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REMARKS ON FUJIWARA’S STATIONARY PHASE
METHOD ON A SPACE OF
LARGE DIMENSION WITH A PHASE FUNCTION
INVOLVING ELECTROMAGNETIC FIELDS

TETSUO TSUCHIDA

1. Introduction

We consider an oscillatory integral of the form

(1.1) I}, S, a, v)(x, ) =

L vi \%2 —ivS Xy, e 0,2y L1
H( ) f e P a(xy, e, x) 1T da,.
27Z't RIL-D j=1

j=1

Here each z;, 7 =0, 1,..., L, runs in R v >1is aconstant and ¢, 7=1,...,
L, are posmve constants. Fujlwara [5] discussed this integral for L large and de
veloped the stationary phase method with an estimate of the remainder term for
the phase function S(x,,..., x,) coming from the action integral for a particle in
an electric field. But his results cannot be applied to the integral which naturally
arises in the discussion of quantum mechanics of a charged particle moving in a
magnetic field. In this paper we extend his results to the case for the phase func-
tion involving both electric and magnetic fields.

We denote the I-th component of x € R” by (x),, and use the notations: 8, =
gy = O, " 0Gh, with a multi-index a = (a,,..., a,), and 8,f(z) = 0, f(z,)
as the gradient of f(x;).

Our assumption for the phase function S(x,..., x,) is the following:
(H.1) S(x;,..., x,) is a real-valued function of the form
(1.2) Sz, ..., x) = Z Si(t;, x;, x;_),
where

Received September 28, 1993.

157

https://doi.org/10.1017/50027763000025009 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025009

158 TETSUO TSUCHIDA

| X — T |2

(1.3) S, xy, x;_y) = 5,

+w;t, x,x),7=1,..., L,

and w; (¢, x;, x;_,) satisfies the following conditions:

(i) For any m = 2 there exists a constant £, > 0 independent of j and ¢; such
that

(1.4) max  sup | 0y 0 w,(t;, x, ) | < K,

2<|a+8| <m z,ycR?
(ii) Let (Z,..., &) be an arbitrary solution of the system of the equation
(1.5) azjsl‘+1(tj+1, ‘fj+17 -fj) + a.rlsj(t]’ 'fjv ‘ff—l) = OY ] = 1!- e L - 1'

For any m = 1, there exists a constant B,, independent of (Z;,..., &), L and t;, j
=1,..., L, but dependent on d such that

L-1
(1.6) E 1<‘.5:\s 1@, + 0, + 8, )0, (w, + 0,,)1(F_y, &y, Zup) | < B,,
“lal=1

where (8, + 0, + 0, )" =1,
a=(a,..., a,).

+ 0y, T 04

a o .
o) ¢ for a multi-index

Dk ()4

Fujiwara’s assumption for the phase function in [5] is strictly stronger than
that of ours. He assumed that the phase function is of the form

L
S(.Z'L,. .oy ‘rO) = Z Sj(tj, Ty xj—l)y
j=1

with

I.Z'j - .Z‘j_, |2

Silty, x;, ;) = 21,

+ tiwt, x, x;2),7=1,..., L,
where w,(t;, x;, xj_l) satisfies the estimate (1.4). In his case, our condition (H.1)(ii)
is automatically satisfied. Let S,(t;, x;, x;,_;) be the classical action of a charged
particle moving in an electromagnetic field discussed in Yajima [9]. Then S;(t;, x;,
xj_l) satisfies our assumption (H.1) but does not satisfy the assumption in [5].
This will be discussed at the end of §2.

When S(z,..., r,) satisfies (H.1), then if T, =1¢ + -+ + £ is small
enough, for any x,, £, € Rd there exists the unique critical point (J:L*_l,. v xl*),
ie.

(17 0y St Ty, 1) + 0,5, 2, 25) =0,j=1,..,L—1,

where xL* = x, xo* = x, (The proof is in §3).
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To state the assumption for the amplitude function, we use Fujiwara’s nota-

tion:
a(x, z) = alay, ;' 1,..., x, x,).
Similarly, for any pair of integers k, m with k + 1 <m let (17:+1r~ . x,j_l) be

the partial critical point, i.e.
05,S,01(tyany sy, ) + 0, 5,(t, x5, 25) =0, j=k+1,...,m—1,

%k
where xk =z, X, = Z,. Then we set

— _ *
Ay Ty Ty L) = A(Tyy e Ly Tty oy Loty Lo ooy L)

If m=k+ 1, we define

A _
A(Xpy .oy Tyts Tpre oy L) = A(Tpy e Ty Tioy e o L)

The assumption for the amplitude function is the following:
(H.2) alxy,..., x,) is a real-valued function in BMR™™). For any K = 0 there
exist constants Ag and Xg with the following properties:
For any sequence of positive integers with 7, =0 <j, — 1 <7, <j,—1< -+
<j£Ls=1,...,L—1,

(1.8a) | 0“06‘“ H 0“’““0 u a(xL, T, i 15 X

js—19 Ljg_g9e e

L 3 | < AKX,
if | aj| <K,j=0,57;,—=1,5,...,5,— 1,4, L. If j, = L, then we read the above
inequality as

x; _y, x) | < AgXy

0 ju-1 Xy ]
(1.8b) | 05 uI=I 0y 10y alxy, 2,y & A

I RTRRRE)

Let us state our main theorems. Let H be the d(L — 1) X d(L — 1) matrix

1 1 1
wty T, 00
1 1 1 1
H=| " &t g 0
1 1 1 1
O T outE Ty 0
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and W the Hessian matrix of 2;., @;(t;, x;, z;_,) at the critical point @ .,...,
*
x ).

THEOREM 1. Assume (H.1) and (H.2). There exists a positive constants 0 such
that if T, =t, + -+ +t, <0 then
(19) I({tj}, Sy a’ ))) (xLy 'Z.()) =
- \dr2
( 2 ) exp{— iv S(z,, )} det + H™'W) (alz,, x,) + rz,, x,),

27T,
and for any K = 0 there exist positive constants Cy and M(K) such that if | a,|, | o, |
<K,
L
(1.10) | 072007 (xy, x) | < Ay (T (1 + CeXypov™ 8) — 1.
=1

Constants & and Cy are independent of a, L, {t;}, x,, x, and v but depend on the
dimension d of space R and {,} and {B,}, M(K) depends only on K and d.

THEOREM 2. Assume that a =1 and (H.1) and let 0 be the constant as in
Theorem 1. Then for any K = 0 there exists a constant Cy such that if I aol, |aL[
<K,

om0

(1.11) | 07r0,0r(xy, 2) | <

]

1+ Cp™'t,T) — 1.

1

We remark that our estimate of #(x;, x,) in Theorem 1 is the same as that in
Fujiwara [5], but that in Theorem 2 differs from his in the power of T : our pow-
er is 1 while his power is 2.

In §2 we see that the phase function coming from the action integral for a
charged particle in an electromagnetic field satisfies (H.1). In the later sections we
mimic the discussion of [5]. The existence of the critical point of the phase func-
tion is proved in §3. In §4 we write down a lemma about the stationary phase
method on a space of large dimension. Theorems 1 and 2 are proved in §5.

2. Piecewise classical path in electromagnetic fields

We give an example of S(z,. .., ) which satisfies the assumption (H.1). We
consider a charged particle in an electromagnetic field in R’ which satisfies the
assumption considered by Yajima [9]. In this section we denote the I-th component

https://doi.org/10.1017/50027763000025009 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025009

FUJIWARA'S STATIONARY PHASE METHOD 161

of z € R’ by x,. We make the following assumption for the vector and scalar
potentials A(¢, x) and V(x):

AssumptioN (A). For k=1,...,d, A.(t x) is a real-valued function of (¢, x)
€ R X R, and for any a, 0;A,(t, 1) is C'in (4, ) € R X R®. There exists
¢ > 0 such that

(2.1) |0jA(t, 0 | +]809,A¢, 0] <C,, |al=1, (t,2) €RXR’
(2.2) JoiBt, v <C,A+ 2D lal 21,

where B(f, x) is the skew symmetric matrix with (k, [)-component B,,(t, ) =
(0A,/dx, — 0A,/0x,)(t, x) and | B| denotes the norm of matrix B regarded as
an operator on R?, V(2) is a real-valued C” function which satisfies

(2.3) 0%V | < C, |al>2.

