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On a Certain Residual Spectrum of Sp,

James Todd Pogge

Abstract. Let G = Sp,,, be the symplectic group defined over a number field F. Let A be the ring of
adeles. A fundamental problem in the theory of automorphic forms is to decompose the right regular
representation of G(A) acting on the Hilbert space L? ( G(F) \ G(A)) . Main contributions have been
made by Langlands. He described, using his theory of Eisenstein series, an orthogonal decomposition
of this space of the form: L3,_( G(F)\G(A)) = B ir L2 ( G(F)\G(A\)) » where (M, 7) is a Levi
subgroup with a cuspidal automorphic representation 7 taken modulo con;ugacy. (Here we normalize
m so that the action of the maximal split torus in the center of G at the archimedean places is trivial.)
and Lﬁm( F)\ G(A) ) M) is a space of residues of Eisenstein series associated to (M, ). In this

paper, we will completely determine the space L2 Jis ( G(F) \ G(A\)) (M) when M =~ GL; X GL;. This

is the first result on the residual spectrum for non-maximal, non-Borel parabolic subgroups, other
than GL,,.

1 Introduction

Let G = Sp,, be the symplectic group defined over a number field F. Let A be
the ring of adeles. A fundamental problem in the theory of automorphic forms is
to decompose the right regular representation of G(A) acting on the Hilbert space
L*(G(F) \ G(A)).

The space L? ( G(F) \ G(A\)) has both a discrete spectrum and a continuous spec-
trum:

L*(G(F) \ GA)) = Ly (G(F) \ GA)) & L2, (G(F) \ GA)) .

Since the continuous spectrum is well understood, we are mainly interested in the
discrete spectrum. Main contributions have been made by Langlands [25]. He de-
scribed, using his theory of Eisenstein series, an orthogonal decomposition of this
space of the form:

13, (G \ GW)) = @D L5, (G \ W) ...

(M,m)

where (M, 7) is a Levi subgroup with a cuspidal automorphic representation 7 taken
modulo conjugacy (Here we normalize 7 so that the action of the maximal split torus
in the center of G at the archimedean places is trivial.) and L ( G(F) \ G(A)) o
a space of iterated residues of Eisenstein series associated to (M, ).

Here we note that the subspace

@) L (G(F) \ GM) (6.1
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is the space of cuspidal representations L2 (G(F) \ G(A\)) . Its orthogonal com-

cusp

plement in L% (G(F) \ G(A)) is called the residual spectrum and we denote it by
L%, (G(F) \ G(A)) . Therefore we have an orthogonal decomposition

L3, (G(F) \ GA)) = L2, (G(F)\ GA)) & L2

cusp res ( G(F) \ G(A\)) *

For the problems in calculating the residual spectrum, we refer to the introduction
by Kim [18].

In this paper, we will completely determine the space

L3, (G(F) \ G&))

when G = Spg, M ~ GL, x GL,. This is the first result on the residual spectrum for
non-maximal, non-Borel parabolic subgroups, other than GL,,.

The result is similar to the residual spectrum of Sp,, coming from the Borel sub-
group [17]. However, we need to use the root system of the non-maximal torus
and the R-group attached to general parabolic subgroups. Also, the point (5 in Fig-
ure 1 contributes to the residual spectrum, unlike the result in [17]. This agrees with
the conjecture made in [16]. The conjecture in [16] is for odd orthogonal groups.
However, it is easy to formulate a similar conjecture for symplectic groups. See Re-
mark 9.6.

In order to describe our result, let 7 = m; ® 7 be a cuspidal representation of
MA). Let I(y,m) = Indg |det|% ™ ® |det\% 71 be the induced representation. Let
J(vy, m,) be the unique quotient of I(~y, 7,) for each v. (If 7, is tempered, it is the usual
Langlands’ quotient). It is the image of the intertwining operator R(otoT,~,T,).
(See Section 9 for detail.) Let J(y, 7) = @, J(7, 7).

Let 1(83,7) = Ind§ \det|% T ® |det|% m, be the induced representation. Let
J(B5,m,) be the unique quotient of I(3s, m,) for each v. It is the image of the in-
tertwining operator R(7o7, 33, m,). Let J(f5,m) = @), J(35, 7).

Let I((4, ) = Ind§ |det| 7, ® 7. By inducing in stages,

N S
I(By, ) = IndG};i X Sp, ‘det| ® (m, ® Ind(ﬁ:‘z Tly)-

Write IndSGpL“2 Ty = M4ty O Ty O 7T_ 4, O T_ _, asin Section 5, where 7, , , is
generic with respect to ,. Here we fix an additive character ¢ = ®1),, of A/F.

Let e(my+,) = e(m__,) = 1, e(my _,) = e(m_,,) = —1, and let J. ., be the
Langlands’ quotient of IndZPLB2 . |det| ® (71, @ 7..,). Let

]1/ = {]+,+,V7 ]+,7,1/7 ]7,1’,1/7 ]7,7,1/}
and if p € J,, €(p) be the corresponding sign and define J(m) to be the collection

J(r) = {Il = ®II, | II, € J, forallv,II, = J; ,, for almost all v, [ [, e(IL,) = 1}.
Then
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Figure 1: The real plane with the singular hyperplanes S; as dashed lines and the contour that
we are following as a dotted line segment.
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Theorem 1.1

3.(6m\ 6@) , = (P Ie.m) & (P15, m) & I,

where

e In the first sum, ™ = m @ my, ™ runs through cuspidal representations of GL, with
the trivial central character such that L(%, ) # 0.

o In the second sum, ™ = T ® T, T % T, Wy, = Wo, Wr, = wo, L(3,m) # 0,
L(3, 7)) #0.

¢ In the third summand, T = m @ 7, ™ runs through self-contragredient monomial
cuspidal representations of GL,.

Here the condition [], e(II,) = 1 comes from subtle analysis of the normalized
intertwining operator.

In a future work, we would like to study the residual spectrum coming from the
Levi subgroup GL; x Sp, C Sp, and GL; x GL; x Sp, C Spg. In the last two cases,
the non-generic cuspidal representations of Sp, will generate singular hyperplanes at
% and 2, unlike generic cuspidal representations (cf. see [22]).

