JI =0} and X ≤ Xs ≤ X + 2. (3.1)

To prove Theorem 3.1, we make use of a preliminary lemma, and also of the fact that

P(Xj = 0) = P(Xj = 1) = 1
2 for all j = 1, . . . , n. (3.2)

The equalities in (3.2) follow from E X = n/2, itself implied by (1.2) and that λ1,n,n = 0, as
noted earlier.

Lemma 3.2. For all i = 1, . . . , n, the collection of random variables Xi constructed from X

as specified in Theorem 3.1 satisfies

L(Xi ) = L(X | Xi = 1).

Proof. For a given i ∈ {1, . . . , n}, let e = {erj : r, j = 1, . . . , n} with erj ∈ {0, 1} for
r, j = 1, . . . , n. First note that, since Xi = X when Xi = 1, we have

P(Xi = e) = P(Xi = 1) P(Xi = e | Xi = 1) + P(Xi = 0) P(Xi = e | Xi = 0)

= P(Xi = 1) P(X = e | Xi = 1) + P(Xi = 0) P(Xi = e | Xi = 0),
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so the desired conclusion is equivalent to

P(Xi = e | Xi = 0) = P(X = e | Xi = 1). (3.3)

As the construction of Xi preserves the number of switches in each stage r , we may assume
that

∑
j erj = r for all r , as otherwise both sides of (3.3) are 0. If

∑
r eri = 0 mod 2 then the

left-hand side of (3.3) is 0 since Xi
i = 1 by construction; similarly, the right-hand side is 0 as

X = e implies that Xi = 0. Hence, we need only verify (3.3), assuming that

n∑
j=1

erj = r for all r = 1, . . . , n and
n∑

r=1

eri = 1 mod 2. (3.4)

Writing J for J i for simplicity, and letting ei,j denote the array e with coordinates en/2,i

and en/2,j interchanged, by (3.2) we have

P(Xi = e | Xi = 0) = 2 P(Xi = e, Xi = 0)

= 2
n∑

j=1

P(Xi = e, Xi = 0, J = j)

= 2
n∑

j=1

P(X = ei,j , Xi = 0, J = j).

Note that when en/2,i = en/2,j , or, equivalently, e
i,j
n/2,i = e

i,j
n/2,j , then

P(X = ei,j , Xi = 0, J = j) = P(X = ei,j , J = j), (3.5)

as both sides are 0, since on J = j we have Xn/2,i 	= Xn/2,j . Otherwise, en/2,i 	= en/2,j , and,
by the second equality in (3.4),

n∑
r=1

e
i,j
ri =

∑
r 	=n/2

eri + e
i,j
n/2,i =

∑
r 	=n/2

eri + 1 − en/2,i =
n∑

r=1

eri + 1 = 0,

with equalities modulo 2, so (3.5) holds again. Hence,

P(Xi = e | Xi = 0) = 2
n∑

j=1

P(X = ei,j , J = j)

= 2
n∑

j=1

P(J = j | X = ei,j ) P(X = ei,j )

= 2
n∏

s=1

(
n

s

)−1 n∑
j=1

P(J = j | X = ei,j )

= 2
n∏

s=1

(
n

s

)−1

,

where in the second to last equality we have used the fact that ei,j , as e, satisfies the first equality
of (3.4), and the distribution of X given by (1.8), and in the last equality we have used the fact

https://doi.org/10.1239/aap/1316792673 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1316792673


A Berry–Esseen bound for the lightbulb process 885

that the sum of probabilities of the conditional distribution of J given an X configuration that
satisfies the first equality of (3.4) for r = n/2 must sum to 1. Now, again using the second
equality in (3.4),

2
n∏

s=1

(
n

s

)−1

= 2 P(X = e) = 2 P(X = e, Xi = 1) = P(X = e | Xi = 1),

proving (3.3), and completing the proof of the lemma.

Proof of Theorem 3.1. That Xs has the X-size bias distribution follows from Lemmas 3.1
and 3.2. To prove the first equality in (3.1), note that if XI = 1 then XI = X; hence, in this case
Xs = X. Otherwise, XI = 0 and the collection XI is constructed from X by interchanging the
stage n/2, unequal, switch variables Xn/2,I and Xn/2,J I . If XJI = 1 then after the interchange
XI

I = 1 and XI
JI = 0, yielding Xs = X. If XJI = 0 then after the interchange XI

I = 1 and

XI
JI = 1, yielding Xs = X + 2. The second claim in (3.1) is an immediate consequence of the

first.

The following lemma shows that, for the case at hand, the variance of the conditional
expectation term (2.2) in Theorem 2.1 may be expressed in terms of quantities of the form

gα,β = P(X1 = · · · = Xα+β = 0, Xn/2,1 = · · · = Xn/2,α = 0,

Xn/2,α+1 = · · · = Xn/2,α+β = 1), (3.6)

the probability that, when applying switch pattern n, bulbs numbered 1 though α +β terminate
in the off position, and in stage n/2, bulbs numbered 1 through α receive switch variable 0 and
bulbs numbered α + 1 through α + β receive switch variable 1.

