ON THE ENDOMORPHISM SEMIGROUP
OF AN ORDERED SET
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M. E. Adams and Matthew Gould [1] have obtained a remarkable classification of
those ordered sets P for which the monoid End P of endomorphisms (i.e. isotone maps) is
regular, in the sense that for every f € End P there exists g € End P such that fgf =f.
They show that the class of such ordered sets consists precisely of

(a) all antichains;

(b) all quasi-complete chains;

(c) all complete bipartite ordered sets (i.e. given non-zero cardinals @, 8 an ordered
set K, g of height 1 having o minimal elements and 8 maximal elements, every minimal
element being less than every maximal element);

(d) for a non-zero cardinal « the lattice M, consisting of a smallest element 0, a
biggest element 1, and o atoms;

(e) for non-zero cardinals «, B the ordered set N, g of height 1 having a minimal
elements and 8 maximal elements in which there is a unique minimal element «( below
all maximal elements and a unique maximal element 8, above all minimal elements (and
no further ordering);

(f) the six-element crown C, with Hasse diagram

A similar characterisation, which coincides with the above for sets of height at most 2
but differs for chains, was obtained by A. Ya. Aizenshtat [2].
Now for every ordered set P the monoid End P can be ordered by defining

fsge(xeP) flx)sg)

This order is compatible with the multiplication (composition) in End P. Our purpose
here is to determine precisely those ordered sets P for which the ordered semigroup
End P is regular and principally ordered in the sense that for every f € End P there exists

f*=max{g € End P; fgf < f}.

For the general properties of principally ordered regular semigroups we refer the reader
to [5, 6]. The main property that we shall require here is that in such a semigroup we have
ff*f =1, so that f* is the biggest pre-inverse of f.

THEOREM 1. The ordered semigroup End P is regular and principally ordered if and
only if P is a dually well-ordered chain.

Proof. =: Suppose that End P is regular and principally ordered. Then, by [1], P
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must be one of the six types mentioned above. Suppose, by way of obtaining a
contradiction, that P is not a chain.

If P is an antichain or M, or K, s then it is readily seen that, for a,b € P with a|| b,
the mapping f, ,: P — P defined by
if x =a;

b

JosX) {x otherwise,
belongs to End P and is idempotent. For every g € End P such that f, ,gf, », = f; » we have,
applying each side to b, that f,,g(b)=>b from which it follows that necessarily
g(b) e {a, b}. Now, as a simple calculation reveals, f,, € End P is a pre-inverse of f, ,, as
is (trivially) f,, itself. Consequently, f,,<fx, and f,,<f¥, We therefore have
fxp(b) ef{a, b} with f¥,(b)=f,,(b)=a and f},(b)=f,,(b)=>, which is impossible
since a || b. Thus P cannot be an antichain or M, or K, 5

If Pis N,z then we can choose =2 (since N,;=K, ;). In this case, let 8; be a
maximal element distinct from B, and consider the mapping fg 5, € End N,z Here
f8o.8, € End N, g so consider idy, , which is also a pre-inverse of fg g,. From fg g <f5 Bo
and idy, \fB 8, We obtain fB] 5,(B1) = fp,5,(B1) =Bo and f} 5(Bi)= By, which is
1mp0551ble since By, B, are maximal. Thus P cannot be N, z.

Finally, suppose that P is the crown

ﬂ() Bl BZ
Qg o a
Define f:P— P by
Bo if x = By;
f(x)=19 o ifx=ay
x otherwise.

Then f e End P and is idempotent. A similar argument to the above gives f*(8;) =
f(B1) = By and f*(B,) = idp(B,) = B;, which is impossible. Thus P cannot be Cs.
It follows from these observations that P must be a chain. In this case, for every
y € P define
[y ifx=y;
¥y (x) {x otherwise.
Then ¢, € End P. Also, for y,z € P with y <z, define 4, ,:P— P by

=t Lok

X otherwise.

Then 9, , e End P.
Observe now that if x =y then

Uy By oty (¥) = Uy By, (y) = ¥y (2) =,
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whereas if x <y then
Uy Dyt (x) = ¥y, (x) = ¥y (x) = x.

Consequently, ,9, ¢, =,. It follows that, for all z=y, we have 3,,<¢f and
therefore

z =19, (y)< ¢} (y).

Thus we see that P has a biggest element, namely y*(y) for every y € P.

Now let C be an ascending chain in P. By way of obtaining a contradiction, suppose
that C is infinite. Since P has a biggest element, the set C of upper bounds of C in P is not
empty. For every d e C let

P,={yeP;y=d,y ¢ C}.
Define ¢,: P— P by
ifxe Pd;

Pa(x) = {i

otherwise.

Then ¢, € End P.
Suppose now that z € P;. Observe that if x € P, then

PaBa0a(x) = a4 (d) = @u(z) = d,
whereas if x ¢ P, then

0404, ‘Pd(x.) = @V, (x) = @u(x) =x.

Consequently, ¢,3,,¢,;= @4 It follows that, for every z € P,, we have 9,, < ¢f and
therefore

7 =9q,(d) < ¢f(d).
Thus ¢}(d) is an upper bound of C and so ¢}(d) € C. On the other hand,
Ca¥(d) = @a0a(Pa) = @a(Ps) =d,

which shows that we must have ¢jJ(d) € P;. From this contradiction we conclude that C
cannot be infinite. Hence all ascending chains in P are finite, so every non-empty subset of
P has a biggest element, so P is dually well-ordered.

