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Abstract

We provide explicit small-time formulae for the at-the-money implied volatility, skew,
and curvature in a large class of models, including rough volatility models and their
multi-factor versions. Our general setup encompasses both European options on a stock
and VIX options, thereby providing new insights on their joint calibration. The tools
used are essentially based on Malliavin calculus for Gaussian processes. We develop a
detailed theoretical and numerical analysis of the two-factor rough Bergomi model and
provide insights on the interplay between the different parameters for joint SPX-VIX
smile calibration.
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1. Introduction

Exposure to the uncertain dynamics of volatility is a desirable feature of most trading strate-
gies and has naturally generated wide interest in volatility derivatives. From a theoretical
viewpoint, an adequate financial model should reproduce the volatility dynamics accurately
and consistently with those of the asset price; any discrepancy may otherwise lead to arbitrage
opportunity. Despite extensive research, implied volatility surfaces from options on the VIX
and the S&P 500 index still display discrepancies, betraying the lack of a proper modelling
framework. This issue is well known as the SPX—VIX joint calibration problem and has moti-
vated a number of creative modelling innovations in the past fifteen years. Reconciling both
implied volatilities requires additional factors to enrich the variance curve dynamics, as argued
by Bergomi [13, 14], who proposed the multi-factor model

dé(T)

N
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for the forward variance, with W', ..., WY correlated Brownian motions and coeffients
c1, K1, ..., cn, ky > 0. Gatheral [26] recognised the importance of the additional factor to
disentangle different aspects of the implied volatility and to allow humps in the variance curve,
and introduced a mean-reverting version—the double CEV model—where the instantaneous
mean of the variance follows a CEV model itself. Although promising, these attempts fell
short of reproducing jointly the short-time behaviour of the SPX and VIX implied volatilities.
A variety of new models were suggested to tackle this issue, both with continuous paths [7, 24,
29] and with jumps [6, 18, 19, 40, 43, 47], incorporating novel ideas and increased complexity
such as regime-switching volatility dynamics. Model-free bounds were also obtained in [21,
31, 32, 46], shedding light on the links between VIX and SPX and the difficulty of capturing
them both simultaneously.

Getting rid of the restraining Markovian assumption that burdens classical stochastic volatil-
ity models has permitted the emergence of rough volatility models, which consistently agree
with stylised facts under both the historical and the pricing measures [4, 8, 9, 11, 25, 27]. A
large portion of the toolbox developed for Markovian diffusion models is not available any
longer, and asymptotic methods [30, 33, 36, 37]—and more recently path-dependent PDE
methods [10, 16, 38, 44, 45, 50]—thus play a prominent role in understanding the theoretical
properties and numerical aspects of these models. Since the fit of the spot implied volatility
skew is extremely accurate under this class of models [27], it seems reasonable to expect good
results when calibrating VIX options. Moreover, the newly established hedging formula by
Viens and Zhang [50] shows that a rough volatility market is complete if it also contains a
proxy of the volatility of the asset; this acts as an additional motivation for our work. Still,
[35] showed that the rough Bergomi model is too close to lognormal to jointly calibrate both
markets. Its younger sister [34] added a stochastic volatility-of-volatility component, gener-
ating a smile sandwiched between the bid—ask prices when calibrating VIX, but the joint
calibration is not provided. By incorporating a Zumbach effect, the quadratic rough Heston
model [28] achieves good results for the joint calibration at one given date. Further numer-
ical methods were developed in [15, 17, 49]. However, the lack of analytical tractability of
rough volatility models is holding back the progress of theoretical results on the VIX, with
the notable exception of large deviations results from [23, 41] and the small-time asymptotics
of [2].

In the latter, Fr-measurable random variables (with volatility derivatives in mind) are writ-
ten in the form of exponential martingales thanks to the Clark—Ocone formula, allowing the
application of established asymptotic methods from [4]. An expression for the short-time limit
at-the-money (ATM) implied volatility skew is derived, yielding an analytical criterion that a
model should satisfy to reproduce the correct short-time behaviour. The proposed mixed rough
Bergomi model does meet the requirement of positive skew of the VIX implied volatility, back-
ing its implementation with theoretical evidence. And indeed, the fits are rather satisfying. This
model is built by replacing the exponential kernels of the Bergomi model (1) (z > e™*") with
fractional kernels of the type 7+ =2 with H € (0, %), but is limited to a single factor, i.e.
W! = W2, As a result, numerical computations under this model induce a linear smile, or
equivalently a null curvature, unfortunately inconsistent with market observations. To remedy
this, we incorporate Bergomi’s and Gatheral’s insights on multi-factor models (integrated by
[20, 41] into rough volatility models) and extend [2] to the multi-factor case; we also com-
pute the short-time ATM implied volatility curvature, deriving a second criterion for a more
accurate model choice. In summary, the present paper goes beyond [2] in three ways:
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e We consider multi-factor models, far more efficient for VIX calibration, which compli-
cate the analysis.

e We compute the second derivative of the implied volatility to discriminate better between
models; this turns out to be considerably more technical than the skew.

e We provide detailed proofs of all of our results at three levels: abstract model, generic
rough volatility model for the VIX, and two-factor rough Bergomi model, checking care-
fully that all the assumptions are satisfied, proving technical lemmas applicable to our
setting, and exhibiting definite formulas at all three levels of generality.

