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BOUNDARY ISOMORPHISM BETWEEN DIRICHLET FINITE

SOLUTIONS OF Δu = Pu AND HARMONIC FUNCTIONS

IVAN J. SINGER

Introduction

Consider an open Riemann surface R and a density P(z)dxdy

(z = x + iy), well defined on J?. As was shown by Myrberg in [3], if

P φ. 0 is a nonnegative <x-Holder continuous density on R (0 < a < 1)

then there exists the Green's functions of the differential equation

(1) Δu(z) = P(z)u(z)

on R, where Δ means the Laplace operator. As a consequence, there

always exists a nontrivial solution on R. In this paper we will be in-

terested in such pairs (R, P) when the existence of a nontrivial Dirichlet

finite solution is secured, i.e. when there will be such u =$ 0, Δu — Pu

with \gradu\2dxdy < oo. In such case the standard notation will be
J R

used. The real vector space of all Dirichlet finite solutions is called

PD(iϋ) and the space of all Dirichlet finite harmonic functions on R
is denoted by HD(iϋ). Studying related problems if Pdxdy < oo,

J R
Royden proposed in [7] to use certain compactification of R which among
other things reduces the study of class PΌ(R) into study of HD(#). In

particular, he showed that then there exists an isomorphism between the

subclasses PBD(β) and HBD(β), with those being subspaces of all

bounded elements of PD(β) and HD(β). The isomorphism was meant in a

sense that there is a one-one correspondence on the ideal boundary of R.

Further investigation of the class PD(#) was done mostly by Nakai and

Glasner-Katz, not mentioning Ozawa's originated paper (cf. references).

This author worked out some conditions for the existence of such isomor-

phism in a general case of density P although he was not successful in

establishing a necessary and sufficient condition for the existence of such
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8 IVAN J. SINGER

mapping (cf. [9]). In this paper we proceed on a similar path as was
suggested in [9]. We will try to answer the question what are the
characteristics of Dirichlet finite harmonic functions in order for them
to have a corresponding solution of (1) with the same behavior on the
ideal boundary of R. Moreover in the final part we present an example
of a density P defined on the unit disc, with PBD ~ HBD but PD Φ HD,
with ~ meaning an isomorphism as it will be precisely described in the
next paragraphs. This example leads us to suspect that even for finitely
integrable densities the implication (PBD ~ HBD) => (PD ~ HD) may not
be true in general, contrary to the conclusion of Royden in [7].

To treat the problem of isomorphism we will use the standard
method of exhaustion of R by regular subregions since it proves to be
very helpful method if one uses the Royden's compactification of R. Also
we will exploit the so called P-unit as it was already introduced in [9].
Our results are of integral character on R although there are reasons to
believe that they can be rewritten as near-boundary conditions.

Preliminaries

Let R be an open hyperbolic Riemann surface and P a, nonzero
density on R as was specified in the Introduction. We recall briefly
some known facts and corresponding terminology.

A relatively compact open subregion Ω of R is called a regular sub-
region if its relative boundary dΩ consists of finitely many analytic Jordan
curves in R. By an exhaustion of R we will always mean an exhaustion
by an increasing sequence {Ωn}, Ώn c Ωn+1 of regular subregions in R.
We understand that the Dirichlet problem for the equation (1) with con-
tinuous boundary values on the relative boundary is always solvable for
such domains. The maximum principle holds, i.e. a nonnegative solution
of (1) on Ω does not attain its maximum in β, unless it is a constant
solution. If {un} is a monotone sequence of nonnegative solutions bounded
at some point then there is a solution u to which {un} converges uniformly
on every compact set of R (Harnack's principle). We further assume
the knowledge of the Dirichlet and energy principles (cf. [41).

The convenient way to work with Dirichlet finite functions on R is to
use Royden's compactification #* of R (cf. [8]). The advantage of it is in
the very simple formalism plus in the following distinctive characteristics:

a. Every Dirichlet finite Tonelli function on R is continuously ex-
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BOUNDARY ISOMORPHISM 9

tendable to the whole R*.

b. Let {fn} be a sequence of uniformly bounded Dirichlet finite

Tonelli functions with compact supports in R. If there is Tonelli func-

tion / on #* such that /n—>/ on R pointwise and |grad(/ — /JP—>
J R

0, then / = 0 on the Royden's harmonic boundary Δ{R) of R.
c. Every Dirichlet finite Tonelli function / on R can be uniquely

decomposed as / = h + Φ, where h is also a Dirichlet finite and harmonic
function and / = h on d(R).

d. If / € HD(β) (resp. / e PD(β)) then the maximum modulus prin-
ciple holds. We have sup Λ | / | = sup i ( i ί ) | / | (confirm the above properties
with [1], [8]).