2 Symplectic Groups and Their Parabolic Subgroups
This section is essentially from Goldberg [9]. Let G = Sp,,,. Let J, be the n x n matrix
given by
=
E
Let J;, = (_; ™). Then Sp,, = {g € GLs, |' gJ3,§ = J3,}. Let Ay be the maximal
split torus consisting of diagonal matrices in G. Then

Al
A2

.)\"
Ao—{ )\;1 )\IGF*}

X1
Some denote a block diagonal matrix, ( ) , by diag{Xj, ..., X)}. For a block
Xk

/\lIkl
of scalar matrix, ) , some write diag{Ay, ..., \;} if the dimensions k;
)\]‘ij
are clearly understood.
Let (G, Ap) be the roots of G with respect to Ag. We prefer the Borel subgroup

to be the subgroup of upper triangular matrices in G, so we choose the ordering on
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the roots accordingly. Let A be the simple roots in ®(G, Ao) given by A = {a;}7_,
with aj = ej —ej; for1 < j < n—1,and a, = 2e,. Welet (, ) be the standard
Euclidean inner product on ®(G, Ay). Here ® is a root system of type C,,.

Let W(G/Ao) be the Weyl group of G with respect to Ag. Then W(G/Ag) ~
Su X 25, where S, acts by permutations on the A;, i = 1,. .., n. We will use standard
cycle notation for the elements of S,. Thus (ij) interchanges A; and A;. If ¢; is the
nontrivial element in the i-th copy of 7Z,, then ¢; takes A; to /\i_l. The element ¢; is
called a sign change because its action on ®(G, A,) takes ¢; to —e;.

The parabolic subgroups of Sp,,, are of the form:

GL,, X+ X GL,, X Spy,

where n; +my + - +n +1=mn,1>1and Sp, is understood to be SL,.

3 Roots and Weyl Group

Consider Spg. Let A = {e; — 5,6, —e3,e3 — e4,2e4}, 0 = {e; — e2,e3 — es}. Then
P =Py = MN and M ~ GL, x GL,. Let A be the maximal torus in M. Then

ap
a

ap
a

A=< tla,a) = —1

Let fi: t(ai1,a2) — ay and fo: t(ay,a;) — a,. Let (G, A) be the set of roots with
respect to A. The positive roots are:

Bh=h—rf, B=2fh,
Gs=hfH+f, and [y =2f;,

where fi—f, = (e1—e3)|a, i+ o = (e1+es)|a, 21 = (e1+e2)|a and 25 = (e3+ey)]a.
Leto = (13)(24), 7 = c3¢4. Then o(m, @ mp) = m @ m and 7(m Q my) = 7 @ 7o,
where 7, is the contragredient of m,. Let W(M) be the Weyl group of M. Then
WWM) = {l,0,7,07,70,070,T0T,0T0T}. As usual, let X(A) be the group of all
rational characters of A defined over F, and let a* = X(A) ® R, ag = X(A) ® C. The
positive Weyl chamber in a* is

C*={Ae€a*|(A,BY) >0, forall 8 positive roots}.

We can see easily that C* = {af; + b(fi + f2) | a,b > 0}. Let pp be the half-sum of
positive roots. Then pp = 7f; + 3 f.

Remark 3.1 See Figure 1. See Table 1 in order to see how the Weyl group elements
act on the positive roots. This root system is C,.
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B B2 B3 By wHm @ m)w

B B2 s Ba T ® )
-5 B Bs B2 T & T

B~ B Ba T ® 7y
oT By —Bs M Ba T, @ m

N4 Q = =

ToO  —[3% Ba B —0 T ® MMy
oto  —[3 B =B —bB 1 & my
TOT Bi —Bs —Bs — Ty @

oror  —f —B B b T & 7y

Table 1: Weyl group, together with their actions on the positive roots and on 7 = 7 ® .

4 Eisenstein Series and Pseudo-Eisenstein Series

This section essentially follows Kim [15]. Let G = Spg, M ~ GL, x GL,. P = MN
is the parabolic subgroup. Let 7 = m; ® 7, be a cuspidal representation of M(A).
For each A = 251 f1 + 25, f» € a¢, we can define the induced representation I(A, ) =
Ind$ |det|" 7, ® |det|” 7, (See [33]), and we form the Eisenstein series:

E@g o, M) = > (g),

SEP(F)\G(F)

where ¢ € I(A, 7). It converges absolutely for RA € pp + C* and extends to a
meromorphic function of A. It is an automorphic form and the constant term of
E(g, ¢, A) along P is given by

Big.6. )= [ BgoNdn= 3 MowAmoe)

NB\NA) wew (M)

where W (M) is the Weyl group of M and

MOw A0l = [ owng)di,
Ny (A)
where N,, = NNwNw~!, N is the unipotent radical opposed to N. Then M(w, A, )
defines a linear map from I(A, 7) to I(wA, wrr) and satisfies the functional equation
of the form
Mwiwy, A, ) = M(wi, wo A, wom)M(wy, A, 7).

Let S be a finite set of places of F, including all the archimedean places such that
forevery v ¢ S, m, and 1, are unramified and if ¢ = ®¢,, forv ¢ S, ¢, is the unique
K,-fixed function normalized by ¢,(e,) = 1. We have

M(w,A, ) = ®M(W, A, ).
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Then by applying Gindikin-Karpelevic method [24], we can see that for v ¢ S,

L(3(A, BY),m, )

(3(A, BY) +1,m, ﬁv)¢v’

M A me = [+

B>0,w3<0

where @, is the K, -fixed function in the space of [(wA, wrr) satisfying &,(e,) = 1,and

L(S) Ty X ﬁ-Zv)) lfﬁ = 61 = fl - f27

L(Sa 7-‘-21/)L(257 wWZV)7 lfﬂ = 52 = 2f27

L(Sa Ty X 7T2v); lfﬂ = 53 = fl + fZa

L(S, 7-‘—11/)14(257 wmv) lfﬂ = 54 = 2fl

Note that L(s, 7, 3,) has a pole at s = 0, or s = 1iff my ~ 7. L(s,m, 3,) has

apoleats = % iff w,, = wy and L(%, m) # 0 [6, 8, 29, 30] where wy is the trivial
character. Let

L(S7 TrVaﬁ\/) =

G {Aeag | (A, BY)y =2}, ifi=1lori=3,
"l {Aeat | (A, BY) =1}, ifi=2o0ri=4.

Thus, we get Figure 1.
For any v, let

L(3(A, BY), 7, BY)
0= 11 g 398, 3 B
3>0,w3<0 2 ’ y Ty € 2 ) y Ty, ’ 7%
We normalize the intertwining operator M(w, A, 7,) for all v by
M(Wv Av 7Tv) = rv(W)R(Wa A7 7Tv)~
Let R(w, A, ) = @, R(w, A, 7,) and R(w, A, 7) satisfies the functional equation
R(W1W27 Au 7T) = R(Wl> WZAu WZ’H—)R(W2> A7 7T)

Lemma 4.1 Anent the holomorphy of rank-one local intertwining operators we have
that:

(1) R(s, 1y ® may,wy) is the intertwining operator for GL, x GL, C GL4. It is holo-
morphic for R(s) > 0.

(i) R(s, 1y, wy) is the intertwining operator for GL, C Sp,. It is holomorphic for
R(s) > 0.