In the form of oscillatory integrals Yajima [9] constructed the propagator for
the Schrodinger evolution equation with a vector potential satisfying Assumption
(A). We remark that this assumption is satisfied by constant magnetic fields.

Let H(t, x, &) be the Hamiltonian

Ht, z,8 =276 = At, »)" + V(@).
Then Hamilton’s differential equation is
i=0H(t x,8, E=—0H({ x,8

with & = dz/dt and & = d&/dt. When we introduce the position-velocity vari-
ables by (g(®, v(®)) = (x(®, £t — A(t, (D)), then Hamilton's differential
equation is equivalent to Lagrange’s differential equation:

(2.4) G = v, o = B(t, ¢®)v() + F(t, q®),
where F(¢, ) = — (0,4) (¢, x) — (0,V) (x). The next lemma is a result of Yajima
19]).

Lemma 2.1, Let|t—s| <1.
(i) For any a with || =1, there exists a constant C,, such that for any solution
@, v(0), s < <t of (2.4),

[ 1@ B, q@) ] v@ | dc < c.
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(i) There exists a constant T > O such that if 0 < |t —s| < T, then for any x, y
€ R’ there exists a unique solution (q(7), v(0)), s < T < t, of (2.4) with q(s) =y
and q(f) = x.

Proof. We refer the proof to Yajima [9, Lemma 2.1 and Proposition 2.6]. [

Let T> 0 be as in Lemma 2.1(ii) and | £ — s| < T. We write the unique solu-
tion ¢(7) of (2.4) with ¢(s) = y and ¢() = x as

q@ =¢'@ + ¢' @

T— S
F—s (x — y) + y. Then we have

where ¢’ () =
(2.5) §'(v) = B(r, ¢()v(r) + F(z, q()),
and
g'(s) =¢'® = 0.
Let G be the Green operator of the Dirichlet boundary value problem:
-4 =f(0),s<t<t, qls) =q@) =0.

Then we have
CNH@ = [ gle, wfudu,

where

g(r,u)=(u——;t—s)__(ts—)_z)-,ifs£uéfét,

=(T—~(;—)_(2)_—“),ifsgrsust.
Pucl £l = [ |70 | and | £l = sup,z.z, | F(@) | Then we have

26) 120 <=5l Al

LEMMA 2.2. There exists a constant 0 < T° < min(7T", 1) such that if | t — s |
< T° then for any a, B with | a + 8] = 1,
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(2.7) 107979" - < 197874 2 < Cop 1 £ — s .
Proof. The first inequality is Poincare’s inequality. Differentiating (2.5) and
using (2.6), we have
10,4 Il <1t = sl1B-6, + ¢
d d
+ 2 0,(¢" +¢9,0,,Bd+ 2 0,6’ + ¢, 0., F I
m=1 m=1

<lt=s|ICa+18,4 1w +CiaA+10,4 )
+Clt—s|Q+10,4 )]
<lt=s|(C+Cl+Clt—sDA+]0,4 L,

0, (T —8)
noting 9, d,, = G _’ms) , a,,qf,, = %s—)_ and Lemma 2.1(i) and using the first

inequality of (2.7). Hence if | t— s|is sufficiently small, we have the second
inequality of (2.7). Similar arguments lead to (2.7) for general « and S. ]

Let S(¢, s, x, y) be the action of the classical path (¢(z), v(7)) joining (s, ¥)
to (¢, x) :

t
(2.8) S, s,z 9 = [ Liz, ¢@), v(@)dr,
where L(z, ¢, v) is the Lagrangian corresponding to H(z, x, &) :
2
Lz, q,v) =vE— H(r, 2,8 = % + Az, Qv — V(g).

For any sequence 0 = T, < T, < +-+ < T, < T° and any points x’ € R’ j=
0,..., L we put

S,(t, &, &' = ST, Ty, 2/, '™, j=1,..., L,
where t; = T, — T,_,. We denote by g, = gy + ¢, the piecewise classical path
C . N . 0.
joining (T}, '), 7 =0,..., L, ie g, is

— T, _ _
@ =@ - + 27, T, <c<T
j

and qj satisfies

§,(0 = B(r, ,(0)4,(D + F(z, q,(D), T, <t<T,
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and qj(T,-) =0,7=0,..., L The action along the piecewise classical path can be
written as

1N

L . .
S(g) = S&h,..., 20 =2 8,¢, 2, 2.
j=1

TueoreM 2.3, Let T, < T'. Then S(z%,...,2") = 2., S,(t;, 2/, 2'™)
satisfies Assumption (H.1).

Proof. First we verify (H.1). Let ¢(z) = ¢°(¥) + ¢'(2) be the classical path
joining (s, y) to (¢, x). We have

£ ] 40 .1 2
st s, 2,9 = [[(HDELOL L ae 10040 ~ Vg e

— 2 ' .1 2
- % + f ('q#)l + A(z, q(0)4(r) — V(q(r)))df
_lz—yf

= oG8y + wlt, s, x,y)
where
@9 s zp=[ (DL 4 e, 4@t — Vg ).
Since g satisfies (2.5), it follows that
@)t 5,2, = [ 0,8°(Be, g(@)i(D + Flz, g@)dr = A,(s, ).

Noting Oukq:; = (t— 1) (t— )76, we obtain

‘t—t(d : ¢ ~
F— s ( Z Bkmaqum + nf;?:l ay,qnaankmqm

m=1

210) 0,0, s, 2,9 = [
d

+ 30,4, 0,,F)dr = 0,4) G, 1),
m=1

So from Assumption (A), Lemma 2.1(i) and Lemma 2.2, we have

19,0,0| <C,A+Clt—sh+CclA+Clt—sh+
Clt—s|lQ+Clt—s)+C, <k,

where £, is independent of x, y and f — s. For the other higher derivatives of w,
similar arguments hold. So we have proved (H.1)(i).
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Next we show (H.1)(ii). We put
(2.11) wj(xj, )= = w(T, T,_,, 2, 2.
In the same way as above we have

0,0 (w4, (@™, 2) + w;(2’, 2'7H)

n,m=1

w1 T
*f j“ (Z Bkmar’((h"“h) + Z azJ(QA) km(‘j'A)m
d

+ 3 0,400 k)dr

Iy r—T. d d
+ [T IS Bl + Dt 2 04000400, Bin @
T t m=1 ! n,m=1 ! 4

-1 7

d
+ 32 0y(g) e 0, Fy)dr,
m=1

1
00wy, (27, 27)

J+l T
:.[; i1 T T (Z Bkmalaﬂ(qA + qA) + Z ax,ﬂ(qA) axﬂBkm<(IA)

tiv1 nm=1

+ 2 O, (4,) 0, F )
and

51{—13%0)]- (l'j, .I?j—l)
i T — .
- f <Z Bkmax’ 1(% + QA) + nz 6x’ 1(qy) ,0,, km(qA)m
d
+ 5 aﬁ-l(qﬁ)m-amek)dr.
m=1
This together with
.0 .0 1
- ax’,'(%)m = ax;‘*l(‘h)m = t—“ Om, T;< 75Ty,
7
and
.0 1
— alat--x(qA) Gﬁ(qd) ) ,m, Tj—1 <r< Ti’
I

yields that
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(614'-1 + 6141 + 61.;41) aﬁ(wj + wi+1) (xH, xj, .Z’jH)

Tsn T... — 7/ 4
= fT —’“—~(Z B (0 + 0. dsm
m=1

. b

+ Z (ar:ﬂ _‘_ 014) (qA) a Bkm(qA) + Z (al.ﬁl + 314) (qA) )dT
n,m=1 m=1

+ f A (z B0,y + 0,4) o

£ 50+ 00,0 Bun@ + S 0+ 00 000, F ).

n,m=1

When (fL,..., Z% is a critical point of S(g,), the piecewise classical path
q,(7) coincides with the classical path ¢(7) joining (0, z%) and (T, 7%. So we
have from Lemma 2.2

| @ + Oy + 0pge) 0y (00; + 0, ) (@7, T, 2™ |
T
< Clt+4) +C [ 1 0B @, 4@ [0 | dr.
Therefore, we have by Lemma 2.1(i)
L- A :
S| O + 0+ 0000, + w0, ) @ &, 2 |
pard

T,
< CT, + Cj; | (0B) (r, ¢() || v(D) | dr
< B,

where B, is independent of (fL,. .., &), L and T, it T, < T°. Similar discussions
hold for other differentiation (8,1 + 0,4 + 0,4+1)". Thus we have proved (H.1)(ii).