From now on we will deal only with such pairs (R, P) which allow

nontrivial space PD(#). Then PD(#) will become a real Hubert space

with scalar product given by Dirichlet integral; i.e. if %,vePD then

(u, v) = duΛ*dv. Furthermore, space PD(iϋ) is a vector lattice since there
J B

exists a Riesz' decomposition u = u+ — u_ for an arbitrary u e PD(β)
with both u+,u_ being nonnegative and e PD(#) (cf. Nakai [4]). We will
understand that even if a Dirichlet finite Tonelli function is defined on
R then according to (a) we can speak unambiguously about its values on
the Roy den boundary R* - R (cf. [8]).

Isomorphism of PD(2?) into HD(R)

If u G PD(β) is a Dirichlet finite solution of (1) on R, the orthogonal
decomposition theorem says there exists a unique h e HD(β), called the
harmonic projection of u and a potential φ such that

(2) u = h- φ

on R and u = h on the harmonic boundary Δ(R). We know (cf. [5]) that
explicitly

(3) u(z) = h(z) - - i - f GB(z, Ou(OP(ζ)dξdη ,

with ζ = ξ + iη and GR(z, ζ) being the harmonic Green's function on R
with the pole at z. Moreover, if DB[f] stays for the Dirichlet integral
of / on R we can write
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10 IVAN J. SINGER

(4) DB[u] = Ds[h] + ~{ϊ GB(z, ζ)u(z)%{ζ)P{z)P(ζ)dxdydξdη .
2π JJRXR

Define now the mapping T: PΌ(R) —> HD(R) as the correspondence given

by (2). According to (2) and maximum modulus principle it is a well-

defined linear mapping, obviously bijective and the range of T will be

a linear subspace of HΌ(R). We denote this subspace by JfP(R) and

certainly then Γ: PD(jβ) -> ̂ P(R) is an algebraic isomorphism onto. We

will always assume that 1 e 3fP(R). Hence there exists a solution eR e

PD(β) such that eR = 1 on the harmonic boundary Δ(R). The function

eR will be called P-unit on R. If {Ωn} is an exhaustion of R and eΩn

are solutions on Ωn with boundary values 1 on dΩn then the maximum

principle and Harnack's principle yield

( 5) eR = l im eΩn

on every compact subset of R. On the other hand we must be careful

not to take (5) as for the definition of eR, since there is no reason for

lim eΩn to be equal 1 on Δ(R).

DEFINITION. A solution eR of (1) on R is called a P-unit if it can

be continuously extended to i?* with the values 1 on the harmonic

boundary Δ(R).

Using this definition of a P-unit we can reformulate a theorem,

proved in [5],

THEOREM 1. The necessary and sufficient condition for HBD(β) c

J^P(R) is the existence of a P-unit eR on R with the finite Dίrichlet in-

tegral DR[eR],

Proof. Necessity is obvious. Let DR[eR] < oo and Z7* = {z e R*

eκ(z) > i} Consequently, the relative boundary d U of U = U* Γ) R is

smooth and since TeR = 1 the relation (4) gives

( 6) if Gu(z, ζ)P(z)P(ζ)dxdydξdv < oo ,

where Gv(z, ζ) is the harmonic Green's function on U. But (6) is a suffi-

cient condition for PBD 2̂  HBD as was shown in [5]. This completes

the proof.

At this point let's recall a lemma proved in [9] which was actually
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BOUNDARY ISOMORPHISM 11

stated for eR defined as by (5). Clearly the lemma will also hold with

the present definition of P-unit.

LEMMA 1. The necessary condition for an he HD(β) to be in 3FP(R)

is that

(7) DR[heR]< oo .

