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RATIONAL TENSOR REPRESENTATIONS OF Hom(^ V) 
AND AN EXTENSION OF AN INEQUALITY 

OF I. SCHUR. 

MARVIN MARCUS AND WILLIAM ROBERT GORDON 

1. Introduction. Let V be an w-dimensional vector space over the complex 
numbers equipped with an inner product (x, y), and let (P, /x) be a symmetry 
class in the mth tensor product of V associated with a permutation group G 
and a character % (see below). Then for each T £ Horn (F, V) the function <p 
which sends each w-tuple (z>i, . . . , vm) of elements of V to the tensor 
JJL(TVI, . . . , Tvm) is symmetric with respect to G and x, and so there is a unique 
linear map K{T) from P to P such that ç = K(T)JJL. 

It is easily checked that K: Hom(F, V) —-> Hom(P, P) is a rational repre­
sentation of the multiplicative semi-group in Hom(F, V): for any two linear 
operators 5 and T on V 

K(ST) = K(S)K(T). 

Moreover, if T is normal then, with respect to the inner product induced on P 
by the inner product on V (see below), K(T) is normal. 

In this paper we prove 

THEOREM 1. If S and Tare in Horn (V, V) and rank T > m, then K(T) = K(S) 
if and only if T = cS for some mth root of unity, c. 

THEOREM 2. If T £ Hom(V, V) and rank T > m, then K(T) is normal if 
and only if T is normal. 

By considering an n X n complex matrix as a linear operator on complex 
w-tuple space, we have 

THEOREM 3. If A is an n X n complex matrix with rank A — m and if K{A) 
is normal, then A is unitarily similar to the direct sum of a non-singular m X m 
upper triangular matrix and the (n — m) X (n — m) zero matrix. 

We shall show in § 4 how these results can be easily applied to produce the 
following interesting theorem which was announced recently by R. Kess, 
H. L. de Vries, and R. Wegmann [1], 

THEOREM 4. If A is a non-normal n X n complex matrix with eigenvalues 
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Xi, . . . , \n, if D = A A* — A* A j and if \\ || denotes the usual Euclidean matrix 
norm, then 

(1) t M2:g(|M||4-iP||2)* 
i=l 

with equality if and only if 

(2) A = a(vw* + rwv*), 

where a is a non-zero complex number, r is a real number, 0 ^ r < 1, and where 
v and w are orthonormal complex n-tuples. 

It will be seen from our proof of this theorem that inequality (1) is an 
application of Schur's well known inequality [2] to the appropriate transforma­
tions. 

2. Definitions and notation. Throughout this paper, V will be a finite-
dimensional inner product space over the complex numbers C, dim V = n, G 
a subgroup of Sm, the symmetric group of degree m, and x a character of degree 
1 on G, i.e., a homomorphism of G into the unit circle. If F is a vector space over 
C, and <p(vi, . . . , vm) is an m-multilinear function on the cartesian product 
X im V to U, then <p is said to be symmetric with respect to G and % if 

<£>(ZV(1), . . . , ZV(m)) = x(<r)<p(Vu • • • » fro) , 

for any a £ G and for arbitrary vt £ V. By a symmetry class of tensors over V 
associated with G and x we shall mean a pair (P, ju), consisting of a vector 
space P over C and an m-multilinear function /*: XimV —» P, symmetric with 
respect to G and x> which is universal for these properties; that is; 

(i) (rng n) = P ; i.e., the linear closure of the range of /* is P . 
(ii) (Universal Factorization Property) For any vector space U over C 

and any m-multilinear function <p: XimV —» U, symmetric with respect to G 
and x> there exists a linear h: P —> U such that <p = h\x. 

XimV >P 

h 

The symmetry class (P, fx) is unique to within canonical isomorphisms, and 
the linear map h is uniquely determined by <p. The element n(vh . . . , vm) G P 
is called decomposable and will sometimes be denoted by Vi * . . . * vm. The 
three most familiar symmetry classes are: (i) the space of m-contravariant 
tensors, P = ®iwF, n(vi, . . . , vm) = Vi (x). . . (x) vm, i.e., G = {e} ; (ii) the mth 

(3) 
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exterior power of V, P = AmV, p(vi, . . . , vn) = Vi A . . . A vm, i.e., G = Sm 

and % = sgn = e; (iii) the rath completely symmetric space over V, P = V{m\ 
M fail • • • , O = »i • • • »«, i.e., G = Sm and % = 1-

Any symmetry class of tensors (P, /*) can be realized as a subspace of 
(g)imF by defining 

In order to describe a basis for an arbitrary symmetry class associated with 
G and x> we regard the elements of G as permutations acting on the set of all 
sequences of length m chosen from the integers 1, . . . , n. That is, Tn

m = Zn
Zm, 

where Zm = {1, . . . , m\ and for a £ G, y (E Tn
m 

a(y)(t) = 7 ( * - 1 ( 0 ) , ^ Zm. 