Using the spectral decomposition in Section 4 to handle the probabilities in (3.6), we now
provide an upper bound to term (2.2) when applying Theorem 2.1 for even n. Let

nn/2 =
(

1, . . . ,
n

2
− 1,

n

2
+ 1, . . . , n

)
, (3.7)

the vector n with its (n/2)th component deleted.

Lemma 3.3. Let n be even, and let X and Xs be given by Theorem 3.1. Then, for n ≥ 6,

�0 ≤ �0,

where

�0 = √
var(E[Xs − X | X]) and �0 = 1

2
√

n
+ 1

2n
+ 1

3
e−n/2.

Proof. We apply the construction of Xs , and the conclusions, of Theorem 3.1. For nota-
tional simplicity, let J I = J , so in particular, from (3.1) we have Xs − X = 21{XI =0, XJ =0}.
Expanding the indicator over the possible values of I and J , and then over the values of the
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switch variables Xn/2,i and Xn/2,j yields

1{XI =0, XJ =0} =
n∑

i,j=1

1{Xi=0, Xj =0}1{I=i, J=j}

=
n∑

i,j=1

1{Xi=0, Xj =0, Xn/2,i=0}1{I=i, J=j}

+
n∑

i,j=1

1{Xi=0, Xj =0, Xn/2,i=1}1{I=i, J=j}

=
∑
i 	=j

1{Xi=0, Xj =0, Xn/2,i=0, Xn/2,j =1}1{I=i, J=j}

+
∑
i 	=j

1{Xi=0, Xj =0, Xn/2,i=1, Xn/2,j =0}1{I=i, J=j}

= 2
∑
i 	=j

1{Xi=0, Xj =0, Xn/2,i=0, Xn/2,j =1}1{I=i, J=j},

where the second to last equality holds almost surely, as the probability of the event {I = i,

J = j} is 0 whenever Xn/2,i and Xn/2,j agree, and the last inequality holds since the final
expression is the sum of two terms which can be seen to be equal by reversing the roles of i

and j .
To obtain a tractable bound on the required variance, we apply the inequality

var(E[Xs − X | X]) ≤ var(E[Xs − X | F ]), (3.8)

which holds when F is any σ -algebra with respect to which X is measurable (see [6] for
example). Here we let F be the σ -algebra generated by X, the collection of all switch variables.
The first indicator in the final sum above, 1{Xi=0, Xj =0, Xn/2,i=0, Xn/2,j =1}, is measurable with
respect to F . For the second indicator, conditioning on F yields

E[1{I=i, J=j} | F ] = P(I = i, J = j | F ) = 2

n2 1{Xn/2,i 	=Xn/2,j },

as, for any i, chosen with probability 1/n, there are n/2 choices for j satisfying the condition
in the indicator. Hence, recalling from (3.1) that Xs − X = 21{XI =0,XJ =0}, we have

E[Xs − X | F ] = Un, where Un = 4

n2

∑
i 	=j

1{Xi=0, Xj =0, Xn/2,i=0, Xn/2,j =1}, (3.9)

and �2
0 ≤ var(Un) by (3.8).

Taking the expectation of Un in (3.9), using the exchangeability of the (n)2 terms in the sum
and applying Corollary 4.1, also recalling the notation defined in (3.7), we have

E Un = 4

n2 (n)2g1,1 = 1

4
(1 − λn,2,nn/2). (3.10)

Squaring (3.9) in order to obtain the second moment of Un, we obtain a sum over indices
i1, i2, j1, j2 with {i1, i2} ∩ {j1, j2} = ∅, so |{i1, i2, j1, j2}| ∈ {2, 3, 4}, and we may write

U2
n = U2

n,2 + U2
n,3 + U2

n,4, (3.11)
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where

U2
n,p = 16

n4

∑
|{ii ,i2,j1,j2}|=p

{i1,i2}∩{j1,j2}=∅

1{Xi1=0, Xj1=0, Xn/2,i1=0, Xn/2,j1=1}1{Xi2 =0, Xj2 =0, Xn/2,i2 =0, Xn/2,j2 =1}.

Beginning the calculation with the main term U2
n,4, where all four indices are distinct, taking

the expectation using exchangeability, and applying Corollary 4.1 yields

E U2
n,4 = 16

n4 (n)4g2,2 =
(

n − 2

4n

)2

(1 − 2λn,2,nn/2 + λn,4,nn/2). (3.12)

With the inequalities over the summation in (3.11) in force, the event |{i1, i2, j1, j2}| = 3
can only occur when

(a) i1 	= i2 and j1 = j2, or

(b) i1 = i2 and j1 	= j2.