Proof See [29] for the first assertion. See [17] for the second assertion. [ |

For any w € W(M), wMw~! = M and so (M, wn) is conjugate to (M, 7). Let
I(m) be the set of entire functions ¢ of Paley-Wiener type such that ¢(A) € I(A,7)

for each A. Let L N2
09 = (555) [ E(s.002).4) an.

271

where Ag € pp + C*. It is called the pseudo-Eisenstein series. Then we have
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Lemma 4.2 (Langlands [25]) L?( G(F) \ G(A)) (v.ry 15 the space spanned by 0, for
all ¢ € I(wr) as wr runs through all distinct conjugates of .

Let Lﬁis (G(F) \ G(A\)) M) be the discrete part of L? ( G(F) \ G(A\)) M It is the
set of iterated residues of E ( g, P(A), A) of order 2.
In order to decompose LcllS ( (F)\ G(A\)) )» We use the inner product formula

of two pseudo-Eisenstein series: Let 7w and 7 be conjugate representations and ¢ €
I(m), ¢’ € I(n’). Then

<0¢,0¢ > ! / Z (M(Wila _WA7W7T)¢/(_WA)7 d)(A)) dA
RA=Ao

(2
(27”) weW (m,m’)

(zm)z /m N (M(w, A, m)(A), ¢ (—wA)) dA

wew 7rﬂ")
where W(m, ') = {w e WM) | wr = 7'}

Let {dn | d € D} be the set of distinct conjugates of 7. In order to deal with the
distinct conjugates of 7 simultaneously, we consider, for ¢ € I(7),

Alg ' M) =D > (Mw,A mb(A),¢4(—wh)),

deD weW (m,dr)

where ¢, € I(dr). Since W(M) = UdeD W (7, dr), for simplicity, we write it as

Alg, ¢/, M) = D (M(w, A, m)$(A), ¢’ (—wh)).

weW (M)

We also have the adjoint formula for the intertwining operators

(M(WJ A> W)QS(A)v ¢I(_WA)) (¢(A)7 M(W_17 _WA7 WW)(ZS/(_WA))
(R(w, A, m)p(A), ¢ (=wA)) = (¢(A), R(w™", —wA, wr)¢' (—wA)).

We use this adjoint formula and calculate the residue of A(¢, ¢’, A) to obtain the

residual spectrum LdlS ( G(F) \ G( A\)) M)’ Let

Ai(d)a ¢I7 A) = ReSS,- A(¢7 d)/, A)
In order to get the discrete spectrum, we have to deform the contour RA = A, to
RA = 0. Since the poles of the functions M(w, A, 7) all lie on S; which is defined by

real equations we can represent the process of deforming the contour with a dotted
line segment and each singular hyperplane S; as a dashed line in Figure 1.
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We need to calculate the following iterated residues (see [27, 17]):

Res, Ress, A(¢, ¢, A),
Resg, Ress, A(¢, ¢, A),
Res., Ress, A(¢, ¢, A),
Res, Resg, A(, ', A),
Res, Ress, A(¢, ¢, A),
Resg, Ress, A(¢, ¢',A) and
Res, Ress, A(p, @', A).

Notation 4.3 Let us write

CZ(Fi+ZO+ll(s—1)+-~,

L(57 wO) =

L(s,m X 71)
"I+ 1,m X 7)e(s, m X 7))’
L(s,wq)
"I+ 1, wp)e(s, wp)’

a_1 = Res,—

b_l = ReSS:

c1(F) = Rese—; L(s, 1 x 71),

c2(F) = Res—1 L(s, wy).

We set
1 e
— Ress, M(w, A, ) ifi =1,
a_
L(éﬂTz)E(lﬂTz) .
ﬁReSSZ M(W,A,T{') ifi = 2,
Mi(W7A7’]T) _ ) —1 2,7T2
— Resg, M(w, A, ) ifi = 3,
a_
LG, m)el,m) p o M(w, A7) ifi =4
- 1 N S ) ) - N
b_1L(5,m) *
5 Along S,

M(w, A, 7) has a pole on S; only when 7, ~ 1. From Table 1, we see that M(w, A, )
hasapolewhenw = o, 70,070, 0707. For A = 2235+ 5 = 2z+ 1) fi+(2z—1)fa,
(A, BY)=2z—1,(A,Y) =4zand (A, 3)) = 2z+ 1. Then
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Lemma 5.1

M'(o,A,m)¢ = R(o, A, 7)),

L(Z + %, s )L(ZZ + 1, WWI)R(TU7 A’ 7T)¢
Lz + 3, m)LQ2z + 2, wr, Je(z + 3, m)e2z + Lwy,)’

L(2z,m X m)L(z + %, m1)L(2z + 1,w, )R(oTo, A, )¢
L(2z+ 1,7 X m)L(z + %, m1)L(2z + 2, wr, ek
L R(roTo, A, )¢
L*ZE*Z

M'(oro, A, m)p =

M (toTo, A, 71)p =

where
1
€x, = €(2z,m X m)e(z-k E,m) €2z + 1, wy,),
1 1
€k, = e(z - E,ﬂ'l) €2z — 1, wy, Je(2z, my X 7T1)€(Z+ E,m) €2z +1,wy,),
1
La, = L(z — E,m) L(2z — l,wm)L(Zz, Sym2(7r1)),
, 3
Ly, = L(22+ 1, Sym (7T1))L(Z+ E,Trl) L2z + 2, wy,).

Remark 5.2 Note that L(s,m; X m1) = L(s, Sym2(7r1)) L(s, wx, ) where Symz(m) is
the symmetric square, which is an automorphic representation of GL3; [7]. Hence
there is a cancellation between L(2z,m; x m;) and L(2z,w,,). Likewise, there is a
cancellation between L(2z + 1,7 X ;) and L(2z + 1, wy, ).

Proposition 5.3 If m| ~ 7, wy, # wo, then AY(¢p, ¢’ \) has a pole at A = 3, i.e.
z= %, that is square integrable, but does not have a pole at A = 3y or A = .