We gather in Section 2 our abstract framework and assumptions. The main results, which
provide the short-time limits of the implied volatility level, skew, and curvature, are con-
tained in Section 3. Our framework covers a wide range of underlying assets, including VIX
(Section 4) and stock options (Section 5); see in particular in Propositions 1 and 4. We provide
further a detailed analysis of the two-factor rough Bergomi model (1). Closed-form expressions
that depend explicitly on the parameters of the model are provided in Proposition 3 for the VIX
and Corollary 1 for the stock. These expressions give insight into the interplay between the dif-
ferent parameters, and make the calibration task easier by allowing us to fit some stylised facts
before performing numerical computations. For instance, different combinations of parameters
can yield positive or negative curvature. All the proofs are gathered in Section 6, starting with
useful lemmas and then following the order of the sections.

Notation. For an integer N € N and a vector x € RY, we define |x| := vazl x; and ||x||? :=
Z?’Zl xl-z. We fix a finite time horizon 7 > 0 and let T := [0, T]. For all p > 1, L? stands for
the space LP(2) for some reference sample space 2. As we consider rough volatility models,
the Hurst parameter H € (0, %) is a fundamental quantity and we shall write H; := H + % and
H_:=H- %

2. Framework

We consider a square-integrable strictly positive process (A;);eT, adapted to the natu-
ral filtration (F;)eT of an N-dimensional Brownian motion W = (W!, ..., WN) defined on
a probability space (2, F, P). We further introduce the true (F;);c-martingale conditional
expectation process

M, .= E[Ar] := E[A7|F], forallzeT.

The set D2 will denote the domain of the Malliavin derivative operator D with respect to
the Brownian motion W, while D’ indicates the Malliavin derivative operator with respect
to Wi. It is well known that D2 is a dense subset of L?(2) and that D is a closed and
unbounded operator from L2() into LX(T x Q). Analogously we define the sets of Malliavin
differentiable processes L™2:= [X(T;D"™2). We refer to [42] for more details on Malliavin
calculus. Assuming Ar e D2 the Clark—Ocone formula [42, Theorem 1.3.14] reads, for
eachreT,

N
M, =E[M,]+ (me W), := E[M]+ ) fo AWy, )
i=1

where each component of m is m!. := E [D!Ar|F]. Since M is a martingale, we may rewrite
(2) as

M;=My+ (Mp e W), 3)
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where ¢, := mg/M; is defined whenever M # 0 almost surely. If ¢ = (¢!, ..., ¢"V) belongs to
IL"2, then the following processes are well defined for all 7 < T

T
Y,::/ ||¢,||2dr, U = \/7,, Up = i
13

T—1

. T . . n .
0= (/ D§”¢,H2dr) ¢,  and  |@]:=) O )
! i=1

Note that all the processes depend implicitly on 7', which will be crucial when we study the
short-time limit as 7 tends to zero.

2.1. Level, skew, and curvature

Since M is a strictly positive martingale process, we can use it as an underlying to
introduce options. A standard practice is to work with its logarithm 21 := log (M), so that
Mr =log Er[Ar] =log (A7) and 9y =1log E[Ar]. Under no-arbitrage arguments, the price
I1; at time ¢ of a European call option with maturity 7" and log-strike k > 0 is equal to

,(k) := E, [(MT — e")+] —F, [(AT — ek>+] , (5)

and the ATM value is denoted by IT, := IT,(0g) = E,[(A7 — M,)"]. We adapt the usual defini-
tions of ATM implied volatility level, skew, and curvature to the case where the underlying is a
general process (later specified for the VIX and the S&P). Denote by BS(#, x, k, o) the Black—
Scholes price of a European call option at time ¢ € T, with maturity 7, log-stock x, log-strike
k, and volatility o. Its closed-form expression reads

EN(dy(x, k, 0)) — N (d_(x, k, o)), ifo/T—1>0,
BS(t, x, k, 0) = n (6)
(ex—ek) , ifo/T —t=0,
with d4(x, k, o) := af/_Tsz + 2 2T —! where A denotes the Gaussian cumulative distribution
function.