Applying Corollary 4.1, case (a) leads to a contribution of

16

n4 (n)3g2,1 = n − 2

4n2 (1 + λn,1,nn/2 − λn,2,nn/2 − λn,3,nn/2),

while in the same manner, again using Corollary 4.1, the contribution from case (b) is

16

n4 (n)3g1,2 = n − 2

4n2 (1 − λn,1,nn/2 − λn,2,nn/2 + λn,3,nn/2).

Totaling we find that

E U2
n,3 = n − 2

2n2 (1 − λn,2,nn/2). (3.13)

With the inequalities over the summation in (3.11) in force, the event |{i1, i2, j1, j2}| = 2
can only occur when i1 = i2 and j1 = j2. Hence, again by Corollary 4.1,

E U2
n,2 = 16

n4 (n)2g1,1 = 1

n2 (1 − λn,2,nn/2). (3.14)

Summing (3.12), (3.13), and (3.14) we obtain

E U2
n =

(
n − 2

4n

)2

(1 − 2λn,2,nn/2 + λn,4,nn/2) + 1

2n
(1 − λn,2,nn/2).

Subtracting the square of the first moment, given in (3.10), yields

var(Un) = 1

16

(
1 − 2

n

)2

(1 − 2λn,2,nn/2 + λn,4,nn/2) + 1

2n
(1 − λn,2,nn/2)

− 1

16
(1 − λn,2,nn/2)

2

= 1

16
(λn,4,nn/2 − λ2

n,2,nn/2
) + 1 − n

4n2 (1 − 2λn,2,nn/2 + λn,4,nn/2)

+ 1

2n
(1 − λn,2,nn/2)

= 1

4n
+ 1

4n2 + 1

16
(λn,4,nn/2 − λ2

n,2,nn/2
) − 1

2n2 λn,2,nn/2 + 1 − n

4n2 λn,4,nn/2 .
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Now applying Lemma 4.5 given in Section 4, for n ≥ 6, we obtain

var(Un) ≤ 1

4n
+ 1

4n2 + 1

16

(
1

2
e−n + e−2n

)
+ 1

2n2 e−n + n − 1

8n2 e−n

≤ 1

4n
+ 1

4n2 + e−n

(
1

16
+ 1

n2 + 1

8n

)
.

The inequality
√

a + b + c ≤ √
a + √

b + √
c, holding for all nonnegative a, b, and c, now

yields the claim of the lemma.

With all ingredients at hand, we may now prove the bound for even n.

Proof of Theorem 1.1: even case. The size-biased coupling given in Theorem 3.1 satisfies
the hypotheses of Theorem 2.1 with B = 2, by the second inequality in (3.1). Hence, the result
for the even case follows by applying Theorem 2.1 with µ = n/2, δ = 2/σ , and the bound �0
on �0 given in Lemma 3.3.

3.2. Odd case

Now we move to the case where n = 2m+1 is odd. Instead of directly forming a size-biased
coupling to X, we first couple X closely to a more symmetrical random variable V for which
a coupling like the one in the even case may be applied. The variable V is constructed by
randomizing stages m and m + 1. In particular, at stage m we add an additional switch with
probability 1

2 and, independently at stage m+1 we remove an existing switch with probability 1
2 .

Formally, let X = {Xrj : r, j = 1, . . . , n} be a collection of switch variables with distribution
given by (1.8) with s = n, and let X = Xn be given by (1.9) with k = n. Let

L(Bm | X) = U{j : Xmj = 0} and L(Bm+1 | X) = U{j : Xm+1,j = 1}
with Bm and Bm+1 conditionally independent given X, and let Cm and Cm+1 be symmetric
Bernoulli variables, independent of X and of Bm and Bm+1. Now let a collection of switch
variables V = {Vrj , r, j = 1, . . . , n} be defined by

Vrj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Xrj , r 	∈ {m, m + 1},
Xmj , r = m, j 	= Bm,

Cm, r = m, j = Bm,

Xm+1,j , r = m + 1, j 	= Bm+1,

Cm+1, r = m + 1, j = Bm+1,

(3.15)

and set

V =
n∑

j=1

Vj , where Vj =
( n∑

r=1

Vrj

)
mod 2. (3.16)

In other words, in all stages other than m and m + 1 the switch variables that produce V are
those from the given collection X. In stage m, the switch variables for all bulbs but bulb Bm,
chosen uniformly over all bulbs in that stage that were not toggled, are those given by X. The
switch variable for Bm in stage m, however, is set to Cm, which takes the values 0 and 1 equally
likely. Hence, with probability 1

2 , one additional bulb in stage m is toggled. Similarly, in stage
m+1, the switch variable of bulb Bm+1, uniformly selected from all the bulbs that were toggled
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in that stage, is no longer toggled with probability 1
2 . Since X and V differ in at most two

switches, we have
|X − V | ≤ 2. (3.17)

It is now not difficult to show that the collections of variables {Vrj , j = 1, . . . , n} are
mutually independent for r = 1, . . . , n, and that the distribution of the switch variables V in
stages m and m + 1 are the same equal mixture, that is, for r ∈ {m, m + 1},

L(Vr1, . . . , Vrn) = 1
2L(Xm1, . . . , Xmn) + 1

2L(Xm+1,1, . . . , Xm+1,n).