Reduction operator T

As we have seen in the previous paragraph the mapping T: PΏ(R)

—> HD(β) is only a certain type of boundary correspondence between

PD(iϋ) and 34?P{R) since the Dirichlet integral on ^fP{R) is merely a

seminorm. We would like to impose on ^P{R) a Hilbert-space structure

which would distinguish ^P{R) as the only subspace of HD(β) to be

isomorphic with PΌ(R) in a way that the inverse T~ι is a continuous

well-defined operator. The Lemma 1 gives the way how to do it. Be-

fore we proceed to the main theorem let's formulate some simple lemmas

for organizing purposes.

LEMMA 2. // {an} is an infinite sequence of real numbers such that

for all n, a\ < Aan + B with some constants A, B then lim s u p , ^ an < oo.

LEMMA 3. Let eR be the Dirichlet finite P-unit on R. If we put

Q — |grad eR\2 then there exists a Q-unit q on R such that q > e\ on R.

Proof. ' Take an exhaustion {Ωn} of R and let for each n, qn be the

solution of Δv — Qv on Ωn with boundary values 1 on 3Ωn. Then by (3),

(4) and Fubini's theorem

(8) DOn[qn] = Λ
2

For 0 < qn < 1 and Q < oo, all integrals in (8) are uniformly bounded,

hence by the Harnack's principle and Kawamura's lemma (cf. [8]) there

exists q = lim qn such that q = 1 on the harmonic boundary Δ{R) and

Δq = Qq, where Δ means the Laplace operator; moreover DR[q] < oo.

Because of Δ(q — eR) = Qq — 2PeR — 2Q < 0 on R, the function q — eR is

superharmonic and by maximum principle q > eR on the whole R (cf. [8]).

LEMMA 4. Let Q, q be as in the Lemma 3. // v is a solution of

Δv = Qv with the finite energy then
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12 IVAN J. SINGER

(9) f hψQ<™ ,
J R

with h being harmonic projection of v.

Proof. Let hn be a harmonic function on Ωn with boundary values
v on dΩn. Then by the Dirichlet principle DΩn[hn] < DR[v] for all n and
hn->h uniformly on every compact subset of R. Using Green's formula
for the energy E[hnqn] we obtain

DΩn[hnqn] + I h2

nqlQ = \ hnqn*d(hnqn) - 2 | hnqn grad hn grad qn
JΩn JdΩn JΩn

(10) = f v*d(hnqn) -2Ϊ qn grad hn grad (fcngn)
JdΩn JΩn

ql\gradhn\
2

Ωn

Furthermore

I v*d(hnqn) = I dvA*d(hnqn) + \ vΔ(hnqn)
JdΩn J Ωn JΩn

= I dvΛ*d(hnqn) + \ vhnqnQ + 2\ v grad ftn grad gn
J /2n Ji?« J Ωn

< VDΩn[v]Dan[hnqn]
Ωn

+ 2 grad hn grad (vqn) — 2 gn grad few grad v .

After substituting (11) into (10) and using Schwarz's inequality again
with the estimate DΩn[vqn] < 25DΩn[v] as was shown in [9] we obtain a
positive constants A,B such that

(12) EΩn[hnqn] < AΛ/EOJLKQΔ + B

for all n, with EΩn[ ] meaning the energy integral

EQu[.] = D0£.]+ f (0 2 Q.
J Ωn

Thus finally, the Lemma 2 together with Fatou's lemma give

ί h2q2Q < oo .
JR

We are ready now to state and to prove the main theorem. After
that we will be able to define a scalar product on JfP(R) which will turn
this space into a Hubert space.
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BOUNDARY ISOMORPHISM 13

MAIN THEOREM. Let eR be a Dirichlet finite P-unit on R. Then

the necessary and sufficient condition for an he HD(β) to be in J^P(R)

is DR[heR] < oo.

