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BOUNDARY ISOMORPHISM BETWEEN DIRICHLET FINITE
SOLUTIONS OF 4u— Pu AND HARMONIC FUNCTIONS

IVAN J. SINGER

Introduction

Consider an open Riemann surface R and a density P(z)daxdy
(z =z + 1y), well defined on R. As was shown by Myrberg in [3], if
P =0 is a nonnegative «-Holder continuous density on R (0<a < 1)
then there exists the Green’s functions of the differential equation

(1) du(z) = P(2)u(z)

on R, where 4 means the Laplace operator. As a consequence, there
always exists a nontrivial solution on R. In this paper we will be in-
terested in such pairs (R, P) when the existence of a nontrivial Dirichlet
finite solution is secured, i.e. when there will be such w =% 0, du = Pu
with J [graduffdedy < co. In such case the standard notation will be
used. RThe real vector space of all Dirichlet finite solutions is called
PD(R) and the space of all Dirichlet finite harmonic functions on R
is denoted by HD(R). Studying related problems if I Pdxdy < oo,
Royden proposed in [7] to use certain compactification of RRwhich among
other things reduces the study of class PD(R) into study of HD(R). In
particular, he showed that then there exists an isomorphism between the
subclasses PBD(R) and HBD(R), with those being subspaces of all
bounded elements of PD(R) and HD(R). The isomorphism was meant in a
sense that there is a one-one correspondence on the ideal boundary of R.
Further investigation of the class PD(R) was done mostly by Nakai and
Glasner-Katz, not mentioning Ozawa’s originated paper (cf. references).
This author worked out some conditions for the existence of such isomor-
phism in a general case of density P although he was not successful in
establishing a necessary and sufficient condition for the existence of such
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mapping (cf. [9]). In this paper we proceed on a similar path as was
suggested in [9]. We will try to answer the question what are the
characteristics of Dirichlet finite harmonic functions in order for them
to have a corresponding solution of (1) with the same behavior on the
ideal boundary of B. Moreover in the final part we present an example
of a density P defined on the unit dise, with PBD ~ HBD but PD =+ HD,
with ~ meaning an isomorphism as it will be precisely described in the
next paragraphs. This example leads us to suspect that even for finitely
integrable densities the implication (PBD ~ HBD) = (PD ~ HD) may not
be true in general, contrary to the conclusion of Royden in [7].

To treat the problem of isomorphism we will use the standard
method of exhaustion of R by regular subregions since it proves to be
very helpful method if one uses the Royden’s compactification of E. Also
we will exploit the so called P-unit as it was already introduced in [9].
Our results are of integral character on R although there are reasons to
believe that they can be rewritten as near-boundary conditions.

Preliminaries

Let R be an open hyperbolic Riemann surface and P a nonzero
density on R as was specified in the Introduction. We recall briefly
some known facts and corresponding terminology.

A relatively compact open subregion 2 of R is called a regular sub-
region if its relative boundary 92 consists of finitely many analytic Jordan
curves in B. By an exhaustion of R we will always mean an exhaustion
by an increasing sequence {2,}, 2, C 2,,, of regular subregions in R.
We understand that the Dirichlet problem for the equation (1) with con-
tinuous boundary values on the relative boundary is always solvable for
such domains. The maximum principle holds, i.e. a nonnegative solution
of (1) on £ does not attain its maximum in £, unless it is a constant
solution. If {u,} is a monotone sequence of nonnegative solutions bounded
at some point then there is a solution # to which {u,} converges uniformly
on every compact set of R (Harnack’s principle). We further assume
the knowledge of the Dirichlet and energy principles (cf. [4]).

The convenient way to work with Dirichlet finite functions on R is to
use Royden’s compactification B* of R (cf. [8]). The advantage of it is in
the very simple formalism plus in the following distinctive characteristics:

a. Every Dirichlet finite Tonelli function on R is continuously ex-
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tendable to the whole R*.

b. Let {f,} be a sequence of uniformly bounded Dirichlet finite
Tonelli functions with compact supports in R. If there is Tonelli func-
tion f on R* such that f, — f on R pointwise and f lgrad (f — f)ff —
0, then f = 0 on the Royden’s harmonic boundary A(I;%) of R.