Definition 1.

e Foranyk € R, the implied volatility Zr (k) is the unique non-negative solution to Ilo(k) =
BS(O, Mo, k, IT(k)); we omit the k-dependence when considering it ATM (k= 0).

o The ATM implied skew S and curvature C at time zero are defined as

St := | Zr(k)lx=om, and  Cr:= ‘a’gIT(k))k My
=t

2.2. Examples

The framework (3) encompasses a large class of models, including stochastic volatility
models ubiquitous in quantitative finance. Consider a stock price process (St);eT satisfying

N
ds )
O = Y W
! i=1
where v is a stochastic process adapted to (Fp)reT, p:= (01, -, 0on) €[], 11V with

pp’ =1.
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2.2.1. Asset price. For N =2, the model (3) corresponds to a one-dimensional stochastic
volatility model under the identification A=M =S, ¢! = p;/v, and ¢> = p2/v, and v is a
process driven by W!. Our analysis generalises [4, Equation (2.1)] to the multi-factor case (in
the continuous-path case). We refer to Section 5 for the details in the multi-factor setting and
the analysis of the implied volatility.

2.2.2. VIX. The VIX is defined as VIXy = T+A Er[v;]dt, where A is one month. The

representation (2) yields that the underlying is the VIX future

1 1 T+A
MY .= E,[VIX7] = E[VIX7] + (m e W);, with m! ZAE [WXT /T ng,dr]

2.2.3. Asian options. For Asian options, the process of interest is Ay := % fOT S:dt. Using (2)
we find
1 (T )
MA = BLA=ELA +me W), wih  mi=o / E,[D'S, 1dr.
s

2.2.4. Multi-factor rough Bergomi. Rough volatility models can be written as v; = f(Wf’ ),
where W/ is an N-dimensional fractional Brownian motion with correlated components and
f: RY — R. For instance, in the two-factor rough Bergomi model,

2 2
v =g (X exp {UW,I’H — %E |:(Wt]’H>2:|} + (1 —x)exp {nW,z’H — %]E |:(W,2’H)2:| }) ,

with x € (0, 1), v, n, vo > 0. In Example 2.2.2 we set A = VIX and hence N =2, but in the
asset price case we set A =S and therefore N = 3 even though the variance depends on only
two factors.

2.3. General assumptions

We introduce the following broad assumptions, which are key to our entire analysis; in
Section 4 we provide sufficient conditions to simplify them in the VIX case:
(H1) A e L*.

1

(H2) i el? forallp>1,andallr€T.
t

1O

S

(H3) The term E; [ / ds] is well defined for all € T.
t

1 T

(H4) The term —E [ / © ; | ds] tends to zero as T tends to zero.
VT Lo

(HS) There exists p > 1 such that SUPTe[0.1] uf) < oo almost surely and, for all random vari-

ables Z € I” and all i € [1, N1, the following terms are well defined and tend to zero as T tends

to zero: 5
T 1 T ; ’
/0 IE|:Z<IES [%/0 D[4 dr]) i|ds.

There exists A € (—%, 0] such that the following hold:
(Hé) The following expressions converge to zero as T tends to zero:

1 710, /! 1©;1dr ("
T%HEUO " ds| an TW /u42{¢SD <[ |®r|dr>}ds.

S k=1
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) 1©5]ds

(Hé) The random variable K7 := e is such that ]E[u%RT] tends to zero and E[R7]
T2 us
0
has a finite limit as 7 tends to zero.
There exists (Hg ) such that the following hold:
y € (—1, 0] The following expressions converge to zero as T tends to zero:

1 T 10 T T
L g / w00, (f 0, (/ |®y|dy>dr>ds},
T7+)/ 0 Ky r

N

1 T o T T
= | L p (e ([ e ([ o) u)a)ar

J=1

1 o g TN o T
TS E f uy |®s|/ {(MD’, (/ |®y|dy>}drds ,
T2V i 0 s r

J

e s e ([ S o ([ o)
1 ]Efousz P D lj;d);l)f,/r@ymy dr | ¢ ds

[
27 k=1

=z

(Hg ) The random variables

1 T T
9= — f|®s|<f |®r|dr)ds
Ti""yug 0 s

) 1 T N o T
and 97 := / {q&iDﬁ </ |®,|dr>} ds
T T%+Vug 0 /Zl: s

are such that E[(u§ + uj + u2)H} + (uf + u3)H7] tends to zero and both E[$}] and E[$H7]
have a finite limit as 7" tends to zero.

Remark 1.

e (Hjp) requires A to be four times Malliavin differentiable. This is necessary to prove
the curvature formula using the Clark—Ocone formula (2) and using the anticipative It6
formula three times.

e When the underlying is the stock price (as in Section 2.2.1), it satisfies Equation (3)
where ¢ corresponds to its volatility ,/v. One can then directly make assumptions on
the variance process, as in [3—5]. We make this explicit in Proposition 4 for example. In
the case of the VIX (Section 4.1) we refrain from doing the same, since ¢ is much more
intricate. Nevertheless, sufficient conditions are given by (C).

