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TOTALLY REAL SUBFIELDS OF />-ADIC FIELDS 
HAVING THE SYMMETRIC GROUP AS GALOIS GROUP 

BY 

HOWARD KLEIMAN 

I. Introduction. In this paper, an elementary proof is given of the following 
proposition: 

THEOREM 1. If Qp is an arbitrary field ofp-adic numbers, then it contains normal 
subfields Ln(2<n<p) which have symmetric groups Sn as their respective Galois 
groups over Q, the field of rational numbers. Furthermore, each Ln may be chosen 
to be totally real 

Theorem 1 is contained in my Ph.D. dissertation at the University of London. 
I would like to express my deep appreciation to Professor A. Frohlich for his 
advice and encouragement throughout that venture. 

II. Preliminaries. In order to prove Theorem 1, I shall need the following two 
theorems by Perron [1] and Weisner [2] as lemmas which I now state without 
proof: 

LEMMA 1 (Perron). Let k±, k2,..., kn be n integers, andpx,p2,.. .,pn-i be n—l 
distinct rational prime integers such that for v= I, 2,..., n — 2, the v numbers 

Piki9PiP2k29 • • >,PiP2- • -PvK 

are incongruent modulo pv+1 and relatively prime to pv + 1. Furthermore, suppose 
none ofp±,.. .5jpn_i divides kn. Then if 

f(x) = X{x-p1k1){x-p1p2k2). . .(x-PiP2- • 'Pn-lkn-l)+PlP2- . -Pn-lkn, 

f(x) has the symmetric group over Q. 

LEMMA 2 (Weisner). Let 

fix) = axix — ax).. .(x — an-1)±k 

where a,k,aly..., tfn-i are positive and the a/s are distinct. If the inequalities 

2nk < aa±a2... an _ i 

2nk < aa5 Yl Ity — aA 0 = 1> 2 , . . . , »— 1) 

are satisfied, the roots off(x) are all real and lie within the intervals 

[~l,iL [aj-haj + t] a = l , 2 , . . . , t f - l ) . 
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Proof of Theorem l. We must first consider the solution of the linear diophantine 
equation 

(1) ax = by+c. 

A necessary and sufficient condition for a solution in integers x and y is that if d 
is the greatest common divisor of a and b, then d divides c. Thus, given distinct 
rational primes Pi,...9pn,P where \pj\>p>n9 we can find nonzero integers 
kl9 k2,..., Arn-i> Wx, m 2 , . . . , mn-i such that 

(2) (Pip2 •. .Pj)k, = (pj+1Pi+2-. -PnP)rni +j 

where j ranges from 1 through n— 1. Furthermore, let /:n=/7. Then the conditions 
of Lemma 1 onf(x) are met. Since/(x) splits separably into linear factors modulo/?, 
by Hensel's lemma the splitting field of f(x) over Q is contained in Qp. In each 
solution (A:,, rrij) of (2), we can choose kj positive and arbitrarily large. By Lemma 2, 
f(x) can therefore be chosen to have roots which are real and distinct, yielding the 
second portion of the theorem. 
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