The expressions in (1.5) for the mean and variance of V now follow from (1.2); see [7] for
details.

We now present a size bias coupling for V . As in the even case, the variable V s is obtained
by first constructing, for each i = 1, . . . , n, switch variables V i that satisfy

L(V i ) = L(V | Vi = 1). (3.18)

For a given i = 1, . . . , n, to construct V i , we first determine if Vi = 1. If so, set V i = V .
Otherwise, let M be a variable that chooses from the stages m and m + 1 uniformly and
independently of V . Since in this case Vi = 0, we may achieve V i

i = 1 by changing the switch
variable VMi to 1 − VMi . The coupling accomplishes this change in one of two possible ways.

To introduce the first way, called a flip, we say that a configuration e of binary switch variable
values is feasible if P(V = e) 	= 0, that is, when

n∑
j=1

erj = r for r 	∈ {m, m + 1} and
n∑

j=1

erj ∈ {m, m + 1} for r ∈ {m, m + 1}.

If flipping VMi to 1−VMi results in a feasible configuration, then the flip is made with probability
1/(m+1). In other words, given e, r ∈ {m, m+1} and i = 1, . . . , n, let er,i be the configuration
with entries

e
r,i
sl =

{
esl, s 	= r or l 	= i,

1 − eri , s = r and l = i.

Defining V M,i in a like manner, the distribution of F i , the indicator that VMi is flipped, is given
by

P(F i = 1 | V , M) = 1

m + 1
1{V M,i is feasible}. (3.19)

If the flip is unsuccessful, that is, if F i = 0, we perform an ‘interchange’ in stage M , much
like the coupling in the even case. For a configuration e, r ∈ {m, m + 1} and i, j ∈ {1, . . . , n},
let

e
r,i,j
sl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

esl, s 	= r or l 	= i,

erl, s = r, l 	∈ {i, j},
eri , s = r, l = j,

erj , s = r, l = i,

that is, er,i,j is the configuration e with the variables in the r, i and r, j positions interchanged.
Now let J i be a random index with distribution given by

L(J i | V , M) = U{j : VMj 	= VMi}. (3.20)
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Defining V M,i,j in a like manner, when F i = 0, we interchange VMi with VM,J i . Hence,
overall the configuration V i is specified by

V i =

⎧⎪⎨
⎪⎩

V , Vi = 1,

V M,i, Vi = 0, F i = 1,

V M,i,J i
, Vi = 0, F i = 0.

(3.21)

The following theorem shows that V i satisfies (3.18). In the following we denote F i and J i

by F and J , respectively, for simplicity.

Theorem 3.2. Let V be constructed from X as in (3.15), let M be a random variable uniformly
distributed over {m, m + 1} independent of V , and, for i ∈ {1, . . . , n}, let F and J have
distributions as specified in (3.19) and (3.20), respectively. Then V i given by (3.21) satisfies
(3.18).

Furthermore, letting V i = ∑n
j=1 V i

j , where

V i
j =

( n∑
r=1

V i
rj

)
mod 2,

and I be uniformly chosen from {1, . . . , n} and independent of all other variables, the mixture
V I = V s has the V -size bias distribution and satisfies

V s − V = 1{VI =0, F=1} + 21{VI =0, XJ =0, F=0} and V ≤ V s ≤ V + 2.

For a proof of Theorem 3.2, see [7]. The coupling so constructed leads to the following
bound to the normal for V .

Theorem 3.3. If n is odd and V is given by (3.16), then

sup
z∈R

∣∣∣∣P
(

V − n/2

σV

≤ z

)
− P(Z ≤ z)

∣∣∣∣ ≤ n

2σ 2
V

�1 + 1.64
n

σ 3
V

+ 2

σV

for all n ≥ 7,

where σ 2
V and �1 are given in (1.5) and (1.7), respectively.

Outline of the proof. By Theorem 3.2, we may apply Theorem 2.1 with δ = 2/σV , and it
only remains to prove that �1 in (1.7) is an upper bound on �1 = √

var E[V s − V | V ] for all
n ≥ 7. The desired bound may be obtained by computations similar to, but somewhat more
involved than, those for the even case; see [7] for details.

We now provide a bound for the normal approximation of X in the odd case. We remark
that, using V , fewer error terms, and, therefore, a smaller bound, result when standardizing X

as in Theorem 1.1, that is, not by its own mean and variance but by the (exponentially close)
mean and variance of the closely coupled V .