O

Finally we remark that our phase function S(¢, s, x, y) does not satisfy
Fujiwara’s assumption in [5]. In fact, in the case that V(z) =0 and A, x) =
Az, where A" is a real constant d X d matrix, we can see from (2.10) that

@5, 7,0 = [ 1o (2 Bundy e = 0,40, 9

_ A“+A”‘+f t_T(ZB,m,a,,,qm)
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A+ A
=4 _"u 2 40—y,

as t — s goes to zero.

3. Phase functions

In this section we discuss the unique existence of the critical point of S
(Lemma 3.5) and study some of its properties. The method is similar to that of
Yajima [9]. In what follows, we assume (H.1) and abbreviate S;(t,, x;, x;_)) as
S;(x;, x,_) and w;(t,, x;, x;_) as w,(z;, x,_;). To avoid additional complexity we
putd = 1.

Lemma 3.1, Let 2tk, < 1,7=1,..., L. Then for any y and k € R, there
exists a unique (xo#, . .r,f) = (x(f(y, k,.. .,.rL#(y, k) which satisfies x; =y,

R #_
T — X X T Xy

tini 7

= ajwj(x,»#, xf_l) + 6jwj+1(xf+1, xj#), j=1,...,L—1.

Proof. We have zf = z/(y, k) = t,k + y. Put

# #
—

(3.2) ki =S,

7

j=1,..., L

Then the system of the equation (3.1) is equivalent to

#

(3.3) kin— k=00, + tkl, 2 )
+ 0w, F kK, 2l kD, j=1,...,L—1.
If 2t,k, < 1, for any y, k € R, the map @;:
k,— @, (k) = k + 0,w) (y + tk, y) + (0,w,) (y + t,k + t,k,, y + £,k)

is a contraction. So there exists a unique k) = k:(y, k) which satisfies (3.3) for

j=1. Hence we have z; (y, k) =z (y, k) + t,ki(y, k). Similarly we have the
. . # # # # .

unique existence of k;,..., k; and x,,..., x;, successively. ]

x/(y, k) —z @y, k)
t.

J

As in the proof of Lemma 3.1, we set ki (y, k) =

’

j=1,...,L wherek{ =kandz, =y Let T, =1t + -+ + ¢

i
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Lemma 3.2. If2tk, <1,7=1,..., L, thenfor|la+ B| =1,

(3.4) | a;'a,f(x;(y, k) —y—Th| < CaﬁleﬁHl’

(3.5) | 000 (k! (y, k) — B | < CoeT)"'.
Proof. We prove this by induction on [ =|a + 8. We denote x,-#(y, k) by

z;, ki (y, k) by k;, 050,z by x° and 8507k} by k.
Let I = 1. Then we have from (3.2,3),

36) xf —x¥ =tk® j=1,..., L,
kfi - kfﬂ = 0y + 0, + 0;40) 6;‘20);‘ + wf+1)xi£iﬂl
2 a aB .
+ (a, ((Uj + (Uj+1) + aj+lajwj+1)tjkj + aj+1ajwj+1tj+1k,-+1, ]= 1, ooy L - 1.

So we obtain with ¢, = (9,_; + 0, + 0,,1)0,(w; + w;,) (x;_,, x;, 2;,,)
A=kt ) S+ 1271 < QA+ G, + D) K+ A+ ¢, 2]
Hence if 1 — k,t;,, = 1/2, then
LK+ 12 < A+ 2] ¢,| + 2@k, + Dty + 26,8,) (K2 | + [ 22 )).

Here we have used (1 + 51 — @)™ <1+ 2(a + b) for 0 < 2a < 1. Since £,
x:'g =0 or 1, it follows from Assumption (H.1)(ii) that kafll + leﬂl <C. So
we have

19,0k, = )| < Cand | 8,(x, — y — Tk | =| z to,k| < CT.,
Moreover since we have
10| =1 0@ = 0| = | S4ael < CT,
we obtain by summing (3.6) for J
|9,k — B) | < CT, and | 8y(z; —y — T, | = | ét,&k(k, — k< cTh

Next we suppose that (3.4,5) are true for |a + 8] <[ and prove them for
la+ Bl =1+ 1 We put

g(x;_y, kj kiyy)
= (ajw,‘) (x,*_.l + tjkjy xj—l) + (aiwf+l) (‘ri—l + tikf + ti+1ki+l’ 'I:f-‘l + tlkl)
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Differentiating (3.3) we have

K-k =0, gal +0,6k" +0, gkt
+ X Co gx ‘“‘" el
+ Ca a ak L& alﬂx L. x]‘ﬂrlxﬂmk;lfﬂf . k;lmﬁmkﬁfl . k;lfilﬁ'l'gl,
where the sums are taken in the suitable manner, and
(dlv Bl>+ +(0(_v‘7‘,,gy”):(a,3), 2£|7".<_l+1,
(al’ ‘Bl) + o + (a‘r\y 6\7\) + (air Bll) + e + (a\/ﬁ\i B{,B\)
+ (af, B) + - + (af, B) = (a, B),
<lrl+lol+]el < 1+1and1<§61+|e|

It is clear that

J, &= (a,1+a +0,,00,(w, + o,,0),
(3 t(a (CU + CUJ+1) + a]_HaJ ]+1) ak]+1g = tj+1a]+la](!);+1,
az,‘,g = (9., +0,+ 0,00, (w; + w,)

| lel
and | 0; 0,0, &1 < Coghpnt,” 151

By induction hypothesis (3.4) we have

; axﬁﬁ“_ amﬁ'ﬂ\ le

We can show that

& “131 . o uBmpaB “lmﬂm aysy .. bl
(3.7) | 0, 251 ka]“g x,07 "k, ki k5 I

< Coplt, + 1,0 T,

with (@), = max(a, 0). In fact, in the case 0 < |B] = |8, + -+ + 8, | <1, it
is clear from | 8 + ¢| = 1. In the case that |8 — |8, + -~ +B;ﬂ| =g 22 if
s < |0+ e, then the left-hand side of (3.7) is less than or equal to

Caplt, + 1) TET 7 < C(t, + 1, ) T

j+1

If s > [ 0+ ¢ l then the left-hand side of (3.7) is less than or equal to

G+el B8y f 8l
CaB(tJ + I“H»l)m+ T‘fl+ i T]+1 - CaB(tJ + tj+1) T1l+1y

J

with 0= 2z =, | B, | + 2=zl Byl because | 6 + el —12> Zig -1 |8, +
2o | By 1. So we have together with .r]aﬂ - :1:,»“_61 = t]k]“‘g,

A=t ) K+ 12 <A+ Qe+ D) LES T+ U+ ¢ D]z
+ Copl I T + Copt, + £, )T,
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where ¢](l+1) @1y Ty Tjs) = 2 1<iai<in | (0, + 0, + aj+1)aaj(wj + w0 (@,

x;,1) |. Hence if 1 Kyti1 = 1/2, then

[kj+1| +lxa3| (1+2[¢]| +2(2I€2+1)t +2,C2t;+1)(' kaﬂl +l I)
+ 2Ca5([ ¢jl+1) | Tj{ﬂ + (tj + t]H) T(lﬁl 1, 9

It follows from Assumption (H.1)(ii) and :c(fw = kfw = 0 that
l k1+1| + l aﬁl - cu‘}T;‘ﬁl

Hence we have
j
lk;rﬁ! < CaBTjIBI and |‘rjali| — ! I_Z‘; tlklaﬂl < CaBleﬁHl-

The proof is completed.