¢. Every Dirichlet finite Tonelli function f on R can be uniquely
decomposed as f = h + @, where h is also a Dirichlet finite and harmonic
function and f = h on A(R).

d. If fe HD(R) (resp. f < PD(R)) then the maximum modulus prin-
ciple holds. We have supg|f| = Supya |f| (confirm the above properties
with [1], [8]).

From now on we will deal only with such pairs (R, P) which allow
nontrivial space PD(R). Then PD(R) will become a real Hilbert space
with scalar product given by Dirichlet integral; i.e. if u,v e PD then
(u,v) = f dudxdv. Furthermore, space PD(R) is a vector lattice since there
exists a IIE{iesz’ decomposition # = u, — u_ for an arbitrary u e PD(R)
with both %,,%_ being nonnegative and e PD(R) (cf. Nakai [4]). We will
understand that even if a Dirichlet finite Tonelli function is defined on
R then according to (a) we can speak unambiguously about its values on
the Royden boundary R* — R (cf. [8]).

Isomorphism of PD(R) into HD(R)

If e PD(R) is a Dirichlet finite solution of (1) on R, the orthogonal
decomposition theorem says there exists a unique #e HD(R), called the
harmonic projection of u and a potential ¢ such that

(2) U=nh—¢

on R and # = & on the harmonic boundary 4(R). We know (cf. [5]) that
explicitly

(3) u@) = W) — 5| Gale, DUOPQdedy

with { = & + iy and Gz(2,{) being the harmonic Green’s function on R
with the pole at z. Moreover, if D;[f] stays for the Dirichlet integral
of f on R we can write
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(4)  Dglul = Dglh] + %HRXRGR@, OO PRPQdedydeds .

Define now the mapping T: PD(R) — HD(R) as the correspondence given
by (2). According to (2) and maximum modulus principle it is a well-
defined linear mapping, obviously bijective and the range of T will be
a linear subspace of HD(R). We denote this subspace by #p(R) and
certainly then 7: PD(R) — #p(R) is an algebraic isomorphism onto. We
will always assume that 1¢ #p»(R). ‘Hence there exists a solution ej ¢
PD(R) such that ez = 1 on the harmonic boundary 4(R). The function
er will be called P-unit on R. If {©,} is an exhaustion of R and e,,
are solutions on £, with boundary values 1 on 92, then the maximum
principle and Harnack’s principle yield

(5) er = lime,,
Q2,-R

on every compact subset of E. On the other hand we must be careful
not to take (5) as for the definition of e, since there is no reason for
lime,, to be equal 1 on A(R).

DEFINITION. A solution ez of (1) on R is called a P-unit if it can
be continuously extended to R* with the values 1 on the harmonic
boundary 4(R).

Using this definition of a P-unit we can reformulate a theorem,
proved in [5].

THEOREM 1. The necessary and sufficient condition for HBD(R) C
H p(R) is the existence of a P-unit e, on R with the finite Dirichlet in-
tegral Dglez].

Proof. Necessity is obvious. Let Dglezr]l < o and U* = {ze¢ R*;
ex(z) > 1}. Consequently, the relative boundary U of U=U*NR is
smooth and since Tep = 1 the relation (4) gives

(6) f f Gyl DP@PQdadydsdy < oo ,

where Gy(z,%) is the harmonic Green’s function on U. But (6) is a suffi-
cient condition for PBD ~ HBD as was shown in [5]. This completes
the proof.

At this point let’s recall a lemma proved in [9] which was actually
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stated for ey defined as by (5). Clearly the lemma will also hold with
the present definition of P-unit.

LEMMA 1. The necessary condition for an h e HD(R) to be in #p(R)
18 that

(7) Dglher] < oo .