Proof of Theorem 1.1: odd n. Letting W = (X − n/2)/σV and WV = (V − n/2)/σV ,
recalling that |X − V | ≤ 2 from (3.17), we have

|W − WV | = |X − V |
σV

≤ 2

σV

. (3.22)
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With �(z) = P(Z ≤ z) and

CV = n

2σ 2
V

�1 + 1.64
n

σ 3
V

+ 2

σV

,

by (3.22) and Theorem 3.3, we obtain

P(W ≤ z) − �(z) ≤ P

(
WV − 2

σV

≤ z

)
− �(z)

= P

(
WV ≤ z + 2

σV

)
− �

(
z + 2

σV

)
+ �

(
z + 2

σV

)
− �(z)

≤ CV + 2

σV

√
2π

.

As a corresponding lower bound can be similarly demonstrated, the claim is shown.

4. Spectral decomposition

In [12] the lightbulb chain was analyzed as a composition chain of multinomial type. Such
chains in general are based on a d × d Markov transition matrix P that describes the transition
of a single particle in a system of n identical particles, a subset of which is selected uniformly
to undergo transition at each time step according to P .

In the case of the lightbulb chain there are d = 2 states and the transition matrix P of a
single bulb is given by

P =
[

0 1
1 0

]
,

where we let e0 = (1, 0)� and e1 = (0, 1)� denote the 0 and 1 states of the bulb, for off and
on, respectively. With b ∈ {0, 1, . . . , n}, let Pn,b,s be the 2b × 2b transition matrix of a subset
of size b of the n total lightbulbs when s of the n bulbs are selected uniformly to be switched.
Let Pn,0,s = 1 for all n and s, and let I2 be the 2 × 2 identity matrix. For n ≥ 1, the matrix
Pn,b,s is given recursively by

Pn,b,s = s

n
(P ⊗ Pn−1,b−1,s−1) +

(
1 − s

n

)
(I2 ⊗ Pn−1,b−1,s) for b ∈ {1, . . . , n},

as any particular bulb among the b in the subset considered is selected with probability s/n to
undergo transition according to P , leaving the s − 1 remaining switches to be distributed over
the remaining b − 1 of n − 1 bulbs, and with probability 1 − s/n, the bulb is left unchanged,
leaving all the s switches to be distributed.

The transition matrix P is easily diagonalizable by the orthogonal matrix T as

P = T ��T , where T = 1√
2

[
1 1

−1 1

]
and � =

[
1 0
0 −1

]
; (4.1)

hence, Pn,b,s is diagonalized by

Pn,b,s =
b⊗

T ��n,b,s

b⊗
T , (4.2)
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where �n,0,s = 1 and �n,b,s is given recursively by

�n,b,s = s

n
(� ⊗ �n−1,b−1,s−1) +

(
1 − s

n

)
(I2 ⊗ �n−1,b−1,s) for b ∈ {1, . . . , n}. (4.3)

The next result describes the diagonal matrices �n,b,s more explicitly in terms of a sequence of
vectors ab of length 2b for all b ≥ 1 defined through the recursion

ab = (ab−1, ab−1 + 1b−1) for b ≥ 2, with a1 = (0, 1), (4.4)

where 1b = (1, . . . , 1) is of size 2b. For example,

a1 = (0, 1), a2 = (0, 1, 1, 2), and a3 = (0, 1, 1, 2, 1, 2, 2, 3). (4.5)

Letting an be the nth term of the vector ab for any b satisfying 2b ≥ n results in a well-defined
sequence a1, a2, . . ..

Lemma 4.1. For n ∈ {0, 1, . . . , }, b, s ∈ {0, . . . , n}, and λn,b,s given by (1.1), the matrix �n,b,s

in (4.2) satisfies
�n,b,s = diag(λn,a1,s , . . . , λn,a2b ,s).

In particular, with 02b−1 the vector of 0s of length 2b−1, for b ≥ 1,

�n,b,s = diag(λn,a1,s , . . . , λn,a2b−1 ,s , 02b−1) + diag(02b−1 , λn,a1+1,s , . . . , λn,a2b−1+1,s).

For instance, from (4.5), for b = 2, we have

�n,2,s = diag(λn,0,s , λn,1,s , λn,1,s , λn,2,s),

and, for b = 3,

�n,3,s = diag(λn,0,s , λn,1,s , λn,1,s , λn,2,s , λn,1,s , λn,2,s , λn,2,s , λn,3,s).