Proof. According to the Lemma 1 we have the necessity. Let's

therefore assume that DR[heR] < oo and h φ. 0, since the trivial case

h = 0 is evident. Because

DR[heR] = \ h2\grsiάeB\
2 + 2 heRdhΛ*deR + \ eB\gγadh\2

J R J R J R

we can see after applying Schwarz's inequality and the Lemma 2 that

DR[heR] < oo is equivalent to

(13) f h2 |grad eRf + DR[h] < oo .
J R

Let's therefore assume that

(14) f h2\gγadeRf + DR[h]<l.
JR

If we put g+ = max {h, 0) on R, g+ will be continuous and subharmonic

on R. Also DR[g+] < DR\K\. Take an exhaustion {Ωn} of R and consider

the density Q = |grade Λ | 2 on R. If {vn} are solutions of Δv — Qv on {Ωn}

with continuous boundary values g+ on {dΩn} then by the energy principle

and (14) EΩn[vn] < 1 for all n. Because Q < oo there exists a repro-
J R

ducting kernel in the Hubert space of all energy finite solutions of Δu

= Qu (cf. [6]). Thus we conclude that there is a t e QDCR), and a

subsequence {vn.} c {vn} such that vn. —> v on every compact subset

of R and hence by Fatou's lemma ER[v] < 1, i.e. DR[v] + I v2Q < 1.
J R

Furthermore by Kawamura's lemma v — g+ on the harmonic boundary

Δ(R). If orthogonally decomposing v on R we get a harmonic function

Λ+ e HD(β) such that fc+ = max (h, 0) on Δ(R) and consequently by the

Lemma 4

(15) ί /^g2Q + DR[h+] < oo

with q being the Q-unit on R, whose existence was given by the Lemma 3.

Hence

(16) ί h\q2 |grad eRf + DR[h+] < oo
J R
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14 IVAN J. SINGER

Using Lemma 3 and (16) it follows

(17) f h\ |grad eRf + Du[h
Ju

oo

with U = C7* Π R and £7* = {z e # * , βΛ(s) > | } . Set 4w = eR - e\. Then

w = 0 on Δ(R) and w = 1 on the relative boundary dU of U which is suf-

ficiently smooth. Thus (17) yields

(18) ί h\ |grad w\2 + Dv[h+] < oo .
Ju

Putting fn = min (h+,ri) on U for all natural n we have by (18) a uniform

bound, say 2f, such that

(19) f fl |grad wf + ^ [ / J < K
JU

for all n. Hence there is a finite constant L > 0 such that D^t/^w] < L,

w = 1,2, . If fnw — Xn + Φn is an orthogonal decomposition on U such

that Xn e HD(Z7) and Xn — fn-w on Δ(R) as well as on dU then obviously

Xn is a nondecreasing sequence of nonnegative harmonics bounded by

h+, with the uniformly bounded Dirichlet integrals. Therefore there ex-

ists a Dirichlet finite harmonic function X, X = lim Z n such that X — h+

on dU and Z = 0 on Δ(R). For X < h+ on [7 and Z is nonnegative we

maintain that if λ — h+ — X then λ = h+ on Δ(R), λ = 0 on 3£7 and by

(17) we conclude

(20) J^ 2 |gradeΛf

The function λ is a nonnegative harmonic function and the latter inequali-

ty implies Djjiλe^ < oo. By using essentially the same methods as

described in the proof of the Lemma 4 or in [9] we deduce

(21) f λ\h - eR)eR

Ju

where h — eR = 0 on J(R) & dU and h e HBD(Z7) by the orthogonal decom-

position of eR on U. Denoting by eΌ the P-unit on U (which exists),

we observe that

(22) h - eR > \(1 - eΌ) > 0

on U since eR > \eυ on U and (h — eR) — J(l — eΌ) is superharmonic
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with zeros values on Δ(R) & dϋ. Then by (22) and (21)

(23) ί λ\l - eJβuP + Du[λ] < co .

Ju

Because of eυ > | on U (maximum principle) and the relation (3) applied

to the function eυ we get from (23)

(24) ί ί λKz)Gϋ(z, QP(z)P(Qdxdydξdη
JJ uxu

< oo .

If u+ > 0 is a solution of (1) on U with u+ = λ on Δ(R) & dϋ then obvi-

ously n+ < λ on U and using the Schwarz's inequality with respect to

the measure

dμ = Gu{z9ζ)P{z)P{ζ)dxdydξdη

on U X U we get from (24)

(25) ί ί Gu(z, ζ)u+(z)u+(ζ)P(z)P(ζ) < oo .
JJ UXU

Finally by (4) and DV[X\ < oo we have Dv[u+] < oo. Using the canonical

extension of u+ into the whole R (cf. [5]) we thus obtain a solution u+

of (1) on R such that u+ = λ = h+ = max (ft, 0) on Δ(R) and w+ e PD(β).

By the same steps as above we can show the existence of such u_ e PΌ(R)

that u_ — — inf (ft, 0) on Δ(R). Putting u = u+ — u_ we have proved the

theorem.