O

We need the inverse of the map (y, k) — (¥, xL#(y, k)). To this end we intro-

duce the new variables:

(38) &y, k) =z/(y, k/T) and k;(y, k) = T}k @y, k/T), j=1,..., L.

LeEMMA 3.3. For any o and B, there exists C,g such that
| 8007 0,2, — 1) | + 108/ (8,2, — 1) |
+10080,8) | + 18,0, (9., — 1) | < CpT,.

Proof. This follows from Lemma 3.2.

O

LEMMA 3.4. There exists a constant T > 0 such that if T, < T, then the map

(y, k)~ (y, ©) = (y, $,(y, k) is a global diffeomorphism on R X R.

Proof. Let T satisfy 2Cy,T < 1 with the constant C,, in Lemma 3.3 and 2«,T

< 1. Then by Lemma 3.3 the map k— U(k) =x+ k — Z,(y, k) is a contrac-

tion. So Lemma 3.4 is proved.

Let (y, k(y, x)) be the inverse of the map (y, k) — (y, x) = (y, Z,(y, k))

in Lemma 3.4 and set k(y, x) = k(y, x)/T,. Put

(3.9) xj*(y, x) = x,#(y, ky,2),j=1,..., L —1,
xj*(y, x) — I;il(y, x)
t '

7

k' (y, x) =

)

;j=1,...,L,
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* *®
where x, =y and 1, = .

Lemma 3.5, If T, < T, then xj*(y, x),j=1,..., L — 1 is the unique critical
point of S with xo* =y and IL* = x, i.e. it satisfies (1.7).

Proof. Let y, x € R. Then by Lemma 3.1, for y, k = k(y, x) there exists a
unique (x}(y, k),..., z} (y, k)) which satisfies (3.1). And we have z; (y, k(y, 2))
= z by Lemma 3.4. These xf(y, k(y, 1)) are nothing but the desired :cj*(y, x). [

The next lemma gives the estimates of the critical point.

LEmMA 3.6. We have

(3.10) | T,0,k" + 1|+ | T0.k" —1|<CT,, 1<;<L.
(3.11) | 0700k’ | < Cpp, la+B8l=2, 1<;<L.
(3.12) oz | +lox2f<C, 1<;<L—1.
(3.13) |000fx* | < CpoTy, la+Bl=2, 1<;<L—1.

Proof. (3.10): From the facts that TLk;k(y, x) = T,k(y, ) = k(y, x) and
(3.14) Wy, kly, ) =z,

differentiating (3.14) and using Lemma 3.3 we have (3.10) for the case j = 1.
(3.10) for 2 £ j < L follow from Lemma 3.3, (3.10) for j = 1 and from the
fact that

- T -
(3.15) Tk (4, @ = T @, k(y, ) = Ky, 75, D).
L

(3.11): For | @ + B| = 2, differentiating (3.14) we have

0= 0052, (y, k(y, x)) = 0,4, 0700k
+ 3 Co) 0y 0,00k - -+ 0,37k,

where 2<|a’ + B[, 0<I<|a+ Bl 0,00 # (a,, B, < (@, B, 1<m<I
and (a,, B) + -+ + (@, B) < (&, B). Hence we have (3.11) for the case j = 1:

| (8:35’2)(% n| < Cas T,

by induction on # = | @ + B, using Lemma 3.3.
Similarly, differentiating (3.15) we have
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| BTk (y, 2) | < CheT,

by induction, using Lemma 3.3 and the estimate for O:Of/E(y, .
(3.12): Since we have

) (y, 0 =z (y, kly, ) = :Ej(y, %/E(y, x>>,

the proof is clear by (3.10) and Lemma 3.3.
(3.13): For | @ + B = 2, we have similarly to the proof of (3.11)

aloix (y, x) = 0, (T,/T) 0, ock
+ X Corof 7, (T,/T) 0,00k - -+ (T,/ T oy '0r'k,

where 2<|a’+f8|,0<I<|a+ B}, (0,0) # (a,, B,) < (@, p),l1<m<]
and (a;, B) + -+ + (a, B) < (a, B). Therefore from (3.11) and Lemma 3.3,
we have (3.13). O

We introduce the same notations as in [5]. Let m and k be two positive inte-
gers with m > k + 1. We define (x:_l,. ey xk*ﬂ) as the partial critical point, i.e.
* * EE SN .
0,5y, ) +0,5,(x;, x,_) =0, j=k+1,...,m—1.
Here 2, = ,, and z, = x,. We denote the critical level by S,f,ykﬂ(xm, ), ie.

S::'z.k+1(‘rm! x) = S, (x,, xr:—l) + o+ Sk+l('r::-1’ ).

If kK + 1 = m, then we set S:;,kﬂ(xm, z,) = S,,(x,, L,_1). For any m > k, we put
Tom, k) =t,+ -+ + ¢, and T(k, k) = t,. For a sequence of integers (i,..., j)
such as 0 = j, <j, <j, < -+ <j; <L =jg,, weput

S+1

# _ #
S, Ty Ty ey Ty, ) = El S (T, T ).

Lemma 3.7. Let T, < T. Then S,-t...,-l(.rL, Zjsennr T, x,) satisfies (H.1) with

constants K,y and By, different from &, and B,, :
. # .
(i) S, +1(x;, x, ) is of the form

2
|z, — ;.|

. P Bt e 2 L
S (‘ri,’ xjr—l) - 2T(7}7 jr—l + 1)

#
Jpdy-1+1 + wj,,j,_1+1(‘rj,1 Z; )'

Jr-1

For any m = 2, theve exists /c::, such that

(3.16) max supl|oojw; , ,.(x, 9| <k,
2<la+Bl<m zy i
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where Ky, depends on {k,} and {B,} but not on v and t,.
(ii") Let (Zy, Ziyeonr Iy, Z,) be an arbitrary critical point of Sz,.,,-l, i.e.

3.17) 8,5, &, %) +0S5,

Jpdy-

(@, 8,0 =0, r=1,..,s.

Tr-1

Then for any K 2 1 there exists B, ; such that

318 3 X | 1@, + 8, +d,,) D (]

ot D@ L E, )
yo1 1Bl=11< lal <K Jret Jpiyp-1tl Jrevdytl

Tr-1? Iy’ Tipn

< Bj,

where By depends on {x,} and {B,} but not on (&, Ziyo. s T,y L) and s.