Let A denote a system of distinct representatives for the orbits in Yn
m induced 

by G, and let Â denote the set of all those elements 7 G A for which the charac­
ter % is identically 1 on the stabilizer subgroup Gy = {a £ G\<r(y) = 7}. Let 
1/(7) = |G7|. It is a routine exercise to verify that if {ei, . . . , en) is a basis of 
V, then the decomposable elements e7* = e7(i) * . . . * e7(w), 7 6 Â, form a basis 
of P. In fact, if {ei, . . . , en} is an orthonormal (hereafter abbreviated o.n.) 
basis of V, then the |Â| decomposable elements (\G\/v(y)*)ey*, 7 G Â, form an 
o.n. basis for P with respect to the induced inner product in (x)iwF defined by 

m 

(xi (x). . . (x) xm, yi (x). . . (x) ym) = Yl (%t> yt)-

In general, if xt = I]j=i c*^, i — 1, . . . , m, then the decomposable element 
X\ • . . . H* x^ can be expressed in terms of the basis {e7*, 7 6 Â}. Given the 
group G and character x> we define the generalized matrix function [3], dx

G, as a 
mapping from the set of w-square matrices to C, by 

m 

(4) 4(B) = £ x(a) I l &«o. 
<r€G i = l 

For example, il G = Sm and x = €, then 6 ^ = det; if G = Sm and x — 1, then 
dx

G = per. It is a routine calculation to verify that 

(5) xi * . . . * xm = X) T T d°(C[l, . . . , H T I K * , 

where C is the m X n matrix whose (i, j) entry is ctj and C[l, . . . , m\y] is the 
ra-square matrix whose (i,j) entry is c*f7o). 

It is an easy task to verify that for arbitrary vectors Xi, . . . , xm, 3/1, . . . , ym 

in V, 

(6) (xi* . . .*xm, yt*. . . *yro) = j ^ <**([(*,, y,)]). 
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If T G Horn ( F , F ) , then 

(7) <p: (vi, ...,vm)->Tv1*...*Tvm 

from XimV to P is symmetric with respect to G and x and hence, there is a 
unique linear m a p h from P to U = P (see diagram (3)) such t ha t <p = h\i. For 
each linear operator T on Vwe denote the corresponding linear map h by K(T). 
T h u s for each decomposable element Xi * . . . * xm in P 

(8) K(T)xi * . . . *xm = Tx\ * . . . * Txm. 

From (8) we immediately verify for arbi t rary 5 and T in H o m ( F , V) t h a t 

(9) K(ST) = K(S)K(T) 

and 

(10) (K(T))* = # ( 7 * ) . 

If we specialize F to be complex w-tuple space and consider each n X n 
complex matr ix A to be a linear operator on V, v —•> z/̂ 4 for ^ F , then with 
each matr ix A we can associate a |A| X |A| matr ix K(A) defined by (8): if we 
use the lexicographic ordering in the sequence set A, and the elements of A 
index the rows and columns oi K(A), then the r, œ en t ry of the matr ix of K(A) 
relative to the orthonormal basis {(\G\/v(y))*ey*\y £ A} described above is 

(11) (dx
G(A[r\œ]))/(V(co)V(r))i 

where -B[r|co] means the submatr ix of B lying in rows numbered r (1), . . . , r(m) 
and in columns numbered co(l), . . . , co(w) [4]. 

Finally, for Vi, . . . , vs in V, let (vi, . . . , vs) denote the subspace of F spanned 
by vl9 . . . , vs. 

3. Proofs . In order to prove Theorem 1 we need the following lemma. 

LEMMA 1. If Xi * . . . * xm = y± * . . . * ymj m < n, and if { 

linearly independent set, then the sets {xi, . . . , xm} and {yi, . . . , ym] span the 
same subspace. 

Proof. Le t k be an integer, 1 ^ k S m. Since m < n,there is a vector zk ^ 0, 
such t h a t (yt,zk) = 0 for t = 1, . . . , m. Now let zt for i = 1, . . . , m, i 9e k, 
be arb i t ra ry vectors in V. Then from (6) we have 

(12) (yi * . . . * ym, Z! * . . . * zm) = r^r dG
x{[(yu Zj)]). 