3. Main results

We gather here our main asymptotic results for the general framework above, with the
proofs postponed to Section 6.2 to ease the flow. The first theorem states that the small-time
limit of the implied volatility is equal to the limit of the forward volatility. This is well known
for Markovian stochastic volatility models [5, 12] and in a one-factor setting [2]. To streamline
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the call to the assumptions, we shall group them using mixed subscript notation; for example
(Hy23) corresponds to (Hy)-(H2)-(H3), and we further write (ﬁk) to mean (H12345)-(Hé7) and
=

(H") as short for (H2345)-(H};)-(H}g).

Theorem 1. If (H12345) hold, then
lim (IT - E[uo]) —0.

Note that we did not assume the limit of [E[u] to be finite. The proof, in Section 6.2.1, builds
on arguments from [5, Proposition 3.1]. We then turn our attention to the ATM skew, defined
in 1. This short-time asymptotic is reminiscent of [4, Proposition 6.2] and [2, Theorem 8].

Theorem 2. If there exists ). € (—%, 0] such that (HA) are satisfied, then

T
Sro 1 1 ©,ds
lim = = ~ imE | — Jo 104lds | %
TOTH 2710 | pih ]

Note that (7) still holds without (H’7\), but in that case both sides are infinite. In the rough-
volatility setting of Section 2.2.1 with v; =f (Wf’ ), A corresponds to H — % so that (7) matches
the slope of the observed ATM skew of SPX implied volatility. We prove this theorem in
Section 6.2.2. We also provide the short-term curvature, in the following theorem, which is
proved in Section 6.2.3.

Theorem 3. [f there exist A € (—l, 0] and y € (—1, A] ensuring (ﬁ)\y), then

. Cr 1 15 1 (7 T
lim — =1lim —{Sr— —E — |®, |©,|dy | dr
TWTY TL0TY 2T u) Jo ,

LS em)e])

The limit still holds without (Hg ), but in that case the second and third terms are infinite.

Note that (H;) with A > y guarantees that 7~Y Sy converges. By Theorem 2,

0, if A >y,
St 1 [T 10ds
im — =1 _limE | — Jo 1©:1ds , ifa=y,
Ty T 270 | prth ol

+o00, if A <y.

4. Asymptotic results in the VIX case

As advertised, our framework includes the VIX case where

1 T+A
AT = VIXT =,/ — / ET[v,]dr,
AJr

for v, € D32 for all r € [0, T + A], and we provide simple sufficient conditions for (ﬁ)‘y) to
hold.
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4.1. A generic volatility model

Consider the following four conditions, which we gather under the notation (E). There exist
He (0, %) and X € L? for all p > 1 such that the following hold:

(Cy) Forallt >0, Lt < X almost surely.

(Cy)Foralli,j,ke[[l,N]andt <s<y<T <r, we have, almost surely
o v, <X,
o Div, <X(r -y,
o DD}y, <X(r— )" (r = )",
o DIDID}v, < X(r — 0f=(r — 5= (r = y)T-.

(C3)Forallp>1, Elu; "] is uniformly bounded in s and T, with s < T. .

(Cy) For all i,j,ke[1,N] and r >0, the mappings y+ vavr, s> D{YDvar, and 1+

DfD/SDi,vr are almost surely continuous in a neighbourhood of zero.

Recall the notation H_ and Hy from the introduction. We compute the level, skew, and
curvature of the VIX implied volatility in a model which satisfies the sufficient conditions. Let
us define the following limits:

A A .
Ji= / E[Dyv,ldr,  Gj:= / E[D{Dgyv,]dr, foralli,je[l,NJ. ©)
0 0

Proposition 1. Under (C), the following limits hold:

. 11| ) |
imZy =—1' 1fHe(O, -),
750 T 2AVIX] 2

JiJ;
Zu 1 Jilj (G’/ AVI;(%)

lTi?(%ST = TETE , if He (0, %) ;
T+A o [k 1y 1o
Cr _2AVIX) N S+ E [ DDy, |ar |
T T 2 T 3H -} » (THe (O’ 3)'
7 VR i 73

Remark 2. Our results stand under the fairly general set of assumptions (C). If v
is a reasonably well-behaved function of an N-dimensional Gaussian Volterra process
(WHH ...  WN-H), then these should be relatively easy to check, as Proposition 2 suggests.
For other rough stochastic volatility models, such as the rough Heston model [22, 39], it might
be harder to verify the assumptions. Indeed, the latter is not even known to be Malliavin
differentiable to this day, and thus does not lie within the scope of the present study.