&: Suppose, conversely, that P is a dually well-ordered chain. Since P is quasi-
complete in the sense of [1] it follows that End P is regular. In what follows we shall use
the notation

xt={yeP;y<zx}, x'={yeP;y=x}
Consider f € End P. For every x e P such that x! N Im f # & define
fr(x)=max{y € P; f(y) <x}

Let ©, be the equivalence relation given by (x,y) € ©yif and only if f(x) = f(y). Then for
every x € P we have

f7f(x)=max{y e P; f(y) <f(x)} = max{y € P; f(y) = f(x)} = max[x]©; -
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and therefore
(VxeP)  ff*f(x)=f(x)

As shown in [1, p. 197], for every x € P either x* N Im f has a biggest element x; or
xTNImf has a smallest element x;. Moreover, if for every x € Im f we choose and fix an
element A(x) € f"{x} then h:Im f — P so defined is an isotone injection and the mapping
g:P-» P given by
h(x;) if x; exists;
h(xg) otherwise,

g ={

is an isotone pre-inverse of f. For our purpose here, we observe that the same is true of
the mapping g': P— P given by

h(xg)  if xp exists;
h(x;) otherwise.

g')={

Now since P is dually well-ordered we can choose h(x) = f*(x) for every x e Imf and
thereby obtain from g’ the mapping f*:P— P given by

fr(xg)  if xp exists;
f*(x;) otherwise.

Fe =1

Then f* € End P and is a pre-inverse of f. Our objective is to show that if Xk € End P is
such that fkf < fthen k <f*

For this purpose, observe that if x; =max(x!NImf) exists then f(y)=<x implies
f(y)=<x; so that we have

) =f"(x).

Also, for every x € P, we have

fkfx)<f(x) > kf(x) <f7f(x).

There are two cases to consider.
(a) xr exists.
In this case we have xy = f(z) for some z € P and so

k(x)=<kixp)=kf(2)<f"f(2) =f"(xF) = f*(x).

(b) xr does not exist.
Here there are two sub-cases:

(b)) x'NImf =@ In this case, denoting by 1 the biggest element of P, we have
f(1) <x in which case f*(x) =1 and consequently

k(x)<1=f"(x)=f"(x;) = f*(x).

(b)) x"NImf#@. In this case x <inf{f(y); f(y) =x}, the latter existing since P is
join-complete and therefore the addition of a smallest element produces a complete
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chain. Observe that the existence of x; € Imf with x; <inf{f(y); f(y)=x} implies the
existence of f*(inf{f(y);f(y) = x}). Since

z=<fT(inf{f(y); f(y) = xD & f(z) <inf{f(y); f(y) = x}
e z<inf{f f(y); f(y)=x}

it follows that
fH(nf{f(y); f(y) = x}) = inf{f*f(y); f(y) =x}.
We thus have
k(x) < k(inf{f(y), f(y) = x})
<infkf(y); f(y) = x}
<inf{f*f(y); f(y) =x}
=f*(inff(y); f(y) = x}).

Now if f(z) < inf{f(y); f(y) = x} then we cannot have f(z) > x, for this would imply that
xr exists. Hence f(z) <x and consequently

frnf{f(y): f(y)=x}=f"(x) = f7(x)) = f*(x).

It therefore follows that k(x) < f*(x).
Thus we see that in all cases k(x) < f*(x) and therefore k < f*. Consequently, End P
is principally ordered. O

In a principally ordered regular semigroup S every element has a biggest inverse [5],
thatof x € § being x%=x*xx* Since xx° = x we have, in general, x° < x* We say that §
is compact if x°=x* for every x € S. For example, if S is completely simple then S is
compact in fact, by [7, Theorem IV.2.4], if S is completely simple then x* V(x) so that
x* < x° whence x° = x*.

THEOREM 2. If P is a dually well-ordered chain then the principally ordered regular
semigroup End P is compact.

Proof. Since (whenever they exist) x;, xr € Imf, and since fff(x) = f(x) for every
x e P, it follows from the definition of f* that

if ists;
) = {xp if x¢ exists

X; otherwise.
Consequently, we have
CfT(xE) if x exists;
= f*ff* =
],d) () =3 (x) {f (x)) otherwise,
and therefore f° = f* for every f e End P. O

Suppose now that P is a dually well-ordered chain. Then since End P has a biggest
element, namely the constant map 7: P — P given by n(x) =1 for every x € P, the regular
semigroup End P is trivially strong Dubreil-Jacotin [3]. We close by using End P to settle
a question concerning perfect elements in such semigroups. Specifically, it is shown in [4]
that if S is an ordered regular semigroup that is strong Dubreil-Jacotin then the subset

https://doi.org/10.1017/50017089500031074 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500031074

178 T. S. BLYTH

P(S) of perfect elements (i.e. those x € § such that x = x(£:x)x whére ¢ is the bimaximum
element of S) is a regular subsemigroup which is orthodox under certain conditions. We
show as follows, using End P where P is a dually well-ordered chain, that it is possible for
P(S) to be orthodox while S is not.

The perfect elements of End P are those isotone maps f: P — P such that f = fxf, i.e.
those isotone maps f for which f(x)=f(1) for every x € P, i.e. the constant maps. It
follows that the perfect elements of End P form a left zero semigroup which is therefore
orthodox. But End P itself is not orthodox. To see this, note that since P is dually
well-ordered every p € P has a predecessor, namely

py=max{x e P;x <p}.
Define recursively p, = (p1)1,. .. » P = (Pk=1)1»- - -, and let f, , : P— P be given by
_Jp if x =ZDp;
Jpux) { D otherwise.

Then each f, » € End P and is idempotent.
Now choose p, g € P and k =2 such that g, <p <gq. Then, for every x € P,

q ifx=gq;
Joafau(x) =ﬁ;,1{
9k
_ {p ifx=gq;
D1 otherwise.

otherwise,

Since f,,f,4(q)=p and (f,1f,4)*q) =fo1f,4(P) =p1, we see that f,,f,, is not idem-
potent. Hence End P is not orthodox.
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