Reduction operator T

As we have seen in the previous paragraph the mapping 7: PD(R)
— HD(R) is only a certain type of boundary correspondence between
PD(R) and #,(R) since the Dirichlet integral on s#,(R) is merely a
seminorm. We would like to impose on #,(R) a Hilbert-space structure
which would distinguish #,(R) as the only subspace of HD(R) to be
isomorphic with PD(R) in a way that the inverse T-! is a continuous
well-defined operator. The Lemma 1 gives the way how to do it. Be-
fore we proceed to the main theorem let’s formulate some simple lemmas
for organizing purposes.

LEMMA 2. If {@,} is an infinite sequence of real numbers such that
for all n,a* < Aa, + B with some constants A, B then lim sup,._... a, < oo.

LEMMA 3. Let e, be the Dirichlet finite P-unit on R. If we put
Q = |grad ez then there exists a Q-unit ¢ on R such that q > % on R.

Proof.  Take an exhaustion {2,} of R and let for each =, q, be the
solution of 4v = Qv on £, with boundary values 1 on 2,. Then by (3),
(4) and Fubini’s theorem

—_— 1 —
(8) Do lg.] = 2—ﬂjgnqn(1 7.)Q .

For 0<q,<1 and f @ < oo, all integrals in (8) are uniformly bounded,
hence by the Harnacl?’s principle and Kawamura’s lemma (cf. [8]) there
exists ¢ = lim q, such that ¢ =1 on the harmonic boundary 4(R) and
49 = Qq, where 4 means the Laplace operator; moreover Dglq] < co.
Because of 4(q — €%) = Qq — 2P¢% — 2Q < 0 on R, the function q — ¢% is
superharmonic and by maximum principle ¢ > ¢% on the whole R (cf. [8]).

LEMMA 4. Let Q,q be as in the Lemma 3. If v is a solution of
Adv = Qv with the finite energy then
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(9) th2q2Q<oo,

with h being harmonic projection of v.

Proof. Let h, be a harmonic function on £, with boundary values
v on 9£2,. Then by the Dirichlet principle D, [#,] < Dglv] for all n and
h, — h uniformly on every compact subset of R. Using Green’s formula
for the energy Elh,q,] we obtain

Dy lhaa] + j ReQ = j Pt Q) — 2j hadn grad b, grad g,
Qa aly 2n
00y 2n

+2j ¢ |grad h, !
Rn
Furthermore
j ved(h,q,) = j dv Axd(hady) + j 0 A(hagy)
0Qn Ran Qn

= dvAxd(h,q,) + f vh,q,Q + Zf v grad A, grad q,
(11) 2n Qn Qn

< VDL, gl + N[, vQ-[ mae
+ ZI grad h, grad (vq,) — Zf g, grad h, grad v .
2n 2n

After substituting (11) into (10) and using Schwarz’s inequality again
with the estimate D, [vq,] < 25D, [v] as was shown in [9] we obtain a
positive constants A, B such that

(12) E,[h.a,] < AVE, [haa,] + B
for all n, with F, [-] meaning the energy integral
B, J1=Do 1+ [ ra.
Thus finally, the Lemma 2 together with Fatou’s lemma give
I RQ*Q < oo .
®

We are ready now to state and to prove the main theorem. After
that we will be able to define a sealar product on 57 ,(R) which will turn
this space into a Hilbert space.
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MAIN THEOREM. Let ey be a Dirichlet finite P-unit on R. Then
the mecessary and sufficient condition for an he HD(R) to be in #p(R)
18 Dzplhep]l < .

Proof. According to the Lemma 1 we have the necessity. Let’s
therefore assume that Dgl[hep] < oo and & % 0, since the trivial case
h = 0 is evident. Because

Dalheg] = IRhZ]grad el + zf hegdhdsder + I i [grad b

we can see after applying Schwarz’s inequality and the Lemma 2 that
Dglher] < o is equivalent to