Proof of Lemma 4.1. As a1 = 0, we have �n,0,s = 1 = λn,0,s , so the lemma is true for
b = 0. For the inductive step, assuming that the lemma is true for b − 1, by (4.3) and the
definition of 	 from (4.1), it suffices to verify that

s

n
λn−1,a,s−1 +

(
1 − s

n

)
λn−1,a,s = λn,a,s

and

− s

n
λn−1,a,s−1 +

(
1 − s

n

)
λn−1,a,s = λn,a+1,s

for all a = 0, 1, . . .. To prove the first equality, by (1.1) we have

s

n
λn−1,a,s−1 +

(
1 − s

n

)
λn−1,a,s

= s

n

a∑
t=0

(
a

t

)
(−2)t

(s − 1)t

(n − 1)t
+

(
1 − s

n

) a∑
t=0

(
a

t

)
(−2)t

(s)t

(n − 1)t

=
a∑

t=0

(
a

t

)
(−2)t

(
s

n

(s − 1)t

(n − 1)t
+

(
1 − s

n

)
(s)t

(n − 1)t

)

=
a∑

t=0

(
a

t

)
(−2)t

(s)t+1 + (n − s)(s)t

(n)t+1
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=
a∑

t=0

(
a

t

)
(−2)t

(s)t (s − t + n − s)

(n)t+1

=
a∑

t=0

(
a

t

)
(−2)t

(s)t (n − t)

(n)t+1

=
a∑

t=0

(
a

t

)
(−2)t

(s)t

(n)t

= λn,a,s .

The second equality can be shown in a similar, though slightly more involved, fashion.

We note that [12] expresses these eigenvalues in terms of the hypergeometric function.
If the k stages of the process 1, . . . , k use switches s = (s1, . . . , sk), then since the matrices

Pn,b,s , s ∈ {0, 1, . . . , n}, are simultaneously diagonalizable by (4.2), the transition matrix
Pn,b,s for any subset of b bulbs can be diagonalized as

Pn,b,s =
k∏

j=1

Pn,b,sj =
b⊗

T ��n,b,s

b⊗
T =

b⊗
T �diag(λn,a1,s, . . . , λn,a2b ,s)

b⊗
T ,

(4.6)
where λn,a,s is given in (1.1) and

�n,b,s =
k∏

j=1

�n,b,sj . (4.7)

If π is a permutation of {1, . . . , k}, let π(s) = (sπ(1), . . . , sπ(k)). As all the matrices �n,b,s are
diagonal, from (4.7) we have �n,b,s = �n,b,π(s), and now from (4.6) we have the following
result.

Lemma 4.2. The distribution of the lightbulb chain is independent of the order in which the
switch variables s are applied, that is, for all permutations π ,

Pn,b,s = Pn,b,π(s).

The following lemma helps us compute probabilities such as g
(l)
α,β,s in (3.6). For j ∈

{0, 1, . . .}, let �b,j be the 2b × 2b diagonal matrix in the variables xk, k ∈ {0, 1, . . .}, given by

�b,j = diag(xa1+j , . . . , xa2b+j ), (4.8)

and set

ub =
b⊗

T e⊗b
0 and wb =

b⊗
T e⊗b

1 , (4.9)

where we recall that e0 = (1, 0)� and e1 = (0, 1)�. Note that, for b = 1, we have

u1 = T e0 = 1√
2

(1, −1)� and w1 = T e1 = 1√
2

(1, 1)�. (4.10)
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Lemma 4.3. Let t ∈ {0, 1, . . .} and �t = �t,0, and suppose that, for some vector vt ∈ R
2t

,

v�
t �tut = 1

2t

t∑
j=0

(
t

j

)
a(j)xj (4.11)

holds for t = b − 1 with some sequence a(j), j = 0, . . . , b − 1. Then (4.11) holds for t = b

when replacing vt by vb = u1 ⊗ vt and a(j) by

au(j) = b − j

b
a(j) + j

b
a(j − 1), (4.12)

and for t = b when replacing vt by vb = w1 ⊗ vt and a(j) by

aw(j) = b − j

b
a(j) − j

b
a(j − 1). (4.13)

Proof. By (4.4) we may write

�b =
[
�b−1,0 0

0 �b−1,1

]
and by (4.10) we have

ub = u1 ⊗ ub−1 = 1√
2

(u�
b−1, −u�

b−1)
�.

Hence, when vb = u1 ⊗ vb−1 = (v�
b−1, −v�

b−1)
�/

√
2, we obtain

v�
b �bub = 1

2 (v�
b−1�b−1,0ub−1 + v�

b−1�b−1,1ub−1)

= 1

2b

b−1∑
j=0

(
b − 1

j

)
a(j)xj + 1

2b

b−1∑
j=0

(
b − 1

j

)
a(j)xj+1

= 1

2b

b−1∑
j=0

(
b − 1

j

)
a(j)xj + 1

2b

b∑
j=1

(
b − 1

j − 1

)
a(j − 1)xj

= 1

2b

b∑
j=0

((
b − 1

j

)
a(j) +

(
b − 1

j − 1

)
a(j − 1)

)
xj

= 1

2b

b∑
j=0

(
b

j

)((
b − j

b

)
a(j) +

(
j

b

)
a(j − 1)

)
xj

= 1

2b

b∑
j=0

(
b

j

)
au(j)xj ,

as claimed. The proof is essentially the same, using (4.10), when vb = w1 ⊗ vb−1 = (v�
b−1,

v�
b−1)

�/
√

2.