Proof From Lemma 5.1, we can see by direct observation that there is not a pole at
A = 3, i.e. z= 0, nor is there a pole at A = ~, i.e. z = 1. So let us consider the pole
at A = By, ie. z= % Then

(1e(P)) L1, L2, wr, )R(oT0, By, )
L(Z; T X T )L(27 ™ )L(3a w’)‘l‘] )6(17 7-(-1)6(2) wﬂ'] )
B c1(F)L(1, m)L(2,ws, )R(oT0, By, )
©2L(2,m X m)L(2, m1)L(3, wr, )e(l, T)e(2, wr,)’

Resg, MY (o710, A, m)p =

L(Oa ﬂ-l)( %Cl (F)) L(27 w’/l'l )R(TUTU7 647 ﬂ-)¢
L(2,m x m)L(2, m)L(3, wr )e(0, m)e(1, m1)e(2, wyr,)
B a(F)L(1, m)L(2, wr )R(ToTT, B4, )
©2L(2,m x m)L(2, m)L(3, wr, )e(l, m)E2, wr,)

Resp, M'(toTo, A, T)¢p =
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Since 0708y = —f4 = =201 — 105, 070734 = — 34, we have that
Res, Ress, A(¢, ¢, A)
is square integrable. Here

Resp, Ress, A(¢, ¢, A)

_ (ai(F)) LA, )2, wn,)
2(L2,m x ™)) L2, ML, wr)e(1, )2, wr,)

(er(F)) L1, m)L(2, wr,)

+
2(L2,m x m)) L2, ML, wr, (1, )2, wy)

(%2)

_ (1) "L(1, m)L2, @) )
Z(L(za T X 7T1)) ZL(za US! )L(37 wﬂ'l )6(17 7T1)6(27 wﬂ'l) w

where

(*1) = (R(oT0, By, M)(Ba), &' (Ba)),
(%2) = (R(raT0, Ba, T)D(Ba), ¢ (Ba)),
(*3) = (R(aTa, Bg, m) (I + R(T, B4, 7)) (B4), 9" (B)),

because R(to710, B4, ™) = R(o70, 704, 70)R(T, B4, ) = R(oT0, B4, ®)R(T, By, T)
since oTOT = TOTO. ]

Remark5.4 Ifm ~ 7, w; # wo, thenm ~m ® w,r_ll. Hence 7 is a monomial
cuspidal representation. Since w2 = 1, wy, determines a quadratic extension E/F.
Then, there exists a grossencharacter x of E such that m; = 7(x) (See [7, 23]).

Remark 5.5 As we deform the contour from (34 to (3], the normalized operator
R(roTo, A, m,) may have a pole, because the rank-one operator R(7,o70 A, oT0™m,)
is an operator on the negative Weyl chamber for 0 < z < %

However, we ignored the fact, since the pole can be easily removed:
Denote

A(troro, A, m,)
M(roTo, A, m,)
L(z — 3, m,)L(2z — 1,wr, )L(22, 7y, X T1,)L(z + 3, 71,)LQ22 + 1, wr,,)
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Then

L(z — %, m)L(2z — 1, wy ) L2z + 1, wy,)
Ls(2z+ 1,7 x m)Ls(z + %, m1)Ls(2z + 2, wy,)

M!'(roro, A, m)p =

1
X LS(ZZ, Symz(m)) HL(z+ X le) L(2z,my, X 1)
veS

X ® by ® ®A(TUTU, A, ).

vES veS

By (5], A(ToTo, A, m,) is entire.
Hence for 0 < z < 1, M'(ro70, A, 7) has no pole.
For z = 0, we write M (toTo, A, ) as follows:

M (ror0, A, 7)) = Ls(z — L, m)Ls(2z — 1wy, )Ls( 22, Sym®(my))
U Ls(22+ 1,Sym2(7r1)) Ls(z + %,m)Ls(22+2,wm)

X ® &y ® ®M(TJTJ, A7),

véS veS

Here M(to7o,A,7,) = M(r,010A,070m,)M(070,A,7,). M(oT0,A,™,) is
holomorphic at z = 0. Also M(7,070A,o7107,) is holomorphic at z = 0, since
L(z — %,le)L(Zz — 1,wy,,) has no pole at z = 0. Therefore, M' (o710, A, ) is
holomorphicat z = 0.

Similarly, we will ignore the problem of a pole of R(c7oT, A, m,) in Proposi-
tion 5.6 and Proposition 6.3.

Proposition 5.6  If w,, = wy, L(%7 ) # 0 then AY (¢, ', ) has a possible pole at
A=0iez=0,atA= [ ie z= % and at A = +, i.e. z = 1. Furthermore,

(i) Resg, Ress, A(¢,¢’,A) =0,
(ii) Resg, Ress, A(¢, ¢’ A) =0,
(iii) Res, Ress, A(¢, @', A) is square integrable.

Proof (i)
1 1
Ress, M'(To, A, 70)¢ = L(Z’LW;)( z(b) R(Tgl’ b, o
(§7W1)L(27w0)6(57ﬂ-1)
 o(BLG, TR, B, ™)
2L(3, m)L(2, wo)e(3,m)
Res;, M! (070, A, 7) —L(3,m)(30(F) R(oTa, B1,m)¢

L(3,m)L(2,wo)e(, )

_CZ(F)L(%a Ust )R(O'TO', /81; ’/T)d)
2L(%7 WI)L(Za WO)E(%u 7Tl)
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Since m; ~ 7 and w,;, = wy, we have that Tomr = 7. So R(o, 70, To™) is the
identity. Hence R(o7o, A, w) = R(0, 7oA, Tom)R(To, A, w) implies that Res g, Resg,
Alg, 9", A) = 0.

(ii)

( %Cl (F)) L(17 Uy )L(za wO)R(UTU7 647 7T)¢
L(2,m x m)L(2, m1)L(3, wo)e(l, m1)e(2, wy)
. Cl(F)L(l,W])L(Z,WO)R(O’TU754,7T)¢
2L(2,m X m)L(2, ) L(3, wp)e(1, m)e(2, wp)’

Resg, M (oro, A, m)p =

L(0,m)(—=1)(3c1(F)) L(2,wo)R(ToT0, B4, 7))
L(za T X T )L(z,7T1)L(3,WQ)E(O,W1)€(177T1)E(2,W0)
~ —a(F)L(,m)L2,wy)R(ToT0, By, m)¢
212, X m)L(2, m)L(3, wo)e(1, m)e(2, wo) |

Res g, M (roto, A, )¢ =

Since m, =~ 7 and w;, = wy, we have that oTom = 7. So R(7,07004,070T) is
the identity. Hence R(o7o7T,A,7) = R(7,070A,070m)R(07T0, A, ) implies that
Resg, Ress, A(¢, @', A) = 0.

(1ii)
Res., M (roro, A, 7)o

_ L3, m)(3a(F) L2, m x m)L3,w)R(ToT0, 7, )
L(27WO)L(3a7T1 X ﬂ-l)L(%’7T1)L(4’CL)0)6(%’7T1)6(277T1 X 7T1)€(%,7T1)€(3,(.L)0)

B a(F)L(5, m)L2,m x m)L(3,wo)R(ToT0, 7, 7))
2L(2,wo)L(3,m x m)L(3, m)L(4, wo)e(3, m)e(2, m x m)e(2, m1)e(3,wo)

So
Res,, Ress, A(¢, ¢', A)
B a(F)ey(F)L(L, m)L2, m1 x m)L(3, w) 5
T 202, m X m)L(2,wo)L(3, ™1 X T)LG, )L, wo)eks
B a(F)e(F)L(L, m)L(3, wo) )
" 2L(2,w0)L(3, m X LS, m)L(4,wo)edks
where

<*4> = <R(TUTO-77a7T)¢(7)7¢/(’Y)>a
€k3 = 6( %m) €(2,m x 771)6( % 771) €(3, wo).