(13) f 12| grad ex + Dplh] < oo .
R

Let’s therefore assume that

(14) j h?|grad egft + Dplh] < 1.
R

If we put g, = max (2,0) on R,g, will be continuous and subharmonic
on R. Also Dylg,] < Dglh]. Take an exhaustion {£2,} of R and consider
the density @ = [gradez[ on R. If {v,} are solutions of 4v = Qv on {Q2,}
with continuous boundary values g, on {3£2,} then by the energy principle
and (14) E, [v,]1 <1 for all n. Because @ < oo there exists a repro-
ducting kernel in the Hilbert space of all I:energy finite solutions of Ju
= Qu (cf. [6]). Thus we conclude that there is a ve QD(R), and a
subsequence {v,,} C {v,} such that v,,—>v on every compact subset
of R and hence by Fatou’s lemma Fp[v] <1, i.e. Dg[v] +f 'Q < 1.
Furthermore by Kawamura’s lemma v = g, on the harmonic Ii)oundary
A(R). If orthogonally decomposing » on R we get a harmonic function
h, ¢ HD(R) such that %, = max(h,0) on 4(R) and consequently by the

Lemma 4

(15) [ m¢Q + Dtk 1< e

with ¢ being the @-unit on R, whose existence was given by the Lemma 3.
Hence

(16) jR 1.q* |grad egf + Dylh,]1< oo .
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Using Lemma 3 and (16) it follows

an [ mt1gradest + Dolh,1< o0,
U

with U = U*N R and U* = {zc R*,ez(») > 4}. Set 4w = e, — e%. Then
w =0 on A(R) and w = 1 on the relative boundary oU of U which is suf-
ficiently smooth. Thus (17) yields

a8 tha lgrad wf + Dylh,]1< oo .

Putting f, = min (&,,n) on U for all natural » we have by (18) a uniform
bound, say K, such that

(19) f Jilgrad wf + Dylf.) < K

for all n. Hence there is a finite constant L > 0 such that D, f,w] < L,
n=12,.... If f,w = X, + @, is an orthogonal decomposition on U such
that X, c HD(U) and X, = f,-w on 4(R) as well as on aU then obviously
X, is a nondecreasing sequence of nonnegative harmonics bounded by
h,, with the uniformly bounded Dirichlet integrals. Therefore there ex-
ists a Dirichlet finite harmonic function X, X = lim X, such that X = &,
on 9U and X = 0 on 4(R). For X < h, on U and X is nonnegative we
maintain that if A=h%h, — X then 2="Fh, on 4(R), 2= 0 on aU and by
(17) we conclude

(20) IU 2 lgrad exf + DylA] < oo .

The function 2 is a nonnegative harmonic function and the latter inequali-
ty implies Dyliezr] < co. By using essentially the same methods as
described in the proof of the Lemma 4 or in [9] we deduce

@1) jvwz — en)exP + Dyla] < oo ,

where #, — ez = 0 on A(R) & 3U and & ¢ HBD(U) by the orthogonal decom-
position of ez on U. Denoting by e; the P-unit on U (which exists),
we observe that

(22) h—en>31—ey) >0

on U since ez >1e, on U and (h — ep) — 2(1 — ey) is superharmonic
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with zeros values on A(R) &aU. Then by (22) and (21)
(23) f (1 — ep)eyP + Dyla] < oo .
173

Because of e¢; > 1 on U (maximum principle) and the relation (3) applied
to the function e; we get from (23)

(24) ”UXUzZ(z)GU(z, OP()PC)dadydedy < oo .

If %, > 0 is a solution of (1) on U with @, = 2 on 4(R) & 9U then obvi-
ously %, <2 on U and using the Schwarz’s inequality with respect to
the measure

dp = Gy(2, OP(R)P(Q)dxdydédy
on U X U we get from (24)

@5) ”UXUGU(z, O, @, OP@PE) < oo .

Finally by (4) and D,[2] < co we have Dyl#,] < co. Using the canonical
extension of %, into the whole R (cf. [5]) we thus obtain a solution u,
of (1) on R such that 4, = 2= h, = max(%,0) on 4(R) and u, € PD(R).
By the same steps as above we can show the existence of such #_ e PD(R)
that 4_ = —inf (%,0) on 4A(R). Putting v = u, — u_ we have proved the
theorem.