In Corollary 4.1 below we use the conditional probability

fα,β,s = P(Xi = 0, i = 1, . . . , α + β | X0,i = 0, i = 1, . . . , α,

X0,i = 1, i = α + 1, . . . , α + β) (4.14)

(see Lemma 4.4 below), where Xs has distribution given by (1.8), to express the functions gα,β

in (3.6).
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Lemma 4.4. For given α, β ≥ 0, setting b = α + β, the probability fα,β,s in (4.14) is given
by

fα,β,s = 1

2b

b∑
j=0

(
b

j

)
aα,β(j)λn,j,s, (4.15)

where aα,0(j) = 1 for all α ≥ 0 and

aα,β(j) = b − j

b
aα,β−1(j) − j

b
aα,β−1(j − 1) for all α ≥ 0, β ≥ 1. (4.16)

Proof. Using exchangeability for the first equality, extracting the relevant component of the
k-step transition matrix and applying (4.6), we obtain

fα,β,s = ((e�
1 )⊗β ⊗ (e�

0 )⊗α)Pn,b,se
⊗b
0

= ((e�
1 )⊗β ⊗ (e�

0 )⊗α)

b⊗
T ��n,b,s

b⊗
T e⊗b

0

= v�
b �n,b,sub,

where uα and wβ are given as in (4.9) and vb = wβ ⊗ uα . Hence, with �b = �b,0 as in (4.8),
the result follows from

v�
b �bub = 1

2b

b∑
j=0

(
b

j

)
aα,β(j)xj . (4.17)

We first prove the case in which β = 0 by induction in α; note that in this case vb = ub.
Equality (4.17) holds with aα,0(j) = 1 for α = 0, as both sides equal x0 in this case. Assuming
that (4.17) holds for some α ≥ 0 with aα,0(j) = 1, then (4.12) of Lemma 4.3 implies that
(4.17) holds for α + 1 and β = 0 with

aα+1,0(j) = b − j

b
aα,0(j) + j

b
aα,0(j − 1) = 1.

Hence, (4.17) holds for all α ≥ 0 and β = 0 with aα,0(j) = 1. Similarly, assuming now that
(4.17) holds for aα,β−1(j) with nonnegative α, β −1, (4.17) holds with aα,β(j) given by (4.13)
of Lemma 4.3, thus completing the induction.

As our computations involve only moments up to fourth order, we highlight these particular
special cases of Lemma 4.4 in the following corollary.

Corollary 4.1. For α, β ≥ 0, the probability gα,β in (3.6) is given by

gα,β = fα,β,nn/2pα,β, where pα,β = (n/2)α(n/2)β

(n)α+β

, (4.18)

and fα,β,nn/2 is given by (4.15). For 0 ≤ α + β ≤ 4, the sequences in (4.15) specialize to

a0,0(j) = 1,

a0,1(j) = (−1)j and a1,0(j) = 1,

a0,2(j) = (−1)j , a1,1(j) = 1 − j, and a2,0(j) = 1,

a0,3(j) = (−1)j , a1,2(j) = (−1)j
(

1 − 2j

3

)
,

a2,1 = 1 − 2j

3
, and a3,0(j) = 1,
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and

a0,4(j) = (−1)j , a1,3(j) = (−1)j
(

1 − j

2

)
, a2,2 = 1 − j (4 − j)

3
,

a3,1 = 1 − 1
2j, and a4,0(j) = 1.

Proof. By Lemma 4.2, that is, the fact that the switch variables can be applied in any
order, conditioning on the values of the switch variables in stage n/2 yields the same result
as assuming these values as initial conditions in stage 0, and applying the switch pattern nn/2,
that is, n skipping stage n/2. Hence, the first claim in (4.18) follows, as the first factor is the
probability of the given event conditioned on the values in stage n/2, while the second factor
is the probability of the conditioning event, as

P(Xn/2,1 = · · · = Xn/2,α = 0, Xn/2,α+1 = · · · = Xn/2,α+β = 1)

=
α−1∏
i=0

(
n/2 − i

n − i

) β−1∏
i=0

(
n/2 − i

n − α − i

)
,

which is pα,β .
The specific forms of the sequences aα,β(j) for 0 ≤ α + β ≤ 4 follow directly from the

initial condition and recursion in Lemma 4.4.