Observe t ha t the &th column of the matr ix \_{yu
 ZJ)] ls 0 a n ( i s o the left-hand 

side of (12) is 0. T h u s (xi * . . . * xm, %\ * . . . * zm) = 0 and so dx
G([(xif Zj)]) = 0 . 

Now choose z, zu . . . , zk-i, zk+i, . . . , zm to be biorthogonal to the set 
xk, Xi, . . . , xk-i, xk+i, . . . , xm. Then the matr ix [(#*, zf)~\ has the following 
form: its first k — 1 columns are those of the m X m ident i ty matr ix, its last 
m — k columns are all zeros, and its &th column consists of the numbers , in 
order, (xu zh), . . . , (xm, zk). T h u s 0 = dx

G{[(xu Zj)]) = (xkl zk) = 0. 
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Hence we have proved that every vector which is perpendicular to the space 
spanned by {yu . . . , ym) is perpendicular to the space spanned by {xi, . . . , xm). 
Since {xi, . . . , xm] is a linearly independent set, it follows that {xi, . . . , xm] 
and {^1, . . . , ym] span the same subspace of V. 

Proof of Theorem 1. Clearly if T = cS with cm = 1, then K(T) = K(S). 
Conversely, assume that K{T) = K(S). Let {ei, . . . , en) be a basis for V 
such that {Tei, . . . , re r} is a basis for Im T and {er+i, . . . , en\ is a basis for the 
kernel of J\ 

Let Xi = 7>i and y* = Set for i = 1, . . . , n and observe that if co Ç Tn
m, 

then 

(13) xW(i) * . . . * xw(m) = rew(i) * . . . * r^W(m) 

= K{T)e(a(<i) * . . . * ea(m) 

= K(S)ea(i) * . . . * ew(m) 

= 5^(1) * . . . * Se^m) 

= ^«( l ) * • • • *%>(ro). 

For £ = 1, . . . , m + 1 let col denote the sequence 

(1,2, . . . , * - 1,* + 1, ...,m+ 1) G rn». 

Since m < r = rank T i t follows that {xi, . . . , xm+i} is a linearly independent 
set, and so we can apply Lemma 1 to (13) to conclude that 

Wt = (#«*(1)> • • • , #co*(m)) = {y<cHm)y • • • , y<aHm)), t = 1, . . . , M + 1. 

Now for each k, 1 g fe g r, 

m+l 

*=i 

Thus Tek and Se* span the same space for k = 1, . . . , r. Hence {&i, . . . , 5er} 
is a linearly independent set and 

Xj = 7>;- = CjSej = Cjyj 

for ĉ  5̂  0, j = 1, . . . , r. Therefore 

# « * * = y<*t* 

/m+l \ 

= ( n cj \xat* 

and so 
m+l 

n c, = i, 
3=1 

for t = 1, . . . , m+ 1. Thus Ci = . . . = cm+1 = c with cw = 1. Similarly we 
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can show that cm+\ = . . . = cr = c. Thus Te$ = cSe^ for j = 1, . . . , r. Now 
let k ^ r + 1. Then, since xk = 0, we have 

U = = X± H* . . . • 001 i * X £_j_i • . . . # X w * X# 

= 3 î * . . . * y t+1 * y t+1 * . . . * ym * yk. 

Since the latter tensor is zero, the vectors yi, . . . , 3^_i, 3^+1, . • . , ym, Jk must 
be linearly dependent and so yk belongs to the intersection of the subspaces 
spanned by {3/1, . . . , yt-i, Jt+u • • • , Jm), t = 1, . . . , m. But this intersection 
is the zero vector and so yk = 0 for k = r + 1, . . . , n. Thus 0 = Tek — cSek 

for k = r + 1, . . . , n, and T = cS with cm = 1. 

Proof of Theorem 2. It is easily checked from (9) and (10) that if T is normal 
then so is K(T). Suppose that rank T > m and K(T) is normal. Then 
K(TT*) = K(T*T) and so by Theorem 1, TT* = cT*T for some c with 
cm = 1. But both TT* and T*T are positive semi-definite hermitian operators 
with the same positive trace. Thus c = 1 and so T is normal. 