Proof. (') We investigate simply S(z,, x,) instead of S;:,jy_lﬂ(x,r, x, ), to

which a similar argument applies. Since (xL*_l,. . xl*) is the critical point of S,
we have

0,5(2,, z)) = 0,(S(x,, z;1,. ..,z x))
= (0,5) (x1*y xy).
Hence we have
025(x,, z) = (82S) (x", z) + (8,0,5) (x,", x,) 0,2,

=7+ 0lw, + (— £+ 0,0,0) A + t,0,k))
= 0rw, + 8,0,w, + (— 1 + t,0,0,w,) 3.k,

where we have used 9z, =1 +t160k;k which follows from (3.9). Since by
(3.10,11) of Lemma 3.6 we can write

0ok, (xy, x) = — % + bz, 2), blzy, x) € BR X R),
L
we have
— 1 t
02S(x,, x,) = 7t 0w, + 0,0,0, — 7 00w, + (= 1+ 60:0,0) bz, o).
L L

For the other derivatives of S(x;, X,), similar arguments hold, since we have

aoaLS(ijxo) = aLk;k(— 1+ t0,0w,) = aokzk(l — 4,0,0,,wp)

and so on. Therefore we obtain (i’).
(ii") To simplify the notation we put / =j,_,, m = j, and n = j,_,. We have
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(3.19) (8, + 8, + 0,) 0, (Wh 111Xy ) + W i1 (s T,)
= (3, + 8, + 0,00, (S 101 T, 2) F St rie1 (T, Tp))
= 0,k (4,010,000 — 1) + 0,k (1 — 1,8,,0,,_,0,,)
+ 82w, + 0,,0,_,0, + 02Wpsy + 0,0, Wprs
+ 0k (1008, Opay — D+ 0,k A — £,8,0,_,0,),

where k., and k. are functions of (2, x,,) and k..., and k. are of (z,,, 2,). We
can show that

0 k1*+1(t1+16 0@, — D+ amk:nk(l = 10,01 0,,)
= Z (b,(l' ‘r;:l) amxj*(‘rlr 'rm)v

j=I+1
where  ¢,(z;_,, z;, z;,) = [0,_, + 0, + 0,,)0,(w;, + w;,)](z;_}, z;, ;). In
fact we have
b0y k;il 0 xl+1
ok =1—0,z,
By — 0,k = (..., DWU+1, m; X,5)0,X,", + 6,0,,_,0,,

where 'X,fkm = (..., zy ) and WU +1,m; X' ) is the Hessian matrix of
S o1 @; With Tespect to (Zypy,. .., Zpoy) at Xpo

Wl+1, m; X,fkm)

a12+1(501+1 + w.,) 0141014204 0
= 01410142042 atz+2(a’1+2 + ) o 0
0 afn_l(wm_l + w,)

Therefore we have
(320) (8, + 8, + 0,00, (@} 11 Ly, ) + W) rre1 Xy, T,)
m—1
= X ¢j(‘rj>il! ‘rj*r xjil) am‘rj*(xlr z,) + ¢m('rr:zk—1’ x;zkr xr:|:+1)

j=I+1
+ Z ¢t 2, 20,1 (x,, x,).
j=m+1
When (Z, Z;,..., &;, Ty is a solution of (3.17), (&, xf_l(fL, Z;),. .., x1*(f;1’

), I,) is a solution of (1.5). So summing the absolute value of (3.20) over 7 (be-
cause | = j,_,, m = j, and n = j,,,) and substituting (Z;, Z;,. .., ;, T,), we have
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(3.18) for K =1 by (3.12) and (H.1)(ii).
Next we show (3.18) for the case K = 2. We can rewrite (3.20) as

(3.21) @, + 8, + 0,0, (@), .., ) + &) 1.1 (x,, T,)

n—-1

_ * EIE T ®

= .%1 ¢;(x; — tk;, x;, x; + bk D0, 2, 2,
iz

where p; are bounded in B by (3.12,13). Differentiating (3.21) by (9, + 8,, + 3,),
we have

(3.22) (o9,t+90,+ an)zam(w;m(xm, z) + a)zymﬂ(xn, z,))
n—1
= X (200, + 0, + 0,2, — £,0,.:6,(8, + 8,, + 0k, D,

j=I+1

+ t110,.6,0, + 8, + 0,k .0; + 6,8, + 9, + 8,)p,],

where ¢,° = (8,_, + 0, + 8,,,)"0,(w, + w,,,). On the other hand by (3.10,11) we
have '
0, + 8, + 0k = (3, + 0,0k =g,

1

8,4+ 8, + 0k = (8, + 0k =g,

Vil

I+1<;7< m,
mt+1<j;<n,

where ¢; are bounded in 8. So from (H.1)(i) and (3.12,13) the right-hand side of
(3.22) is of the form

(3.23) _,211 [6°8; + (4, + t,.0a; + $.07),

where pj, p/ and ¢; are bounded in %. Summing the absolute value of (3.23) over 7
and substituting (Z;, Zjgeoor Tjy I,), by (H.1){ii) we have (3.15) for K = 2. For
the other higher derivatives similar arguments hold. So (ii") is proved. O

Next we consider the Hessian matrix at the critical point. The Hessian matrix
of Sis equal to H(L) + W(, L; x), where

1 1 1
T, T O
1 1
h 5 0
H(L) = 1 1 1
L S A
1 1 1
0 - + -
tL—l tL—l tL
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and for x = (x,..., Z,_1),

0w, + w)  0,0,w, 0
W, L:;x) = 616.20)2 a22 (w, .+ wy) aza'sws '0
: : : ’ 011070,
0 e e B (W, + @)
We have
T,
det H() = 7"
1 L

Let G(L) be the inverse of H(L). Then its (i) entry is
T(T,—T)

(G(L)),,':—*T—*, fl1<i<;<L—1,
L
(T, —
2%2 if1<j<i<L-1.
We set
4 t b t
1 =+ -+ 1) T, T, - T,
G1(L):'T_ -+ t+t) -+ Ft) T, - T,
L o . . . .
-t — 1 o=ty Ty,
and
t, 0 0
Guw=%"%"9
Lot t

Then we have G(L) = G,(L) G,(L).
We use two norms ||z, = max,.;<;_, | 2;| and [z, = Z,L-: | z;| for any
re R
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Lemva 3.8, Let x* = (x',..., 2,5) = @ (&, x),..., 2, (%, 2,)) be the
critical point. Then we have for any u € R*™,
IG,Dul., < lul,
1 G,.LWQA, L;xz™ul, < 9k, + B)T, || u| . and
lewywa, L;z"ull, < Ok, + BYT, lull..

Proof. For the proof we have only to sum the magnitudes of all component of
the matrix G,(L) W(1, L ; z™). Since the first column of G,(L) W(1, L; ¥ is

£,0:(w, + w,)

t, 0 (w, + w,) + 3,0,w,)
hy = t,0 N w, + w,) + 0,0,w,)

t, (07 (w, + w,) + 8,0,w,)

we have [ 4, [, < 3k,T,. For 2 <j <L —1, the j-th column of G,(L)W(, L;
E3
x) is

0
t,0,-10,;
ti41(0,-,0,0; + a/'z (@, + @) |
tiva®,
Lo
where ¢, = (0,_, + 0, + 0,,)0,(w; + w,,)). So we have [h;l, <3k, +
t.) + T.| ¢,|. Therefore by (H.1)(ii), we have iy [ 4,0, < Ok, + B)T,, O

Let 2, be the critical point of S,(z,, x,) + S,(x,, ,) with respect to z,. We
define a function D(S, + S, ; x,, %,) through the Hessian determinant at ;" in the
following way:

t+t
det Hessx(S, + 8) = =77 D(S, + S, 2, x)).
1°2

For m > k + 1 we define D(x,, x,) by
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b 0

det(Hess s  ....+.,(S, + + + S.)) = " D(Z, X))

tk+1 tm

Lemva 3.9. Let 0 < T' < T with 29k, + B)T' < 1. If T, < T", then we
have

L
— # .
D(x;, ) = kl:Iz D(S, + Si_i15 s T ‘(z,__l,---,zl)=(xf_l,---,r’f)'

Proof. When 2(9%, + B,) T, < 1, we have that
det Hessgs | ....z0 (Si (xy, )+ o+ S 7))
o+

HrpdetU + GRIWA, kM) #0, k=2,..., L
k 1

because I + GUk)W(Q, k; ™) has the inverse matrix by Lemma 3.8. So applying
[5, Proposition 2.6], we can prove the lemma by induction on L, similarly to
[5, Proposition 2.8]. J

Lemma 3.10. If T, < T, we can write
(3.24) Dz, x) =1+ T, g(x, x),

where g(x;, x,) remains bounded in B(R X R) uniformly with vespect to t,,. .., t,.