We split the proof into two steps, collected in Section 6.3. First we show that (Cy), (Ca),

(C3) are sufficient to apply our main theorems, as they imply (ﬁky) for any A € (—%, 0] and

ye(—1,3H — %]. Thanks to (C4) we can also compute the limits—after a rigorous statement
of convergence results—starting with Zr and the skew with A = 0. Restricting H to (0, 1/6),
which is the most relevant regime for rough volatility models, we can set y =3H — % < X and
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compute the short-time curvature, with only the second term in (Hg ) contributing to the limit.
The curvature limit in Proposition 1 is finite by the last item of (C3).

Remark 3. In the regime H € [1/6, 1/2), the rescaling becomes y =0, and many more terms
that would just vanish when H < 1/6 now make a non-trivial contribution in the limit.
Informally (that is, without a proof), the limit reads

2
15avix2 (Y JiJ;
limCy =limSy — ————29 JiJ: | Gy — —=
o T ]Z:l ”( Yavix]
12AVIX2 al Jidk Jidk
e 2 Ji| G~ avix ) \ 9%~ avixe
ij,k=1 0 0

1 X (Ui’
J— Z 2AVIX2 — 6JiJiJi (G + GuJ; + GiJy)

2AVIX(2) al y -
J 1k k i
SR Y P / E | D§D}Djv, | dr

i,j,k=1

4.2. The two-factor rough Bergomi

We consider the two-factor exponential model
v=vo [x€ (v + %€ (n (oW +5W2")) | =0 (x€l + 7€), (0)

where H € (0, %], wii = fot (t — s)-dWi, W', W? are independent Brownian motions, the
Wick exponential is defined as £(X) := exp{X — %E[Xz]} for any random variable X, and
x€l0,1], x:=1—x,vo,v,n>0, pe[—1,1], p=+/1 — p2. This model is an extension
of the Bergomi model [14], where the exponential kernel is replaced by a fractional one and
an extension of the rough Bergomi model [9] to the two-factor case. It combines Bergomi’s
insights on the need for several factors with the benefits of rough volatility. As proved in
Section 6.4.1, it satisfies our conditions.;

Proposition 2. If p € (—+/2/2, 11, the model (10) satisfies (C).

The restriction of the range of p is equivalent to p +p > 0, a necessary requirement in
the proof. Proposition 1 therefore applies and we obtain the following limits, as proved in
Section 6.4.2.

Proposition 3. Let  ¥(p, v, n, x):= Voo +mp)? +3°n%0%.  If He©,§) and
pE (—%, 1], then

H_
lim Z LV, XD,
le T= 2H+11/f(p v, 1, X)
. H, AH- _ 2+t (xv+xme\?
lim Sy = ——————— (xv + Fup)> —( )
)0 2¢(p, v, 0, x) 2H Hy

_ +no _ 1 1
> 225> np v 344 1 7
+2(xv +Xne)xn T —Hi +X°n"p M
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i T 128A2HpH2
m =
710 73H-5 39 (p. v, 1, x)°(1 — GH)

{(xv + X0 (x v + 11’ p*)

+3(xv + X00) X0 P20 +3(xv + X0t + X n°p° }

The limits depend explicitly on the parameters of the model (H, x, v, 1, p) and can be used
to gain insight on their impact over the quantities of interest.

Remark 4.

e In the case p = 1 (and hence p = 0), the above limits simplify to

H_

A
limZr = —— xn),
Tli% T o, (xv+xn

g LHEA L 1307 (v 3
710 T_2xv+7n 2H Hy ’

i Cr 128A720H2 403 433
1m = .
T10 73H—}% 3—18H (xv+xn)?

o If we set p =0 (and hence p = 1), we obtain

T
limZy = 202+ %02,
710 T H X Xn

+

lim S Hy AT
1m =
T0 ™ T 22 + )2

sal U x| 20t a1 1
mw | T ) |
H2 H2 2

. Cr 128A"2HH2 416 4 x4yf
lim - = — .
710 p3H-}% 3—18H (x2v2+7%2n2)5/2

e When p = —1 (not covered per se by the proposition), the above limits simplify to
H_
limZy = —— —xnl,
b Zr 2H+1|XV Xl
. Heat- [y +3m>  (xv—3n)’
lim S7 = — - ,
710 2[xv —Xnl 2H Hy

. Cr 128A72HHY xv3 — 3’ .
lim - = —— sgn(xv — xmn).
T0 73H—3 3—18H (xv—7yxn)

Some tedious yet straightforward manipulations allow us to obtain some information about
the sign of the limiting curvature.

Lemma 1. For any n,v >0, x €[0, 1], there exists p;v,} <0 such that limg iT - s
Y )

strictly positive when p > p;’v y and strictly negative when p < p;v y- When

(xv —%n) (X v — 7773) >0,
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we have p;(",u p <—L and hence the limiting curvature is strictly positive for all p € [—1, 1].