The Main Theorem provides us with the needed Hilbert-space struc-
ture in the space #»(R). We state

THEOREM 2. The vector space #»(R) is a Hilbert space of all har-
monic functions on R with finite

f W |grad ez + Dglh]

R

and with scalar product defined as

(26) <hy g = [hg|grad ext + Dylh, g1

on A p(R).

Proof. We know that unless P =0, I |grad ez[* > 0. Hence <-, >
R
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is a well-defined scalar product with +/{%, k) being the norm of h. Ac-
cording to the Main Theorem we only need to show the completeness of
# p(R) with respect to the norm +/{-,->. Assume that {k,} is a Cauchy
sequence in #»(R). Fix z,,2,€ R. Then {h,(2) — h,(z)} will be a Cauchy
sequence in the HD(R) with respect to the Dirichlet norm. By Virtanen
[10], there exists an h,c HD(R), h(z,) = 0 such that Dylh, — (h, — h,(2))]
— 0 and (h, — h,(2,)) — h, uniformly on each compact subset of B. On
the other hand, from the integral part of the norm in #.(R) we con-
clude that there is a function s(2) e L*(R,|grad ez) such that h,—s in
L*-norm. Hence lim sup,._.. |7, (2)| < oo and consequently there exists a
subsequence {h,,} C {h,}; such that h,,— h, + p in #p(R)-norm where
B =limh,(2,). Obviously k, + Be #»(R), which was to be proved.

COROLLARY 1. The Hilbert space # »(R) poses a Riesz’ decomposition.
Proof. It can be observed from the proof of the Main Theorem.

COROLLARY 2. Linear mapping T:PD(R) — #p(R) is a conltinuous
operator onto A »(R) with a continuous inverse T,

Proof. If u,— 0 in PD(R) then Dg[h,] — 0 where h, e HD(R), h, =
%, on A(R). From [9] it follows that also Dglh.er] — 0, hence {Tu,, Tu,y
— 0. The existence of a continuous inverse 7' is given by the open
mapping theorem (cf. [11]). :

We call the linear operator T the reduction operator. Its range in
HD(R) is completely determined if we know the behavior of P-unit. Un-
fortunately we do not know too much about the range if taking (5) as
a definition of P-unit except for the fact that in such cases s#,(R) is
embedded into the real vector subspace of HD(R) of elements with finite
norm v/, ->.

Application v

In this last paragraph we will show that generally s#,(R) C HD(R).
We exhibit an example when the above inclusion is proper while main-
taining the same assumptions as in the previous sections. We need to
formulate two auxiliary lemmas, concerning the open unit disc W =
{z;12| <1}

LEMMA 5. Let W be the open unit disc and he HD(W). Then
f‘ dady < co.

w
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Proof. As shown in [8] there exists a constant C, 0 < C < o such
that r(2)*dG,, (2, O)’< C, where G,,(2,0) is the harmonic Green’s
functiozlgnon a domain £, with the pole at 0e 2,. Choose {2,}7 to be a
sequence of concentric open discs with centers at 0 and with radii p, =

1—1/n. Then G, (2,0) = —In(r/p,) with * = z.z. Hence

p;f W<C or <C  foralln=1,2--.,
99n

39n

when integrating in the positive direction. Take the function e = 7* on
W and apply the Green’s formula to the Dirichlet integral D, [he]. We

have then
D,.lhe] = f hrtsd(ha®) — f W A(hr®)
A2n Qn
" f hadh + | 2h2dr — 4 o

27 294, a9a 2a

— ZJ hy? grad h grad 1* < 3Dyl[h]

2n

+ 2C + 2v/Dyl[hID, [he] ,

since

hr? grad h grad r* = f r* grad I grad (hr?) — f rt|grad k|
Qn Qn :

Qn

and by using Schwarz’s formula. With the Lemma 2 we conclude

Dylhe] < o and thus the first two equalities in (27) give f hidxdy < co.
w

This proves the lemma.