Proof. By Lemmas 3.6, 3.7 and 3.9, we can write

L
D(x;, x) = kr=Iz D(S, + Slf—l,l P Ty Ty) I(xL_,.u-,xl):(xf-,,---,x;“)

L 4T,

= kl;lz 1+ kT]; . alf—l(wk + wﬁ-l.l)) I(JL-,,---,xl)=(zf_1,---,z}")
L

=11 (0 + t,p,(xy, x)),
k=2

where p,(z;, x,) are bounded in B(R X R). So the lemma is proved. O

It is noted that Lemma 3.10 differs from Fujiwara [5, Proposition 2.10] in the
power of T, ; our power is 1 while his is 2.
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4. Key lemma

In this section we write down key lemmas to prove Theorems 1 and 2. Their
assertions are the same as those of [5] except for the form of the phase function.
2
xr— . .
Let S;(t;, x, ) = Lz—tﬂ + w,;(t, x, y), 1 = 1,2 be phase functions satisfying

7
(H.1)(i), and a(x, z, y) an amplitude function in B(R X R X R). We set 7=
tt,/(¢t, + t,) and E = vi/(27). The notation D(S, + S, ; x, ¥) is given in §3.

LEmMA 4.1, Assume that 87k, < 1. Then

<7E_>1/2<t£>1/2 f e_,-,,(sl(,l,x_z>+sz(tz,z,y>>a(x’ z, Ydz
1 2 R

E vz ~ivS§ 1 (x, -
- (t +t> eIEOD(S, + Sz, ) bz, ),
1 2

with
11
bz, y) = alz, ¥, y) + (%}J)D(S2 + Sz, 9 1[E(Aza) (x, 2%, )

2
+ 2D, + 8,52, 9, 9|+ (55) DS+ Sz, 97, w),

wheve A, is the Laplacian with respect to z. For any m = 0 there exist C,, and
M@m) such that if | |, | B]| < m,

| 0200 r(x, 9 | +1 670 r,(x, )| < C,maxsup|d% a8 alx, z, v |,
where max is taken for & <, B < B and v < M(m). M(m) can be chosen as

2m + 4d + 2.

Proof. We have only to apply the stationary phase method (cf. [1, Theorem
4.1]) |

The next lemma plays an important role.

LEMMA 4.2. For the phase function we assume (H.1). Let al(x,,..., x,) be an
amplitude function in BR' V). Then there exists a constant 3 > 0 such that if
T, < 0 then

IGt}, S, a, ) (z,, 7)) = (2—7’:%) exp(— ivS(,, 30)b(zy, 2.
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For any m = 0 there exist constants C,, and K(m) such that if | a |, | o, | < m,

| 97505°b(x,, ) | < Chmax sup |80 - dalxy,. .., x|,
Lp-psotdy
where max is taken for (By,. .., By satisfying By < oy, By < @y and | B;| < K(m),
j=1,...,L—1.C, and KGm) do not depend on L, v and a. We can choose
K(m) = 12m + 48d + 21.

For the proof of this lemma we refer to §3 of Fujiwara [b]. Though the
assumption here for the phase function is more general than that of [5], the argu-
ments there apply to our case word by word.

5. Proof of Theorems 1 and 2

The arguments in the proof of Theorems 1 and 2 will be the same as those in
[5] except for taking (1.8b) in (H.2) into consideration.

For any [ >k we put TU, k) =t + -+ + ¢ and Tk, k) = ¢t,. We set
E =vi/(27). Let § be as in Lemma 4.2 and let T' be as in Lemma 3.9. Put
0’ = min(d, T"). When T, < &, we consider the oscillatory integral
(5.1) I}, S, a, v) =
L E\V2 L -1
I <7> fR(L_U exp(— v 4_? S;(x;, xj_l))a(xL,. <o) 1 dr;.

=1 i=1

j=1 “%j

First we perform integration over I, space. Applying the stationary phase
method, we have

E\V2/E\ 12 » .
(5.2) <7) (T) f oS 1)+s1<x1,x0)>a(xu' ., z)dz,
2 1 R

E Y2 st
= (g15) ¢ HESD Gy, 3 2+ R @ 1),

where S,a is the main term

5.3) (S, (..., 1, x) = alxy,..., 2, T)DS, + S;; x, 2)

and R,a is the remainder term.
Next, we integrate S,a over x, space and apply the stationary phase method,
then we have
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E vz E 1z —1(S4(X3,25) + 551 (25,2))
64 (3) (ren) Le (8:0) ..., 2, 2,

E 1z — iV, 3”1 XX,
- (W) ¢TI 0)((52510) @, ..., Ty 1) + (RS0 (xy, . . ., 2 T)).

Here S,S,a is the main term and R,S,a is the remainder term, i.e.
(5.5 (8,0 (¥y,..., Ty, Z) = (S,0) (@, .., Ty, 2", Z)D(S; + S715 25, 20,

where x, is the critical point of S, + S;l with respect to x,.
Repeating this process L — 1 times, by Lemma 3.9 we have the main term of
Theorems 1 and 2:

E\Y? —1wSE(xp,x
(5.6) (7) b8, S @, @
E vz =S} 1(x,X, -
= (~TL> PR "Dz, x) alz,, z,).

Next we treat the remainder term. Since (R,a)(xy,..., &, &, has compli-
cated structure as a function of x,, we postpone integration over x, space of the
term including (R,a) (xy,...,%,, £,) and perform integration over x, space before-
hand. The stationary phase method gives

ENYV2(E\Y2/ E \Y? — (S (T4g) +S3 @5, Tp) +5F 1 (X2,20))
(5.7) (g) <t3> <T(2,1)> f;e

X (Ra)(xy,. .., ;) L,)dx,

— ( T(4E,3) )1/Z< T(ZE, 5 )Uze—zu(sj',s(x4,zz)+s{,1(xz,xo))

X ((SR,2) (xy, ..., Zyy Xy, 2 T (R3R1@) (4. . ., Ty, Ty, X)),

where S,R,a is the main term and R,R,a is the remainder i.e.

(5.8) (S,R,) (xy,. .., T, T, %) = (R,@) (xy,. .., Z,, Ty, T)D(S, + S;;x,, 2,) "%

Similarly, we skip integration over X, space of the term including (R,S,a) (zy,.. .,
x,, X, and integrate it over x, space.

We continue this process: if R, appears we skip integration over X,,, space.
Thus we can write I({t;}, S, @, v) as

(5.9) IKt}, S, a, v) (2, 1) = Axy, 1) + 27 A5 . (g, T).

Here the main term is
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E\Y2 _,, . _
(5.10) Az, x) = (T) e ivsf (. °)D(IL, ) 1/za(xr;}0).
L
The sum 2 is taken over the sequences of integers (g, fo_1,..., ) with the
property

O:jo<j1_1<j1<jz_1< <js—1<js§‘L=js+l'
The summand is

(6.11) Ajsjs_l...jl («TL, 1'0)

_ s+1 E 172 "
II (m) j};s exp( zqusjs_l_,,jl(xL, x,-s,. vy l‘jl, .Z‘o))

u=1

X b,

isis-1°

N
LG AU a:o)uf_l1 dz;,.

The amplitude of this is

(512) b j, -.jl(-rLy 'rjsy LR ler xo) = (QL—lQL_z Tt Qla) (xLy xjsy- ooy ley x())y

Isls-1*

where
Qj:Idy iszjsyjs-l!.--yjl’
:Rj7 ifj:js_1,js_1_1,...,j1_1,
= §,, otherwise.

The phase is

S+1
# = #
(56.13) Sieneeis s Tigg o vy Tiy Ty) = El Sivipt1 & T

Tu-1

)

where we understand S,iw,-sﬂ =0 when j,= L, and SZHJSH = S,iL = S, (z,,

x,_,) when j; = L — 1. In (5.11), when j; = L then the integration over x; is not
E . .

performed. Moreover we understand TG j* D 1 when j, = L, and T(q,,,

o+t D =TWU,L =t, whenj, =L — 1.

Note. Fujiwara [5] did not take the case j, = L into consideration in the sum
of (5.9).