Proof. The expression we are interested in, given in Proposition 3, and ignoring the
obviously strictly positive multiplicative factor, reads

®(p) = [xv + Xnpl (x v+ 7773/)3) +3{xv + X)X o2 0>
+3(xv +xney o p + X0’ p°
= [)(31)3 +3x%v e + 3xvX° 0’ p? +73n3p3] (xv3 + 777393)
+ 3[X2V2 +2xvXne + 72n202}72n4p2p2 +30v+ X000 e 0 + X n°p°
= [x3v3 +3x3%xmp + 330X 0? +73n3p3] (xv3 + 7773/)3)
+ 3[x2v2 +2xvXnp + 72772/)2]72174 (1 - pz) o*

+3(xv+ X0 N’ (1 —2p% + p4) p+%'n° (1 —3p* +3p" — p6)

6
. E i
= aip,
i=0

where

ap = xHl+x*° = x40 + 340,

ar =33 + 300y’ =3 (x*v*+ 30 xvnx.

@ =322t 4 3 22yt 4 340 =3(V2+712)X272772V2,
_3747]6 — 3X272772V4 4 3X2V272774

a3z =it + 300 0 + 6xvn’ =(x2+%%) xxvin’,
-6 = (x> +%%) xxv*n?

ay =3x2ixnt =3It 4+ 33 — 6t + 3t =0,

as =300 xv— 6 xv+3xvxn’ =0,

ag = —4776 _ 374776 + 374776 _ 74},’6 =0.

These surprising simplifications show that ® is in fact a polynomial in p of order three, with a
strictly positive leading coefficient a3, so that ®” is linear and increasing in p and is such that

(n* +v3)xx

®"(p)=0 ifandonlyif p=—
vn(x2+7%°)

=:pe(X, Vv, ).
Now,

q)/(Po(X ’ 1), 77))

=3a3p*(n, vx)* + 2020*(n, V) + a1
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=3 (x2 +72) XXV p (. vx)* +6 (v2 + nz) XX p (. vx)
+3 (x2v4 +72n4) xXvnx
=3 (x2 + 72) xxvn’ [—(,,2 +2v2)z2x ]2 -6 <v2 + 172) XX —(,72 +2v2)zx
vn(x=+Xx°) vn(x=+%°)
+3 (x2v4 +72174) xXvnx
s (P2 (2 + 1)

=3x"X vnﬁ—6X373nvﬁ+3()(2v4+72n4) Xvnx
xX“+Xx xX“+X

1 — = — _
= ﬁ<_3X3X3WI(7)2 +7 4307+ 70 (x2v4 + x2n4) xvnx)
x“+Xx
3vnxx = - -
o ((X2+X2) (x2v4+x2n4)—xzxz(n2+v2)2)
X +Xx
3vnxx - — —
_ e <X4V4+X2X2774+X2X2v4+74774—X2X2 (T)4+2772V2+V4)>
3vnxx _ 3vnxx - -
=ﬁ<X4v4+74774_2X2X2772‘)2)=ﬁ(XV+X77)2 (xv—xm?*>0.
X+ X“+X

Since @' is an upward parabola with strictly positive minimum, it is always strictly positive;
hence @ is a strictly increasing function (of p), and the lemma follows. Let p} ,, , denote the
unique solution to @(p;’v’n) = 0; there is an explicit closed-form expression for this solution,
but its exact representation is messy and not particularly informative. We can, however, provide
an upper bound. Indeed,

O(—)=ap— a1 +ay —a3
= x40 434 —3 (X2V4 +72774) YT 43 (vz + 772) ¥ 2520?02
— (x2 +72) xxv’n’
= (x3v3 —3x2P X + 300y — 73n3>xv3
+ (73773 =300 xv + 357 xm” — x3v3>7n3
=(xv—x1° (xv3 —7773) .
As soonas ®(—1) > 0, clearly pj ,, , < —1, so the limiting curvature is always strictly positive.
The sign of ®(—1) is given by that of (xv —x7) (X V3 — 77’/3), which is an upward parabola
in x. O

5. The stock smile under multi-factor models

We use the setting of Section 2.2.1 to apply our results to an asset price of the form

1
Sy =380+ / Sr\/V_r dB,,
0
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where B is correlated with the other N Brownian motions as B = vazl 0iW! with vazl ,ol-2 =
1, pie[—1, 1] for all i € [1, N]. The volatility is a function of (N — 1) Brownian motions,
such that the stock price features one additional and independent source of randomness. To fit
this model into (3) we set A = S and identify ¢’ with p;,/v. We modify the notation slightly to
differentiate from the VIX framework: the implied volatility is denoted by fT and the skew by
Sr. We do not consider the curvature in this setting, for lack of an explicit formula. The proof
of this proposition and the following corollary are postponed to Section 6.5.