Since oToTy = —y = —3[; — 2[3,, we have that Res, Resg, A(¢, ¢’, A) is square
integrable. ]
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6 Along S,

M(w, A, ) has a pole on S, only when w,, = wy, L(%,ﬂ'z) =% 0. From Table 1,
M(w, A, ) has a pole when w = 7,07, 707, 0707. For A = 2zf; + f5, (A, 8)) =
2z — 1, (A, 3Y) = 2z+ 1 and (A, B)) = 2z. Note that if w,;, = wy, then m, ~ 7,.
Then

Lemma 6.1
Mz(Tv Aa W)QS = R(T7 Aa 7T)¢a

L(z+ %, m X m)R(oT, A, )

M (o1, A, )¢ = )
( )¢ L(z+%,7r1 ><7r2)e(z+%,7r1 X 13)

L(z + %a m X m2)L(z, m)L(2z, wr )R(ToT, A, M)
L(z+ 32, m x m)L(z+ 1,m)L(2z + 1, wy, ey

L%;R A
M*(oror, A, ) = *3R(oTor, A, m)é
L*4€*5

M*(ror,\, ) =

)

Y

where

1
Edy = e(z+ X T X wz) €(z,m)e2z, wy, ),
1 1
ks = e(z - E,m X 7r2) e(z+ E,m X 7r2) €(z, m)e2z, wy, ),
1
Lok = L(z —3om X 7T2) L(z, m)L(22, wn,),

3
Ly, = L(z-i— 5,71'1 X 71'2> L(z+1,m)L(2z + 1, wy,).

Proposition 6.2 If wr, = wo, L(3,m) # 0 and m % 7, then A*(¢, ¢, A) has a
simple pole at A = [3s, i.e., z = 1 and Resy, Ress, A(¢, ¢, A) is square integrable.

Proof From Lemma 6.1, M?(to7, A, 7) and M?*(oToT, A, 7) have a pole at A = (3.
Then
L(la T X WZ)L(%a ﬂ—l)( %CZ(F)) R(TUTv ﬂ37 7T)¢

Res, M*(ToT, 35, m)p =
‘ L(zvﬂ_l X WZ)L(%a’]Tl)L(vao)E(lvﬂ-l X 71—2)6(%37‘—1)

_ a(F)L(1,m X m)L(3, m)R(ToT, B3, 7))
2L(237T1 X 7T2)L(%,7T1)L(2,(-L)0)€(177T1 X WZ)E(%aﬂ-l)’

Resg, Mz(m'm'7 B3, )¢

L0,y X m)L(5, ™) (56(F)) RloToT, Bs, m)¢
B L(27 T X WZ)L(%a st )L(27 o-j())€*6

CZ(F)L(lv T X WZ)L(%; T )R(JTJTv ﬁ3; ’/T)d)

2L(2,m X )L, m)L2, wo)e(l, T x my)e(S, )]
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where

1
exg = €(0,m X m)e(l,m X 7r2)6<z,771) .

Here we have used the fact that L(0, w1 X ;) = €(0, 7 X m)L(1, 7 X 7).

Res, Ress, A(¢, ¢, A) = ()(R(ToT, B3, m)(B5), ¢ (B5))
+(O)(R(oTaT, B3, T)D(Bs3), ¢'(33)),

where .
e (F)L(1, 7 x m)L(5, 1)

c= .
2L(2,m X m)L(3, m)L(2,wp)e(1, m X m)e(5, 1)

We note that 7o7(7) ~ 7, @ m, o7o7(w) = 7. Let ¥’ = m, ® 7. Hence, ¢’ in the
first summand belongs to I(7’) but ¢’ in the second summand belongs to I(7). Note
our short-hand notation in the definition of A(¢, ¢’, A). Here, R(o7oT, 35, 7,) =
R(rot, B35, 7))R(0o, 35, 7,) and R(o, 85, m,): 1(B3,m,) — I(Bs, 7)) is an isomorph-
ism. Hence the image of R(ToT, 35, m,) and the image of R(oToT, 35, T,) are equiv-
alent. Since 70733 = —f33 = =105, — 1, 070733 = —[33, we have that Resg, Ress,
A(¢p, @', A) is square integrable. [ |

Proposition 6.3  If m; ~ m,, then A%(¢, @', \) has a double pole at A = (3, i.e.
z = 1, but does not have a pole at A = f,.

Proof By direct observation of Lemma 6.1, there is not a pole at A = f,,i.e. z = 0.
So let us consider the double pole at A = [35, i.e. z = % In order to calculate the
residue, we use the following notations where 7m; ~ 7, >~ 7,

L(Z‘f‘%,ﬂ'l X 1) a_i 1
3 1 (e )
L(Z+ 5,7T1><7T1)6(Z+ §,7T1><7T1) zZ— 35 2
L(2 b
(22, ) = 2 1+b0+2b1(z——)+ :
L2z + 1,wy)e(Rz,wy) z— 3
L(Z,']Tl)

1
Lz+1,m)e(z, m) _d0+2d1(2_ E) R

R(rom,A,m) = Rro7, fs,m) + Nz = 3 )+

R(O’,A,ﬂ'):I-i-P(Z—%) Foen,

L(z — %,771 X 1) 1
: : :—1+h1(2——)+-~-
L(z+ 5,m x m)e(z — 5,m X mp) 2

B) = 989+ (2= ) DoAY + -+

R(oror,A,7) = R(o, 7oA, Tomm)R(ToT, A, T)

= R(roT, (5, 7) + (z — %) (N+P(R(TUT,ﬁ3, 77))) +oee
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a(F)R(aT, B5, m)p(53)
L(2, T X 7T1)

- a—lR(UTa ﬁ37 7T)¢(ﬁ3)a

1
Resg, M*(ror, A, m)p = Ea_lb_ldoR(TUT, B3, m)Dg(33)

Resg, M (o7, A\, 7)) =

N éa_lb_ldow(ﬁs)
+a_i1b_1d\R(toT, 33, m)p(53)
+a_1bydoR(ToT, B3, T)P(53)

N %aob,ldoR(TJT, Bs, m)b(Bs),
Resy, M2(07or, A, m)p = _%a_lb_ldoR(TaT, B3, m)Dp(33)

— A b dNG(B)

_ %a,lb,ldOPR(mT, Bs, )b (Bs)

+ %a,lb,ldohlzz(m, By, T)(3s)

- aflbflle(To-T7 537 W)Qb(/@l’v)
—a_1bodoR(ToT, B3, T)P(B3)

~ Saob\doR(roT, s, W)H(5),

(x)  Resp, Ress, A(¢h, ¢', A) = a_1b_1do(R(oT, B3, ™)H(B3), ' (1))

_ %a,lbi (A (PR(raT, B3, )(B5), &' ()

+éaﬂbildw(m,53,w>¢(ﬁ3>,¢'(53>>. n

Remark 6.4 Since o733 = —3; = —103,+00,, Resp, Ress, A(¢, ¢, A) is not square
integrable.