By Lemma 3.7 we know that (5.13) satisfies (H.1). So we can apply Lemma
4.2to A, ..., and obtain

/.
A E )1 Ze—ivsﬁl(zuzo)

jsjs_lo..jl(‘r[,y -Z'o) = (T; afsfs—l“‘fl(xL’ xo)’
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where a,; ... satisfies the estimate: For any m =0 there exist C, and
K(m) such that if | a; |, | a,| < m,

(@) when j, < L,

(5.14a) | 0,05 a;, _...; (x, x)) |

Jsls-1"

< C,max sup | 8f‘6fs"s e af;laf%_

_ Jsls-1°
Zjp =102,

i@ Tz, 2 |,

where max is taken for B, < a;, B, < @, and B; < K(m) = 12m + 48 + 21,
u=1,...,s,

(b) when j, = L,

(5.14b) | 0,05 a;;_...; (2, x) |

s BLABss BiyAB
< C,max sup |0;f0 st 0;"0,°b;
—1

Js-1 ey le, 1'0) |,
L th=1,22,8

sfs~1"‘j1(xL’ xjs—l’ ’

where max is taken for B, < oy, B, < a, and B, < K(m) = 12m + 48 + 21,
u=1,...,s— 1. So we have

E\Y2 _,, e ~
(5.15) IU4}, S, a,v) = (T) e I Dz, 1) T alay, 1) + vz, x),
L

172
r(xy, xy) = D(xy, 2) " 22 ay ;. (X, o).

Therefore from (5.14a, b, 15) we see that we have only to estimate b,; ..., to

prove Theorems 1 and 2.
Proof of Theorem 1. Assume (H.2).

LemMa 5.1. Let T, < &’ Then for any m = O there exist constants C,,, and
M(m) such that for any o, @, a, <m,1<u<s,

Isls-1**

N S
(616) 13000 T80, (0, 2 1 2) | < G (107

S
BLAB L B e e —
X max sup | 8,"0,° 11 0,70, *a(x,, T, , Z; 1, X;_,. .., Zj—1, To) |,
u=1

where max is taken for B, < oy, By < o, B, < @ and B; _; < M(m) and sup is

=1
taken for x; _;, 1 < u < s. Here when j; = L, the notation 0,* appears only once and

we understand xijs = ;. on both the sides of the inequality (5.16). We can choose

M@m) =2m + 4 + 2.

We assume Lemma 5.1 for the moment and prove Theorem 1. From (H.2) the
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right-hand side of (5.16) is majorized by Cp,;(ITy_; v™'t; ) Ayim Xagmy- S0 combin-
ing (5.14a, b) with Lemma 5.1, we have with m’ = K(m)

e

sls-1""

ap A, S S -1 s
| 0,0, °a; -il(va z) | < Cmcm’,l( 4 tju>AM(m’)XM(m’)'

u=1

It follows with (5.15) that
|a05r(a, 2) | <1 (2 ChCir X T 078)) | A

L
= (H 1+ Cmcm’,lXM(m’)v_ltiu) - I)AM(m’)‘
j=1

This is the estimate (1.10) in Theorem 1 with M(m") = M(K(m)) = 2(12m -+ 48
+21) +4 + 2.

Lemma 5.1 follows immediately from the next lemma. For any sequence of in-
tegers 0 <k, — 1<k, <k,—1<: <k, —1<k, <L, weset

(BA7)  Pry ook, @iy Tpoty oo os Tirrs Tuyp Ty yre - o1 Tipy L)
= (Qk,Qk,—x Q) X, T, L1 Ly Lie, yov v s Lis xy),

where
Q=1d, ifj=k, k._,..., k,
=R, fj=k —1,k_—1,...,k—1,
= S,, otherwise.

LEMMA 5.2. For any m 2 0 there exist constants C,,, and M(m) such that for
arbitrary a;, if &, @ < m, 1 < j <7, then

v
(23 (¢ a
(5.18) | 9;*a,° .Hlakj"’pk,k,_l,,,kl(xb Ty T e v s Ty L) |
j=

r ot T — 1,k + 1)
< 4 i 7 » V-1 )
< G I ( VT, ey + D
X max sup | 8505 I 0,2’3’1‘52"" a(x'ﬂk,, L -1y j’Ck,_l, oo T T |,

j=1

where max is taken for By < ag, By, <, By < M(m), 1 <j <7, and sup is
taken for 2, _;, 1 < 7 < 7. Moreover, for any sequence of integers k, <1, —1 <
<L—-1<::-<I[, <L, and for arbitrary multi-indices a;, o, , &, _,, 1 < u
< g if oy, <m,1 L5757, then

q 7
(6.19) | a;a;° I G ) 1 0y
u= j=
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Picykyoroeoty Ty Tpy Ty 15 Ty » Li=19 Liepp L5+« 3T Lo

170"

L7 T~ 1, ke, 1)
<, 1 VT, oy + D )

j=1

X max sup | 9;0L 11 (010 n 0¢10,)
1

u=

1 !
X a(x, 2, £, %, s Ty Tyse ) Ty T

17t

where max is taken for By < aty, By, < @y, By < M(m), 1 < j <7, and sup is
taken for x, _,, 1 < j < 7. Heve when k, = L and 1, = L vespectively, the notation o,

appears only once and we understand x:—"rk, = x, and xﬂ,q = I, on both the sides
of the inequalities (5.18) and (5.19) respectively. We can choose M(m) = 2m + 4 + 2.
Proof. We prove only (5.19) by induction on 7. (5.18) will be shown similar-

ly. To prove the case for # = 1, we abbreviate k, as k. We have

DTy, Tygs ey Ty Xy L) = (R Sy o Si0) (y, Xy, Ty ), k23,
- (Rla)(‘rL""Y ny xo), k:2.

We set
(5.20) qxy,. .., Ty Tpey, ) = (S, S, Xy, Xpyye ., Ty Tyey, L)

_ -172 N L
=Dy, 2 alay, 3y, ., Ty, Ty, T, i K23,
=alx,..., L, 1, X, if k= 2.

Let Sﬁl (x,, ) = S;(x;, x,). Then we have

X q(xLy Lp—1ye«oy LTy Tp—1y xo)d‘rk—l

— E e ~ivS{ 1 @ pag)
- (T(k, 1)) ¢

X (D(S, + Sh_115 2, 1) gy, Ty, 2 X)) + 0, Ty TY)-

Therefore, it k <[, —1 <1, <l,—1< -+ <, <L, then

’ £ 1z E vz — V(S (T L) +SE-1,1@x_1,20)
(5.22) (tk> <T(k—1,1)) fRe

— 1 1 1
X q(x, 21, Zipe1s T » Tyts Tioy Timps o) ATy

17"
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= (T@%)Uze—wﬁﬂk’w

# -1/2 I 11
X (D(Sy + Secrns Ty ) 4T, Tiyy Tppeyy iy - s Tymts Tior L)

1 1 |
+ bz, Ly Tym19 Xy s Ty Lo xy)).

g1’

Differentiating (5.22) with respect to z;, x,, ;- and applying the stationary
phase method Lemma 4.1, we have the estimate: For any m 2 0 there exists C,
such that for arbitrary e, , a, _;, a;, if &y, a, < m,

q
[+4 a, a o, a
| 0.40;° H1 0,0, 00, by (Ty, Ty, Ty _yye ey Tyoys Tiy L) |
U=

t, Tk —1, 1)

<cC (———-—) max sup | 0,040 11 0,9, ) a;*
w\" VTG, D) 505" I (0,0,

Ty-1
1 1
X q(xLy xlq7- ..y xll-p xky xk-],’ xo) |y

where max is taken for B, < a, By < @, By < K(m) = 2m + 4 + 2. When
I, = L, the notation 0,* appears only once on both the sides of this inequality.
From (5.20) Leibnitz’ rule gives

q
[*3 a, a Q,,_ a
| 67 05° H1 0,0, 0L by (Tyy Zyy Ty s oy Ty Ty ) |
“e

’ tT(k—l’ 1) kaBk-173F0 £ Ay A X y-1) AL
<cC,C, (W) max sup | 8;*0;%; 35 ul;Il (0,0, 0,