COROLLARY. If P s such density on the open unit disc W that
|grad ey [ is @ bounded function on W then # (W) = HD(W).

LEMMA 6. Let W be the open unit disc and h e HD(W) be a Dirichlet
finite harmonic function continuously extendable to the closure of W
and finite there except possibly at the point 1 on the boundary of W. Then
for every bounded and continuous Dirichlet finite harmonic function g on
W such that g is zero on an open arc I' on the boundary of W, 1eT,
it follows Dylhgl < co.

Proof. Considering that

Dylhgl = IW K| grad g + 2JW hg grad h grad g + Jwgz |grad hf?,
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we have to prove that | k*|grad g < co. Because of the properties of
g we can extend g “behpivnd” the arc I" in order to obtain a harmonic
function § such that § = ¢g on W and § is harmonic also in some neigh-
borhood of the point 1 in the complex plane (cf. [2]). Hence we can
regard |grad g as a bounded function in a certain neighborhood of 1 in
W. From the continuity of # on W and from the Lemma 5 we conclude

eagsily that J h*|grad g < c, what had to be proved.
w

Now we proceed to construct the example. We will not do all the
computations as they are easy but quite cumbersome and require a large
amount of space. Consider the complex plane C and the harmonic function
H =17r"cos2¢ on C — {0}, expressed in polar coordinates. Define the
following function v(z) on C:

'y’ y¥=0)
28) (@) <
-2y (Y<0).

Then the Laplacian 4y > 0 everywhere, hence y(z) is subharmonic. Let’s
define in the right half-plane the curve y given by y ={#e C;Rez > 0 and
H(z) = y(2)}. Explicitly, in polar coordinates 7® = cos™ ¢-sin*¢-cos 2¢
for all ¢,0 <|¢| < =z/4. The curve y lies symmetrically around the x-axis
and for an « > 2 there exists a x, such that for x > x, the upper part
of 7y lies between the curves ¥ = 272 and y = xz~=. Choose an « such that
2 <<« <11/5. Then for an appropriate x,, for all z > x, v <y, () < z?
if y, means a part of y in the first quadrant. Finally let’s adjust the
curve y for z <z, in a way that it will look as on the picture 1.
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Then call all the points “ingide” the curve r a Riemann surface R which
in fact is a disc according to the Riemann mapping theorem and simple
connectedness of that region. Take now the harmonic function h =z
on R. By direct computation we can show that

(29) I |grad hff < oo,
R
(30) f R grad f = oo
R
and
31) J B2 |grad HE < oo .
R

Put g = H — ¢ on 7. Then according to the construction of y we have
9(2) = 0 whenever Rez > x,. Moreover g is continuous on y and bounded
there. Let ¢ be identified with the harmonic function on R with boundary
values H — ¢ on y. Then g is Dirichlet finite on R and if we map con-
formally R onto the unit disc W such that co —1, the corresponding
image of g will satisfy the assumptions of the Lemma 6 and hence by (29)

(32) j h*|grad gf < oo,
R

since the latter integral is invariant under conformal mappings of R.
Put K = supp H(z). Then certainly

2n(z) = K — H(?) + Iég(Z) + (2))

is subharmonic on R with values 1 on y. Moreover é,(z) >0 on R and
we can define the C'-density

(33) P(e) = L=

er

Then according to (30), (31) and the way the function g was constructed,
we maintain that &, is a P-unit on R, which is Dirichlet finite and
J Rt|grad ézfF = co. But the latter follows from (30), (81) and (32). Now
we conclude that although PBD ~ HBD on R, because of Dj[¢;] < oo,
we have found the function h = x, h e HD(R) such that the necessary
condition in the Main Theorem fails.
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Still open question remains if the inclusion #p(R) C HD(R) can be
proper for a finite integrable density P. In our case I P = as can
be checked easily by direct computation. N

Remark. To get the estimates (29), (30),(31) and _[ p >f Aép = oo
we have used the fact that the harmonic boundary of f% for 91; > x, lies
between curves ¥y = 2 &y =2and y= —x* &y = —zx "
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