7 Along S;

M(w, A, 7) has a pole on S; only when 7, ~ 7. From Table 1, M(w, A, ) has a pole
when w = o71,070,707,0T0T. For A = 220, + 55 = Qz+ 1) fi + (—2z + 1) o,
(A, BY) =4z, (A, 3) = —2z+1and (A, 3)) = 2z + 1. Then

Lemma 7.1

L(—z+ %, T1)L(=2z 4+ 1,wz )R(7T, A, ™)
L(—z+ %, T1)L(—2z 4+ 2, wz, )eky

M (o, A, m)p =

3
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L(2z,m; X m)L(z + %, m)L(2z + 1,w,, )R(oTo, A, m)¢
L(2z+ 1,7 X m)L(z + %, m1)L(2z + 2, Wy, )exkg
LasR(toT, A, )¢
Lagexkg
LasR(oTor, A, )
Laegekyg

M (o710, A, T)p =

M (ror,\, ) =

)

M} (oror, A, 7)p =

)
where

1
€k = e(—z+ E,ﬁl) e(—2z+ 1,wsz,),

1
€xg = €(2z,m X 7T1)6(Z+ E,ﬂ'l) €2z +1,wy,),

3
L(—2z+2,ws, )L(z + E’m) L2z +2,wy,),
1 1
Lak; = L(2z,m X 7r1)L(—2+ E,ﬁ'l)L(—22+ l,wﬁl)L(z-i— E,m) L2z + 1, wy,),
3
Lkg =L(2z+ 1,7 X wl)L(—z+ E,ﬂ'l) X

3
L(—2z+2, wﬁl)L(z + X 71'1) L2z + 2, wy,).
Proposition 7.2 If w,, # wy, then we do not have a pole at A = 35, i.e. z = 0.

Proof By direct observation of Lemma 7.1, there is not a pole at A = 33, 1. e. z = 0.
Note that if m; ~ 7, there is a cancellation of poles between L(2z,m; X ;) and
L(2z+ 1,7 X 7). |

Proposition 7.3 If w;, = wy, then A’(¢p, ¢’, A) has a double pole at A = 3;, i.e.
z=0.

Proof From Lemma 7.1, we can see that M>(w, A, 7r) has a double pole at A = £33
i.e. z = 0 when w,;, = wy. In order to calculate the residue, we use the following
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notations where m, ~ 7 ~ 7.

L(—2z+1 —1b_
( Z 7(-00) _ B 1_"_170_21712_'_'”7
L(—2z+2,wp)e(—2z+ 1,wp) z

L(—Z+ %,7’(’1)

L(—z+ %,7’1’1)6(—2+ %,m)

:d0—2d12+---,

L(ZZ, T X 7'('1)

=—1+2hz+---,
L2z + 1,m X m1)e(2z, m X 71)
L2z +1 b
(22 + 1, ) =2 by +2byzt---,
L2z + 2,wq)e(2z + 1, wy)
Liz+ 317
( 2 1) :d0+2d12+"',

L(z+ %,m)e(z-k %,m)
R(ror,A,7) = R(toT,03,7m) + 2Nz + - - - |
R(o,A,m)=I1+2Pz+---,

P(A) = ¢(B5) +2zDp(B3) + - -+

R(oror,A,7) = R(o, 7o\, Torm)R(toT, A, ToT™T)
= R(roT,[B5,7m)+ 22(N + P(R(TJT, A, ﬂ'))) ,
R(oro,A,w) = R(o7,0A,om)R(c, A, )
= R(oT, B3, m) + 2Z(N1 + Py (R(O’T, B3, 77)) ) .
Note that R(7o7, A, ), R(o, A, ) and ¢ are functions of % (A, 3)), so in the nota-

tion for Proposition 6.3, it was in terms of z — 3, whereas in the notation for Propo-
sition 7.3, it is in terms of 2z.

L %aﬂ-l)(_%CZ(F)) R(UTa63a7T)¢
L(%77TI)L(27WO)E(%77TI)

Resy, M’ (o7, A, )¢ =
1
= —Eb_ldOR(UT; ﬁ?n 7T)¢7

(=DL(3,m)(56(F)) R(oTa, B5,m)¢

Res M3 7A7 =
5 M (070, A, )¢ L3, m)L2,wo)e(L, m)

1
= — EbfldOR(o-T7 537 7T)¢7
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Resg, M>(ror, A, m)¢ = —%bilng(mT, B3, M)DY(Bs) — %bildéNWs)
N %bi \dodiR(roT, B5, 7)6(03)
N %ba \dodiR(roT, B5, 7)6(B3)
s %b_lbod(z)R(TaT, Ba, T)(535)
_ %b_lbodSR(TUT, B3, ™)(3s)

= —%bz_ldéR(TUT,ﬁ3, m)DO(B3) — %bz_ldéNfb(ﬁs%

Ress, M'(7rom, A, m) = 267 R (o, fy, )IDG(3:) + 502 |diN(5s)
+ %bZ_ \EPR(roT, B, m)$(5:)
_ %bz_ldéth(TUTﬁ% m)P(53)
_ %bildole(mﬂ B3, 7)$(5s)
N %bi \dodiR(roT, B5, 1)6(03)
_ %b,lbong(m, B, m)b(B5)
4 %b_lb(,dﬁR(TUT, B, m)H(Bs)
- %bilng(mr, B3, M)D(B) + %bz_ldSN ¢(5s)
+ %bildng(mT, Ba, )H(5s)

- %bild?,th(ToT,ﬁs, m6(Bs),

(+%) Resp, Ress, A(¢h, ¢', A) = —a_,b_1do(R(oT, B3, m)p(35), ¢' (1))
+ %a_lbz_ldS(PR(TaT, By, m)H(Bs), &' (5s))

_ %a,lbi \@2hy (R(ror, By, m)(Bs), ' (). W

Remark 7.4 Since o703 = —(; = —161+00,, Resg, Ress, A(¢, ¢, A) is not square
integrable.

https://doi.org/10.4153/CJM-2004-008-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2004-008-0