Tg-1
A 1 1
X a(xLy -rlqy- DR} ‘rll-—ly xkr xk—-ly -ro) Iy

where max is taken for B, < ap, By < a, Bioy < Km) =2m +4 +2. We
choose C,,, = C,,C,,. This proves (5.19) for » = 1.
Next we suppose (5.19) for # and prove it for »+ 1. Let &k, <k, — 1
<k <L—-1<p < <] <L Weset
(6.23)  q(p,..., Ty, Ti 1 T os Liys L)
= (S, : Sk,+ka,mk,) @ ...z

=2 re1’ xkru'l’ x"r’ te xkl’ 1'0)

)—1/2

_ ]
=D, 4 x, kpeeoky T o on Ty Ty 1r T ey Ty To)

Then we have from (5.23)

(5.24) (%)1/2<T(k,+1 —?, T 1))1/2

; #
% f e—w(s,ml(z,,rﬂyr,‘,ﬂ_l)*‘sk,ﬂ ~ Lkt 1 Zppp -1 Ty
R
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X
Gy, Ty ey Ty, Ty Ty o1 Tppp e vy Tpyy L) AT
1/2
— (___E____> e‘WS:,.,,n,u(zk,.,vxkr)
T(kr+1r kr + ]‘)
-1/2
X [D(S + S Ky~ Lk,+1 xkyﬂ’ xk) q(‘rL! x]q’ ceey ‘Z‘Il"l’ x"rﬂ’ xkf’ e xo)
1 1
X Ptyree ety @is Typs e ooy Tpmty Ly Ty L) 1.

We apply Lemma 4.1 to (5.24). Then we have from (5.23) for any m = 0 if a,
Xy <m,
ap A0, ki Ay~ 7l ay 1 1
(5.25) | 0,%05° T1 (0,0,) TL (Bp )Py, ook, Eis Ty vy Ty iy T 1 Zo) |
u=1 u=1

Tk — 1, k, + 1)
=C < T, e, + 1) )

X max sup | 979 H Gy H (0 g g9 e
z hy—1 kye1 kye1—=1 Zky
kr+1-1

1

|
X q(Tp, Lyyooy Tygy Ty Ty o1 Tipe o Ty X |,

T(k,,, — 1, k, + 1>)
vk, .., k, + 1)

b
< Cmcr/”< r+1

r—1
X max sup | 0;d;" n (005 TL (84 0y 04 710,
u=1

kysr Thye1—=1 Zky
Thye1-1

1

1 r f 1
X pkr...kl(x[,y -rlq; ooy xll—ly xknl’ xk,+1~1! ‘rk,y cey xklr xo) |’

where max is taken for 8, < a,, B8, <, , B, 1= Km) =2m + 4+ 2. 1f
[, = L, then 3L appears only once in any of the three members of (5.25). When
we assume that &, @, <m, 1 <u<r+1 as in Lemma 5.2, we can estimate
for any oy, o, ) _;, 1 < u < v+ 1 the last member of (5.25) by the induction
hypothesis for # where ¢ is replaced by ¢ + 1 and (I,..., /) is replaced by
(kyery byy. .., 1), Hence we have

7‘rkr7---y ‘rO)I

r+1

q 7+1
a a a Apy - a
I aL Lao" Hl (alulua,uh_lll) H (ak:“)ﬁkrﬂ...kl (-rLy 'rlqy- .y xll—l! xk
u=

<t T(k 1, k,_, + 1))
vT(k,, k,, +1)

<cC c'c,,,zn

=1

k=1

q r+1
i Bl APk
X max sup | 0, °9," I1 (9,0, ) T (8,0,
u=1 u=1

X ( 1 r 1 I 1
ATy Zyps oo vr Lpmrs Tigys Liypy=19 Ligyr » - xk -1 xo) l,
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where max is taken for 8y < &, B, < @, By S Km) =2m +4+2,1<u
< 7+ 1 and sup is taken for x, ;. Thus Lemma 5.2 has been proved.

Proof of Theorem 2. Let a =1 and Djgj_y-ves, D€ @ function defined by (5.17)
with (,..., j,) in place of (k,,..., k).

Lemma 5.3, Let T <& Then i ..i (T Tryse s Tjgss iy Ty v Ty L)
is a function of only (Z;, T; ..., T;, Ty), i.e Py ...j 1S mdependent of z, k= j;
+ 1. It is of the form
(5.26) Bigioyeois Cos Tiotse oo Tjns Tigy Tjve v oy Ty L)

S
=0yt TG, — 1, j,, + Dp; (x,, z; )
r=1

Jr-1

where for any a, B,

|o7o;_p; (x, x;, )< C,

Iy Iy r-1

Here the constants Cpg depend only on @, B.

We note here that Lemma 5.3 differs from Fujiwara [5, Lemma 5.1] in the
power of T(j, — 1, j,_, + 1) ; our power is 1 while his is 2. However, we shall be
able to prove Lemma 5.3 in the same way as there. We only indicate here one
different point. Namely, we have by Lemma 3.10

D(x,_y, 2) =14 TG — 1,1 q;_, (x;_,, o),

for some ¢q,_,(z;_;, ) € B(R X R), where the power of T(j — 1,1) is 1, not 2.
The proof of Theorem 2 will also proceed in the same way as in [5, §5]. We
have

b

idsaein SL—1SL—1 ' '1'/2 15+1Pjgis_
= D(xy, ;)" "Dy e

where if j; =L or L — 1, then D(x;, x;) = 1. So we combine Lemma 5.3 with
(5.144a, b) to obtain that if «,, a; < m,

[ A~
| 07405 a; ;. ....;, (z1, T |
S
s B 5 ABirafe
< C, max sup | o, 11 9,79,
Ljh=1,22¢,8 r=1

% D(xL’ xjs)—l/Z H V—lter(jr — 1’ jr—l + l)p],r(x] ) [

},1
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N
—-1 . .
<G, I Ot TG, — 1, j,., + D).
r=1

Therefore, from (5.15) we have

| 874057 (zy, &) | < X711 (C,pv” T,
r=1

jan IS

<

1+ C, v 'Tyt) — 1.

J

This is the estimate (1.11) of Theorem 2.

Acknowledgement. The author would like to express his hearty thanks to
Professor T. Ichinose for his constant encouragements and stimulating comments.
He is also grateful to the referee for several useful comments.

REFERENCES

[1] K. Asada, D. Fujiwara, On some oscillatory integral transformations in L*(R"),
Japan J. Math., 4 (1978), 299-361.

[2] R. P. Feynman, Space time approach to non-relativistic quantum mechanics, Rev.
Modern Phys., 20 (1948), 367—-386.

[3] D. Fujiwara, Remarks on convergence of some Feynman path integrals, Duke Math.
J., 47 (1980), 559-600.

|4] D. Fujiwara, A remark on Taniguchi-Kumanogo theorem for product of Fourier in-
tegral operators, Pseudo-differential operators, Proc. Oberwolfach 1986, Lecture
Notes in Math., 1256, Springer, 135—153 (1987).

[ 5] D. Fujiwara, The stationary phase method with an estimate of the remainder term
on a space of large dimension, Nagoya Math. J., 124 (1991), 61-97.

[6] D. Fujiwara, Some Feynman path integrals as oscillatory integrals over a Sobolev
manifold, Lecture Notes in Math., 1540, Springer (1993), 39-53.

[7] H. Kumanogo, Pseudo-differential Operators, MIT Press, 1982.

[8] F. Nicoleau, Approximation semi-classique du propagateur d’'un systéme électro-
magnétique et phénoméne de Aharonov-Bohm, Helv. Phys. Acta, 65 (1992),
722-747.

[9] K. Yajima, Schrodinger evolution equations with magnetic fields, J. Analyse Math.,
56 (1991), 29-76.

Department of Mathematics
Faculty of Science
Kanazawa University
920-11 Kanazawa, Japan

https://doi.org/10.1017/50027763000025009 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025009