Proposition 4. Assume that there exist H € (0, %) and a random variable X such that, for all
0<s<y jell,N], andp=>1, X € L?, the following hold:
@) vy =X;
(i) Divy < Xy — )1
(i) sup,<r E[u; "] < oo
(iv) limsupy o E[(+/vr/vo — 1)*] =0

Then the short-time limits of the implied volatility and skew are

s N [y IE[ y ] dyds
. ) 0 Js STy
IT% Ir=4" and lle TH— = Z i w TH+3/2
Remark 5.

e The second limit is finite because of the condition (ii).

e The one-dimensional version (N =2) agrees with [4, Theorem 6.3] up to the sign
because the authors of [4] derive with respect to the spot x and not to the log-strike k.

In the two-factor rough Bergomi model (10) we can compute the short-time skew more
explicitly. Recall from Example 2.2.4 that, for all # > 0, it means setting N = 3 and defining

t
S[: S()+/ Sr«/V_rdBr»
0
vi=vo [x€ (W), + %€ (n (oW + W) ]

where W™ = [0 (t — )= AW/, for i=1,2 and B=Y";_| p;W', with W', W2, W* being
independent Brownian motions. Hence W3 influences only the asset price, not the variance.

Corollary 1. In the two-factor rough Bergomi model we have the short-time skew limit

.St pixv+nx(pip + p2p)
lim — . (11)
740 TH- 2H (1 +Hy)

5.1. Tips for joint calibration in the two-factor rough Bergomi model

Assuming we can observe the short-time limits of the spot ATM implied volatility, it grants
us v for free, while the slope of its skew gives us H by (11). Next, we simplify the expressions
from Proposition 3 in the case x = % Denote by Zy, So, and Cp the three limits of Proposition 3,
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andlet Hy := H+ %, o := np, B := np. Introduce further the normalised parameters
) B:= =,

~ o
o= —
Vv

so that, defining ¥(&@, B) := /(1 + @) + B2, we have, after simplifications,

I, = JArar+ P =G @ B).

22| 1222 (123’ op[E _1xa]g L1 ~

Sy — VH, AP (1+a) [ S ( +) ]+2(1+a)f3 [2H H+]+a [zH Hi] _-vCS—CDS(a’ P)
? (avarp2)” V@ By’

= 128012 {(1+a)3(1+623)+3(1+a)2&252+3(1+a)a/§4+56} B C®C(&’ B)
a (a+ar+52)" a-6m) V@, By’

where the constants C;, Cs, C¢ only depend on A and H. Provided we can observe an approx-
imation of these three limits, we can numerically solve for v, @, E in a system with three
equations. Alternatively, since all three quantities have the factor v, any quotient of two of
them is a function of only @, E, which we can plot and match to observed data. Both methods
allow us to deduce v, @, E , in turn yielding n and p. Finally, we are left with p; and p> to play
with so that the right-hand-side of (11) matches the market observations.

Remark 6. We are not here—as in fact in most papers related to asymptotics—advocating
the use of these formulae for actual direct option pricing, since they are asymptotics. In par-
ticular, this raises several calibration issues (shared with most results on the topic): (i) very
short-maturity options on the VIX are hardly available, and the computation of the curvature,
in particular, is a matter of personal choice (the result will change drastically depending on
the number of data points around the ATM), which is left to the trader; (ii) such asymptotic
formulae serve to provide some intuition about the roles of the model parameters, in particular
on which one helps for each part of the smile. One key message of our result, for example, is
that the model is able to disentangle (over short time horizons) the role of H and that of v, 1, p,
and to a certain extent the role of v and that of n, p. Compared to simpler models (one-factor
(rough) Bergomi, classical Heston), we have more parameters here, and our results should be
combined with more asymptotics (for smile wings and large expiries) to be fully meaning-
ful. Unfortunately, these are not fully available yet, and we would rather leave a full-scale
numerical calibration scheme to future endeavours.

6. Proofs

6.1. Useful results

We start by adapting to the multivariate case a well-known decomposition formula and then
prove a lemma which will be used extensively in the rest of the proofs. Both proofs build on
the multidimensional anticipative 1t6 formula [42, Theorem 3.2.4].

Proposition 5. (Price decomposition.) Under (Hyz3), the following decomposition formula
holds, for all t € T, for the price (5), with u; defined in (4) and G := (33 — dy)BS:

1 T
1,(k) = E, [BS(z, My, k, ur)] + EE' [/ 0 G(s, M, k, us)IGsIdS} .
t
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__Proof. Define BS(t x, k, (T — 1)) := BS(t, x, k, o) and wrlte for simplicity BSt
BS (t, My, k, Y,) =BS (t, My, k, u;), where we recall that Y; = u; (T —1). Note that [Ty = BST
hence I1; = E; [BST] by no-arbitrage arguments. Thanks to (Hj) and (Hz), we can then apply
a multidimensional anticipative Itd’s formula [42, Theorem 3.2.4] with respect to (¢, 91, Y):