On a Certain Residual Spectrum of Spg 187

8 Along S,

M(w, A, ) has a pole on S, only when w;, = wy, L(%,ﬂ'l) =% 0. From Table 1,
M(w, A, ) hasapolewhenw = 70,070, 707, 0T70T. For A = 2z, + f = fi+2zf,,
(A, B3YY=—2z+1,(A,8)Y) =2zand (A, 3)) = 2z + 1. Then

Lemma 8.1

Mo, A, m)p = LEET 3 m X TR, A, )¢
9 4y L(_Z-{—%,ﬂ'lxﬁz) 9

L(—z+ %, m X 7)L(z + %,m X m)R(oTo, A, m)p

L(—z+ %,71'1 X 7t,)L(z + %,m X T03) €%,

M*(oTo, A, m)p =

L(z, m)L(2z, wn, ) L(z + %, m X m)R(toT, A, m)¢p

L(z+1,m)L(2z + 1, wx, ) L(z + %,m X )€k,

LkogR(oToT, A, 7)¢
Laeipexs

Mi(ror, A, m)¢ =

M*(oroT,A, )¢ = ,
where
1 ) 1
€k = E(—Z+ E,ﬂ'] X 7T2) E(Z+ E,?T] X 7T2) s
1
€k, = €(z,m)e(2z, wﬂz)e(z + E,m X 71'2) ,
1 1
€ki3 = €(—Z+ E,m X 7?2) €(z, Wz)e(Zz,wWZ)e(z+ E,m X 71'2) ,
1 B 1
Lxg = L(—Z‘f’ 5,7T1 X 7'('2) L(Z7 Fz)L(ZZ,wﬂ—Z)L(Z‘F E,Tfl X 7T2) ,
3 B 3
Ly = L(—z+ E,m X 772) L(z+1,m)L(2z + l,w,rz)L(z+ E,m X 71'2) .
Proposition 8.2 M*(w, A, ) does not have a pole at f,, i.e. atz = 0.

Proof Direct observation. Note that if w,, = wj, then there is a cancellation of poles
of L(2z,w,,) and L(2z + 1, wy, ). [ |

Theorem 8.3 The sum of the non-square integrable residues is zero.

Proof By the calculations in the proofs of Proposition 6.3 and Proposition 7.3 we
have

(x)  Resg, Res S;A(¢, ¢',A) = a_1b_1dy(R(oT, 85, 7)H(53), ¢'(B1))

_ éa_lbaldapzz(mr,ﬁg, T)6(3s), ¢ (3s))

+ %a,lbildghlm(m, B5, m)b(Bs), &' (3s))
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(x%) Resg, Ress, A(¢, o', A) = —a_1b_1do(R(oT, B3, m)p(33), ¢'(B1))
2a b2 BPR(roT, B, mO(Bs), 8 (3)

2

- %a_lbildghl (R(rar, Bs, m)$(Bs), &' (53)).

So they cancel each other out when we add them. ]

9 Main Result

In conclusion, we have proved the following:

Proposition 9.1 The following contribute to the residual spectrum

L (G(F) \ GA)) M ~ GL, x GL,.

M’

(i) m=m ®m, wherem >~ @, L(%,ﬂ'l) #0,andw,; =woatA =r;

(if) m = m ® my, where ™ % Ty, Wy, = Wo, Wy, = Wo, L(%,ﬂ'l) #£0, L(%,ﬂ'z) #0
at A = ﬁ3,‘

(i) ™= m ® my, wherem ~ 7y and wy, # wy at A = B,

The residual spectrum is spanned by

(i) R(oToT,v,m)P(7);
(i) R(roT,Bs,m)(Bs);
(iii) R(o7o, Ba, m)(I+R(T, B4, 7)) $(Bs) =

QR Ro70, 01,7 (R 6+ Q R(7 51, 7))

We need to analyze the image of intertwining operators

R(oTor,~,m): I(y,m) — I(—=v,m,),
R(TUTaﬂ.’)vTrv): 1(63771-\/) - I(_ﬂ37ﬂ-\f)?

where 7] = 1y, ® 71, and R(o70, B4, m,): 1(Ba, 7)) — I(—Ba, 7).

Case (i) deals with R(o7oT,7,m,). Note that o707 is the longest element in
the Weyl group of the parabolic subgroup P. Hence the image of the intertwining
operator R(o1oT,~,m,) is the Langlands’ quotient J(vy,m,) of I(y,m,) when m, is
tempered. If 7, is nontempered, let m, = m(u| |", u| |7") with 0 < r < 1. Then by
inducing in stages, I(v,7,) = Ind§ p| [7* @ p| |~ @ | |2*" @ p| |*~". Note that
% +r> % —r> % +r> % — r. So it is in the Langlands’ situation from the Borel
subgroup. Hence, the image of R(oc7oT, v, 7,) is the unique quotient of I(y, 7,). Let

Jov, ) =&, J(v, m).

In Case (ii), we consider by inducing in stages,

S 1
I(B5,m,) = IndeLS4 |det|2 & (71, ® may).
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If 71, ® my, is tempered, then the image of R(To T, 83, 71,) is the Langlands’ quotient
J(B5,m,) of I(B5,m,). If m, ® m,, is not tempered, as in the above, the image of
R(roT, 35, m,) is the unique quotient of I(3,m,). We denote it by J(35,m,). Let

J(B3,m) = @, J(B3, ).

In Case (iii), we consider by inducing in stages, namely, we use the fact that
(B4, 7) = Ind§ |det| © (m ® Indgh! ),
where P = MN, M ~ GL, x Sp,. Here R(T, 34, 7) is the self-intertwining operator

. . S S
for the induced representation Ind3* 7;. Hence we need to analyze Indoy* m, for
2 2

each v.

Proposition 9.2 ([32]) If my, is supercuspidal, then IndeL‘*2 1y is reducible iff my, =~

Ty andwy,, # 1. Ifitis reducible, then it is the sum of two inequivalent representations.
Let us write

. S . .
Tey @y, if IndeL“2 71, is reducible, where
Sp is generic with r
Indez Ty = T+, 18 generic with respect to UVys

Ty, otherwise.

As we remarked in Remark 5.4, if 7 >~ 7, wg, # wyp, 7 is @ monomial cuspidal
representation. Hence it is known that all 7, s are tempered and m;, cannot be a
Steinberg representation. However, for the sake of completeness, we indicate what
happens when 7y, is either the Steinberg representation, or a non-tempered repre-
sentation.

Proposition 9.3 ([5]) Ifmy, = w(y| |%,u| |_%) with > =1, or my, = w(pl|", u|| ™),
0<r<3,pu*=1,then IndsG%‘2 1y is always irreducible.