Applying Corollary 4.1, we obtain, for example, the formulae

g2,1 = 1

8
(1 + λn,1,nn/2 − λn,2,nn/2 − λn,3,nn/2)

(n/2)2n/2

(n)3

and

g2,2 = 1

16
(1 − 2λn,2,nn/2 + λn,4,nn/2)

(n/2)2(n/2)2

(n)4
.

Lastly, we present the bounds on products of eigenvalues of the chain used to handle the
variance term (2.2) when applying Theorem 1.1 to the lightbulb chain.

Lemma 4.5. For all even n ≥ 6,

|λn,2,nn/2 | ≤ e−n and |λn,4,nn/2 | ≤ 1
2 e−n. (4.19)

Proof. We show only that the first inequality of (4.19) holds. The remaining claim can be
obtained by similar, but more extensive calculations; see the technical report [7] for complete
derivations, which slightly generalize the arguments of [8].

Let n ≥ 2. Consider the second-degree polynomial (cf. (1.3))

f2(x) = 1 − 4x

n
+ 4(x)2

(n)2
, 0 ≤ x ≤ n.

It is simple to verify that f2(x) achieves its global minimum value of −1/(n − 1) at n/2, and
that f2(x) has exactly two roots, at (n + √

n)/2 and (n − √
n)/2. Hence, as f2(x) ≤ 0 for all

x between these roots, and additionally, as (x − 1)/(n − 1) ≤ x/n for all x ∈ [0, n], we obtain
the bound

|f2(x)| ≤

⎧⎪⎪⎨
⎪⎪⎩

1

n − 1
for x ∈

[
n − √

n

2
,
n + √

n

2

]
,(

1 − 2x

n

)2

for x ∈
[
n − √

n

2
,
n + √

n

2

]c

∩ [0, n].
(4.20)
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For x ∈ R, let 
x� and �x� denote the greatest integer less than or equal to x, and the smallest
integer greater than or equal to x, respectively. Letting

t =
{⌈

n − √
n

2

⌉
, . . . ,

⌊
n + √

n

2

⌋}
\

{
n

2

}
,

we have

|λn,2,nn/2 | =
(
(n−√

n)/2�∏
s=0

|f2(s)|
)(∏

s∈t

|f2(s)|
)( n∏

s=�(n+√
n)/2�

|f2(s)|
)

.

If either of the roots (n − √
n)/2 or (n + √

n)/2 is an integer then equality holds as both
expressions above are 0. Now assuming that neither value is an integer, the product below is
over disjoint indices.

Applying the bound (4.20), 
n/2 −x�+�n/2 +x� = n and 1 − 2(n− s)/n = −(1 − 2s/n)

yields

|λn,2,nn/2 | ≤
(
(n−√

n)/2�∏
s=0

(
1 − 2s

n

)2)(∏
s∈t

1

n − 1

)( n∏
s=�(n+√

n)/2�

(
1 − 2s

n

)2)

=
(
(n−√

n)/2�∏
s=0

(
1 − 2s

n

))4( 1

n − 1

)|t |
,

where |t | is the cardinality of t .
Using 1 − x ≤ e−x and the fact that 
x� ≥ x − 1 on the first product, we obtain the bound

|λn,2,nn/2 | ≤
(

exp

[
−2

n

(⌊
n − √

n

2

⌋)(⌊
n − √

n

2

⌋
+ 1

)/
2

])4

e−|t | log(n−1)

≤ exp

[
−

(
n − 2

√
n − 1 + 2√

n
+ |t | log(n − 1)

)]
. (4.21)

To control |t |, note that, as �x� ≤ x + 1, we have

|t | =
⌊

n + √
n

2

⌋
−

⌈
n − √

n

2

⌉
≥ √

n − 2.

As log 35 ≥ 3.5, for n ≥ 36, we have

−2
√

n − 1 + 2√
n

+ |t | log(n − 1) ≥ −2
√

n − 1 + 3.5(
√

n − 2) = 3

2

√
n − 8 ≥ 0,

and, hence, from (4.21),

|λn,2,nn/2 | ≤ e−n for n ≥ 36.

It can be verified directly that λn,2,nn/2 satisfies this same bound for all even integers 6 ≤ n ≤ 34,
thus completing the proof.
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[9] Shao, Q. M. and Su, Z. (2005). The Berry-Esseen bound for character ratios. Proc. Amer. Math. Soc. 134,
2153–2159.

[10] Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9, 1135–1151.
[11] Stein, C. (1986). Approximate Computation of Expectations. Institute of Mathematical Statistics, Hayward,

CA.
[12] Zhou, H. and Lange, K. (2009). Composition Markov chains of multinomial type. Adv. Appl. Prob. 41, 270–

291.

https://doi.org/10.1239/aap/1316792673 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1316792673

	1 Introduction
	2 Bounded monotone couplings
	3 Normal approximation of X
	3.1 Even case
	3.2 Odd case

	4 Spectral decomposition
	References