The Main Theorem provides us with the needed Hilbert-space struc-

ture in the space #fP(R). We state

THEOREM 2. The vector space jfP(R) is a Hilbert space of all har-

monic functions on R with finite

ί h2\gradeR\2 + DR[h]
J R

and with scalar product defined as

(26) <ft, flf> = Jft<? I grad eR f + DΛ[h, g]

on jfP(R).

Proof. We know t h a t unless P = 0, | g r a d e Λ | 2 > 0. Hence < , •>
J R
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16 IVAN J. SINGER

is a well-defined scalar product with V<(fe, hy being the norm of h. Ac-

cording to the Main Theorem we only need to show the completeness of

Jfp(R) with respect to the norm V<( , •>. Assume that {hn}™ is a Cauchy

sequence in tf P(R). Fix zQ, zQ e R. Then {hn(z) — hn(zQ)} will be a Cauchy

sequence in the HD(#) with respect to the Dirichlet norm. By Virtanen

[10], there exists an h0 e HD(#), ho(zQ) — 0 such that DR[h0 — (hn — hn(z))]

—> 0 and (hn — hn(z0)) —»h0 uniformly on each compact subset of R. On

the other hand, from the integral part of the norm in ^fP(R) we con-

clude that there is a function s(z) eL2CR,|grad eRf) such that hn-*s in

ZΛnorm. Hence Km s u p , ^ | hn(z0) \ < oo and consequently there exists a

subsequence {hn.} C {hn}? such that hn. —> h0 + β in ^ P (β)-norm where

β = lim hn.(z0). Obviously hQ + βeJ^P(R)f which was to be proved.

COROLLARY 1. The Hίlbert space J^F(R) poses a Rίesz' decomposition.

Proof. It can be observed from the proof of the Main Theorem.

COROLLARY 2. Linear mapping T:PΌ(R)->jeP(R) is a continuous

operator onto 2#?P(R) with a continuous inverse T"1.

Proof. If un -> 0 in PΌ(R) then DB[hn] -> 0 where hn e HD(#), hn =

un on Δ(R). From [9] it follows that also DB[hneE] -* 0, hence (Tun> Tun}

->0. The existence of a continuous inverse T~ι is given by the open

mapping theorem (cf. [11]).

We call the linear operator T the reduction operator. Its range in

HDCR) is completely determined if we know the behavior of P-unit. Un-

fortunately we do not know too much about the range if taking (5) as

a definition of P-unit except for the fact that in such cases JfP(R) is

embedded into the real vector subspace of HD(i?) of elements with finite

norm V< , •>.

Application

In this last paragraph we will show that generally JPP(R) C HD(iϋ).

We exhibit an example when the above inclusion is proper while main-

taining the same assumptions as in the previous sections. We need to

formulate two auxiliary lemmas, concerning the open unit disc W —

{z;\z\<l}.

LEMMA 5. Let W be the open unit disc and h e Ή.Ό(W). Then

h2dxdy < oo.
Jw
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Proof. As shown in [8] there exists a constant C, 0 < C < oo such

that I h\z)*dGΩn(z, 0) < C, where GΩn(z, 0) is the harmonic Green's

function on a domain Ωn with the pole at 0eΩn. Choose {Ωn}? to be a

sequence of concentric open discs with centers at 0 and with radii pn =

1 - 1/n. Then GβwO,0) = -ln(r/pn) with r2 = s s. Hence

pA h2 < C or f ft2 < C for all n = 1,2, . . ,
J9βn J9β«

when integrating in the positive direction. Take the function e = r2 on

Ψ and apply the Green's formula to the Dirichlet integral DΩn[he]. We

have then

DΩn[he] = ί hr2*d(hr2) - f hr2A(hr2)

= pi( h*dh+{ 2r*h2*dr-4 h2r2

(27) JdΩn JdΩn J Ωn

2 ί hr2 grad h grad r2 <
J Ωn

+ 2C + 2VDw[h]DΩn[he],

since

fer2 grad h grad r2 = r2 grad h grad (Λr2) — r4 |grad hf
J Ωn J Ωn J Ωn

and by using Schwarz's formula. With the Lemma 2 we conclude

Dw[he] < CXD and thus the first two equalities in (27) give h2dxdy < oo.
Jw

This proves the lemma.

COROLLARY. // P is such density on the open unit disc W that

I grad ew |
2 is a bounded function on W then J^P(W) = HD(PF).