In order to prove Theorem 3 we need two lemmas: 

LEMMA 2. If A is an n X n matrix of the form 

\T L] 
[0 c\ 

where T is a p X p upper triangular matrix and C is an (n — p) X (n — p) 
upper triangular matrix with zeros along its main diagonal, then for any co Ç Yn

m 

for which œ(k) > p for some k, 1 ^ k ^ m, the matrix 4̂[co|co] has a zero row and 
hence dx

G(A[o)\co]) = 0. 

Proof. Assume that A and co are as in the statement of the lemma and assume 
that oo(k) is the largest of the integers co(l), . . . , œ(m). Then co(fe) > p. Now 
the entries in row k of -4 [co|co] are in succession aw(fc)<o(i), . . . , aW(*)«(m)- Since A is 
upper triangular it follows that a^aMo = 0 when co(fe) > co(7), and since 
co(fe) > p it follows that a^ccz) = 0 when co(7) = co(fe). Since co(&) ^ «(/) for 
/ = 1, . . . , m, it follows that all the entries of the Mh row of 4̂[co|co] are zero. 

LEMMA 3. If T is a linear operator on V of rank r, then rank K (T) = |Â D Tr
m\. 

Proof. Let {ui, . . . , un} be a basis for V for which {Tui, . . . , Tur) is a basis 
for Im T, and {wr+i, . . . , un] is a basis for the kernel of T. Let vt = Tut 

(i = 1, . . . , r) . Then since B = {i^(r)^w*|co G A H I\m} is a subset of a basis, 
it is a linearly independent set in Im K{T). 

On the other hand if for any k, 1 ^ k S m, œ(k) > r, then i£(r)z4>* = 0. 
Thus B is a basis for Im K(T) and so rank K(T) = \A p | I\m | . 

Proof of Theorem 3. If [/ is a unitary matrix, then K(U) is unitary and so 
2TC4) is normal if and only if K(U)*K(A)K(U) = K(U*AU) is normal. 
Thus we can assume by Schur's triangularization theorem that A is already 
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an upper triangular matrix of the form described in Lemma 2. ThusK(A) is 
upper triangular and since we assumed that K(A) is also normal, it follows 
that K(A) is diagonal. By (11) the main diagonal elements of K(A) are 

-±-dG
x(A[a>\œ]),œe A. 

From Lemma 2 if follows that for any co Ç A for which co(&) > p for some k, 
1 < k < m, the corresponding main diagonal element of K(A) is zero. Now 
rank A = m impliesthat p ^ m. If p < m, then by the preceding remarks, 
rank K{A) ^ |Â Pi Tp

m|. But if p < m, then A O Tp
m is a proper subset of 

A H Tm
m (i.e., r = (1, . . . , m) e Â Pi IV* but is not in A Pi I1/1) and so the 

rank of K(A) would be less than |A O Tw
m|, contradicting Lemma 3. Thus 

p = m and it follows that C is the zero matrix (otherwise, rank A > m). 
We can now assume that A has the form 

\T L ] , 

Lo oj 
where T is m X m upper triangular with the non-zero eigenvalues Xi,. . . , \m of 
A on the main diagonal. The main diagonal element of K(A) in the position 
corresponding to the sequence r is dx

G(A[T\T]) = Xi . . . Xm = det T. Now, 
since K is a representation, the main diagonal element of K(A)K(A)* corre­
sponding to the sequence r is 

I d e t J f = (K(A)K(A)*)TT 

= K(AA*)TT 

= dx
G(AA*[r\r]) 

^ det(AA*[T\r]) 

= det(rr* + ZX*) 
^ det r r * 
= |det T\\ 

The inequality (14) is an application of a result of Schur [17] and the in­
equality (15) is an instance of the result which states that if C and D are 
positive semi-definite hermitian matrices, then 

(16) det(C + D) ^ det C. 

Moreover if C is positive definite, then it is easy to verify that equality holds in 
(16) if and only if D = 0. Thus from the above we conclude that LL* = 0 and 
hence that L = 0. 

4. Applications. In order to derive the Kress-de Vries-Wegmann result, we 
introduce some additional notation. 

For an n X n complex matrix X, \i(X), . . . , \n(X) will denote the eigen­
values of X, oti(X), . . . , an(X) will denote the singular values of X, \(X) will 

(14) 

(15) 
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denote the n-tuple of eigenvalues of X, and a(X) will denote the n-tuple of 
singular values of X\ if / is a symmetric function on the complex numbers, 
thenf(\(X)) will denote 

and f(a(X)) will denote 

(f(a1(X)),...,f(an(X))); 

Er(h, . . . , tn) will denote the rth elementary symmetric function of /i, . . . , tn 

and Cm(X) will denote the rath compound matrix of X, i.e., Cm(X) is just i£(X) 
with G the full symmetric group of degree m and x the alternating character on 
G. The eigenvalues of Cm(A) are just the numbers 

m 

\u(Cm(A)) = U\uii)(A) 

as co runs over Qm,n, the set of strictly increasing sequences of length m of 
integers chosen from 1, . . . , n. Thus trace (Cm{A)) is just Em(\(A)). 