Proposition 9.4 ([13]) If w1, = w(u, v), then

sum of four mutually ifu=pYLv=v7}
inequivalent irreducible nw#ELv#E1Lu#v,
unitary representations,

S ) )

IndGIt’2 Ty = Q sum of two inequivalent fr=p=p"Lu#l
irreducible unitary orpu=pLu#lLv=1,
representations, orp=lLv=vLv£l
irreducible, otherwise.

We denote
Ty @My —yBT_ 4D ifp=pv=v
T—,—» p#FLv#FLp#v,
Ind$®t 7, = { T & T ifr=p=p"u#l,

orp=p"YLu#lLv=1,
orp=1lLv=v"Lv#l,

. v otherwise.
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Let us define

Tty = Ty Ty —p = T—ys ifv = n= /J/_l) 12 7& Lorpu= M_l’

T_4y=0, 7m__,=0, w#Lv=1lorp=1v=v"l
v#£1,

Moy =Topy Ty =0, ifu=1v=1lorp=v"1u?#1,

T— 4y — 0, T —y = 0,

where 7, , , is generic with respect to 1),. Similarly, if 7, is supercuspidal, set

. S . .
Ty = Tqys Mgy = T_ 4, if IndeL‘*2 71, is reducible,
T— 4y — 0, T —y = 0,

T4y =Ty Ty —y =0,7_,, =0, otherwise.
7T_;_;V = 0’

Let e(my4+,) = 1, e(my—y) = —1, e(m_4,) = —l and e(m_ _,) = 1. Observe
that for almost all v, 7, ., is spherical, 7. , is spherical and 7. ,, is spherical for their
respective cases.

If py € {0 Ty T— 44> T— _ 4}, let €(p,) be the corresponding sign. Then

(B4, m,) = Indel, 5, |det] ® (1, @ 74 10)
& Indépf‘2 «Sp, |det| ® (1, @ T4 — )
® Indehy s, |det] ® (my @ 7_4,)
® Indey s, [det] ® (my, @ 7_ ).
Let J+ 4, be the Langlands’ quotients of IndeL"2 X 5P, |det| @ (m1, ® T4 4 ,), respec-
tively. By Langlands’ classification theorem, the common image of the intertwin-

ing operators R(o7o, B4, m,) and R(oToT, B4, m,) is the direct sum of J1 4 ,. Let

Jo = {Jev Jomw J= 4 J= — v} Let €(p,) be the corresponding sign for p, € J,
namely, we set €(J..,) = e(m...,). So from R-group theory [14],

Oy for ¢, € T4y OT Py ET_ _,,
—¢, for¢,€my_,or¢, €m__,.

R(T7 647 7Tv)¢v = {

Then we define J(7) to be the collection
J(m) ={Il =II, |II, € J,, forallv,II, = J, ,, foralmost all v, [ [ (I,) = 1}.

We note that [ ], e(IL,) is well-defined and independent of the choice of ). Here if
L, e(L,) = —1, then

(constant) ® R(oTo, By, Ty) (® Oy + ® R(7, By, 7Tv)¢v)

is zero. So Resg, Ress, A(¢p, o', A) = 0.
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Theorem 9.5

B (GH\6W) , = (P10 m) @ (D 183, m) @ J(m),

where

o In the first sum, m = m @ 1, ™ runs through cuspidal representations of GL, with
the trivial central character such that L(%, ) # 0.

e In the second sum, 1 = T ® T, M # T Wr, = Wo, Wr, = Wo» L(%,m) # 0,
L(3,m) #0.

e In the third summand, m = m ® w1, w1 runs through self-contragredient monomial
cuspidal representations of GL,.

Remark 9.6  The fact that the point 35 contributes to the residual spectrum is new,
compared to the result in [17]. We can explain this, using a similar conjecture made
in [16]. According to the conjecture in [16], the residual spectrum coming from the
Levi subgroup M = GL, x GL, C Spg, is parametrized by the following three cases:

Case (i) m = m ® m, and the distinguished unipotent orbit in Sp,(C), where
m is a cuspidal representation of GL, with the trivial central character such that
L(%, m1) # 0. (This means that the Eisenstein series attached to 7;, GL, C Sp,, has
apoleats = %.) In that case, the point v = 3f; + f, contributes to the residual
spectrum. The conjectural Arthur parameter is as follows: Let ¢: L x SL,(C) —
GL,(C) be the conjectural Langlands’ parameter for 7, where Lr is the hypothetical
group. Then together with the distinguished unipotent orbit (4) in Sp,(C), con-
sidered as a distinguished unipotent orbit in GL4(C), it gives an Arthur parame-
ter ¢: L x SL,(C) — GLg(C), attached to the residual spectrum of GLg, namely,
the quotient of Ind |det|% ™ ® |det|% T & \det|_% ™ ® |det|_% 7. Then 9 factors
through Og(C) C SO4(C), and the resulting one is the desired Arthur parameter

Case (ii) m = m; ® 72, and the distinguished unipotent orbit in Sp, (C) x Sp,(C),
where 7, 7, are cuspidal representations of GL, with the trivial central character
such that m; % m,, and L(%,m) # 0 for i = 1,2. In this case, the point 55 =
fi + f> contributes to the residual spectrum. The conjectural Arthur parameter is
as follows: Let ¢;: Lp x SL,(C) — GL,(C) be the conjectural Langlands’ parameter
for m;, i = 1,2. Then together with the distinguished unipotent orbit (2) in Sp,(C),
considered as a distinguished unipotent orbit in GL,(C), it gives an Arthur parameter
it Lp x SLp(C) — GL4(C), attached to the residual spectrum of GL4, namely, the
quotient of Ind \det|% ™R |det|_% 7, 1 = 1,2. Then 1); factors through O4(C), and
1 @yt Lp X SLy(C) — 04(C) ® O4(C) C SO4(C) is the desired Arthur parameter.

Case (iii) m = m ® m, and the distinguished unipotent orbit in O4(C), where
m is a self-contragredient monomial cuspidal representation of GL,. (This means
that the Eisenstein series attached to 7, GL, C Sp,, has no pole for Rs > 0.) In
this case, the point 3, = 2f; contributes to the residual spectrum. The conjectural
Arthur parameter is as follows: Let ¢p: Lp x SL,(C) — GL,(C) be the conjectural
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Langlands’ parameter for ;. Let (3,1) be the distinguished unipotent orbit in O4(C).
Then 3 gives an Arthur parameter ¢, : Lr X SL,(C) — GL(C), attached to the resid-
ual spectrum of GLg, namely, the quotient of Ind |det| m; ® m ® |det | !m;. Also
1 gives the Arthur parameter ¢, = ¢. Then 94,1, factor through Os(C), O,(C),
respectively. Then ¢; @1, : Lg X SL,(€C) — Og(C) & O2(C) C SO4(C) is the desired
Arthur parameter.
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