LEMMA 6. Let W be the open unit disc and h e HD(T^) be a Dirichlet

finite harmonic function continuously extendable to the closure of W

and finite there except possibly at the point 1 on the boundary of W. Then

for every bounded and continuous Dirichlet finite harmonic function g on

W such that g is zero on an open arc Γ on the boundary of W, 1 6 Γ,

it follows Dw[hg] < oo.

Proof. Considering that

Dw[hg] = ί h2 |grad g\2 + 2 ί hg grad h grad g + f g2 |grad h\2 ,

Jw Jw Jw
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18 IVAN J. SINGER

we have to prove that fo2 Igrad <7|2 < oo. Because of the properties of
Jw

g we can extend g "behind" the arc Γ in order to obtain a harmonic
function g such that g = g on W and g is harmonic also in some neigh-
borhood of the point 1 in the complex plane (cf. [2]). Hence we can
regard |grad#|2 as a bounded function in a certain neighborhood of 1 in
W. From the continuity of h on W and from the Lemma 5 we conclude
easily that fe2lgrad^|2< oo, what had to be proved.

Jw
Now we proceed to construct the example. We will not do all the

computations as they are easy but quite cumbersome and require a large
amount of space. Consider the complex plane C and the harmonic function
H = r~2 cos 2φ on C — {0}, expressed in polar coordinates. Define the
following function ψ(z) on C:

(28)

x*y3 (y > 0)

-xhf (y<0)

Then the Laplacian Aψ > 0 everywhere, hence ψ(z) is subharmonic. Let's
define in the right half-plane the curve γ given by γ = {z e C Re z > 0 and
H(z) = ψ(z)}. Explicitly, in polar coordinates r9 = cos"4 φ sin"3 φ- cos 2φ
for all φ, 0 < \φ\ < τr/4. The curve γ lies symmetrically around the #-axis
and for an a > 2 there exists a x0 such that for x > x0 the upper part
of γ lies between the curves y = ar2 and 2/ = #~α. Choose an a such that
2 < a < 11/5. Then for an appropriate x0, for all x > xo> #~α < ϊΛχ) < ^~2

if f+ means a part of p in the first quadrant. Finally let's adjust the
curve γ for x < xQ in a way that it will look as on the picture 1.
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BOUNDARY ISOMORPHISM 19

Then call all the points "inside" the curve γ a Riemann surface R which

in fact is a disc according to the Riemann mapping theorem and simple

connectedness of that region. Take now the harmonic function h — x

on R. By direct computation we can show that

(29) ί |gradλ | 2 < oo ,
JR

(30) f fo2|gradψ|2 = oo
JR

and

(31) f ft2|gradif|2< oo .
JR

Put g = H — ψ on γ. Then according to the construction of γ we have

g(z) — 0 whenever Re z > xQ. Moreover g is continuous on γ and bounded

there. Let g be identified with the harmonic function on R with boundary

values H — ψ on γ. Then g is Dirichlet finite on R and if we map con-

formally R onto the unit disc W such that oo —»1, the corresponding

image of g will satisfy the assumptions of the Lemma 6 and hence by (29)

(32) f &2 |grad#|2< oo ,
JR

since the latter integral is invariant under conformal mappings of R.

Put K = sup ί̂ZXz). Then certainly

eR{z) - K ~ H(z) + (g(z) + *(z))

is subharmonic on R with values 1 on γ. Moreover eR(z) > 0 on R and

we can define the (^-density

(33) P(z) = ΔeR

Then according to (30), (31) and the way the function g was constructed,

we maintain that eR is a P-unit on R, which is Dirichlet finite and

ί ft21 grade* |2 = oo. But the latter follows from (30), (31) and (32). Now

we conclude that although PBD ~ HBD on Ry because of DR[eR] < oo,

we have found the function h = x9 he HD(i?) such that the necessary

condition in the Main Theorem fails.
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Still open question remains if the inclusion £FP(R) c HD(β) can be

proper for a finite integrable density P. In our case P = oo as can
J B

be checked easily by direct computation.
Remark. To get the estimates (29), (30), (31) and ί P > ί ΔeR = oo

J R J R

we have used the fact that the harmonic boundary of R for x > x0 lies
between curves y = x~2&y = arα and ?/ = — x~2&y = —x~a.
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