LEMMA 4. 

(17) HA]]4 - MM* ~ (£ |X i (^) | 2 ) 2 = E 1 ( (« (^ 2 ) ) 2 ) -E 1 ( |X(4 2 ) | 2 ) 

+ 2 ( E 2 ( ( « G 4 ) ) 2 ) - £ 2 ( | X U ) | 2 ) . 
Proof. We compute 

\\A\\'= (± «tU))* 

= Z *t\A)+2Ei((a(A))2); 

||Z)||2 = trace ((.4.4* - ^*^) 2 ) 

= trace ((.4,4*)2 + (A*A)2 - AA*A*A - A*AAA*) 

= 2 trace ((AA*)2) - 2 trace (A2A*2) 

= 2 £ x/(^*) - 2 £ at\A
2) 

1 = 1 Z = l 

= 2 Ê at\A)-2± ai\A
2); 

i=l i=\ 

( è |X*G4)|2V= Z |Xi(^)|4 + 2£2(|XU)|2) 
\ z = l / *=1 

= £1( |X(^2) |2) + 2£2( |X(^)|2). 

Thus the left side of (17) is equal to 

(18) EiUaiA*))*) - E1(\\(A*)\») + 2[£,((aW))«) - £,(|X(^)|*)]. 
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We obtain the inequality (1) by rewriting (18) to obtain 

(19) IMY-Z \UA> + 2 |C2G4)| |2- Z \UC2(A))\2 

and applying Schur's inequality to both A2 and C2(4). 
Equality holds in (1) if and only if (19) is 0. But from Schur's inequality 

(19) is 0 if and only if both A2 and C2(4) are normal. 
Suppose equality holds in (1) and suppose A is not normal. Then by Theorem 

2, rank A ^ 2. If rank A = 2, then by Theorem 3, A is unitarily similar to a 
matrix of the form 

Xi a 
.0 X2 

B = ®0n-

where a 9e 0 because A is not normal. Since A2 is normal so is B2 and so we 
conclude that X2 = — Xi. Thus A is unitarily similar to a matrix L © 0W_2 

where 

L = 

with À ^ O . We wish to show that L 0 0W_2 is unitarily similar to a matrix of 
the form in (2) and conversely that any matrix of the form in (2) is unitarily 
similar to a matrix of the form L 0 0W_2. The converse is just a consequence of 
Schur's triangularization theorem and the fact that we are assuming that A 
is not normal. 

Now {trace(X), trace(X2), trace(X*X)} is a complete set of unitary invari­
ants for complex 2 X 2 matrices X (see [6]). Let 5* denote the matrix in (2). 
Then using the fact that v and w are orthonormal column vectors it is a routine 
matter to calculate that trace S = 0, trace (S2) = 2ra2, and trace (S*S) = 
\a\2(l + r2). Now trace L = 0, trace L2 = 2X2, and trace L*L = 2|X|2 + \a\2. 
Thus the problem of showing that a matrix of the form L 0 0W_2 is unitarily 
similar to a matrix of the form 5 consists of the following: given non-zero 
complex numbers X and a, is there a non-zero complex number a and a real 
number r, 0 < r < 1, such that 

ra2 = X2, 2|X|2 + \a\2 = |a|2(l + r2)? 

But it is a routine calculation to check that the answer to this last question is 
"yes". 

If rank .4 = 1, then A = axy* for some complex number a ^ 0 and for some 
complex column ^-tuples x and y with 1 = ||x||2 = x*x = y*y = ||^||2. Since, 
by assumption, A is not normal it follows that 

(20) H2 

But 4 2 is normal and so 

= AA* 7± A*A = \a\2yy*. 

\a\A(pc1y)(yfx)xx* = 4 2 ( 4 2 ) * = (42)*.4* = |a|4(*, y)(y, x)yy*. 
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Hence we conclude from (20) that (x, y) = 0 and so A has the form (2) with 
r = 0. 
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