- r o __ T 1
BS(T, My, k, ur) = BSy = BS, + / 9,BS,ds + / 9,BS; (d(¢oW)S_ E”‘/’S"st)
t t

T T T
— 1 — —
- / ayBss||¢s||2ds+5 / 3ZBS;llgp, I12ds + / 3,y BS;|©]ds,
t t t

with © as in (4). The derivatives of the Black—Scholes price read as follows (for simplicity, we
omit the argument):

3.BS _ 3.BS 3.BS
s Ou 9,88, = — 42> and T

3,BS; = 8,BS , , =22
ST s+2(T—s) ’ 2u (T — 5) ug(T — s)

Putting everything together, using the gamma—vega—delta relation

0sBS(t, x, k, 0)

=(0; — BS t, X, k, o), 12
(T t) ( X x) ( ) ( )
and applying conditional expectation, we obtain

T 0 BS(s, M, k, uy)
2ug(T — )

T
M, = B, [BS(, My, &, )] + E; [ f Las(s, u»ds} +E, [ / |®s|ds} ,
t t

13)

where Lgs(s, us):= 5 [u? (32 — 8;) + 85| BS(s, My, k, uy) is the Black—Scholes operator
applied to the Black—Scholes function. Since Lgs(s, us) = 0 by construction and
eN'(dy(x, k, o)) (1 d.(x, k, a))

oT —s ovT—s )’

the last term in (13) is well defined by (H3) and the proposition follows.

0;G(s, x, k,0)=

Lemma 2. For all t €T, let J; .= ftT asds, for some adapted process a € LY2, and let £:=

>y c,~8}; be a linear combination of partial derivatives, with weights c; € R. Then, writing
for clarity BS; := BS(t, 9M;, Mo, u;), we have

T T
]E|: / SBSsasds]zE[ﬂBSOJo+ f (af—af) £BS, |0, |/ds
0
+/ 3, 8BS, Z("ij> } (14)
0

Remark 7. We will use this lemma freely below, with the justification that the condition a%
LL2 s always satisfied thanks to (Hy).

Proof. As in the proof of Propcliition 5/,\we define I/SE(I, x, k, 02(T —1):= BS(t, x,k,0)
and write for simplicity BS;:= BS (¢, M, Mo, ¥;) =BS (¢, Ny, Mo, uy).  Define
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ﬁ(t, X, k,y,j) = £}§§(t, x, k,u)j and denote ﬁ(t, M, Mo, us, Jg) by /E for simplicity.
We then apply the multidimensional anticipative Itd’s formula [42, Theorem 3.2.4] with
respect to (¢, M, Y, J):

PR T T 1 5 T )
Pr=Py+ /0 9sPsds + /0 9, P (d(d)oW)S— §||¢S|| ds> — / 3,Py|| @, || "ds
t

1 (7T - r L r N
+ 5 / a)%Ps ||¢s ||2dS +f 8xyPs|®s|dS + f 8sz dJs + / 8ijs E <¢§D]§Jv> ds.
t t 0 0
k=1

One first notices that 150 = £]§§0J0 and §T =0(0. Moreover we observe that fOT ajﬁs dJ; =
— fOT £BS sasds, which corresponds to the left-hand-side of (14), and

T N T N
fo 0P, Y (94DA,) ds = /O 0,283, Y (4 DL, ) ds.
k=1 k=1

Since £ is a linear operator, the partial derivatives in s, x, and u cancel as in the proof of
Proposition 5. That means we are left with

T T T
/ £BS,a,ds = £BSoJp + / (af — af) £BS, |0, |J.ds + / 3P, d(¢p « W),
0 0 0

T . N
+ /0 8,BS, Y (quf D';JS) ds.

k=1

Since 9}BS(s, x, u) = BQI/S\S(S, x, u*>(T —5)) for any n €N, summing everything and taking
expectations imply the claim. O

We adapt and clarify [4, Lemma 4.1] to obtain a convenient bound for the partial deriva-
tives of G. For notational simplicity, since o and T — ¢ are fixed, we write ¢ := o+/T —t and
&(x, k, ¢):= G(t, x, k, o).

Proposition 6. For any n € N and p € R, there exists Cy, j > 0 independent of x and ¢ such
that, for all ¢ > 0and x € R\ {O, %2},

Cup ek
ol

NG, k, 6) < (15)

If x =0, then for any n € N the bound (15) holds with p =n.
Ifx= %5‘2, there exists a strictly positive constant C,, independent of ¢ such that

5_2 (o ek i
e <7k g): W if n is even,
0, if n is odd.

The following simplification (and extension) will be useful later.
Corollary 2. For any n € N, there exists a non-negative Cp, i independent of x and ¢ such that,
forall ¢ >0and x e R,

Cn,k
5-n+l ’

C
0!G ko) < =25 and  |9201G(r k. 6)| <
9

Cn,k
§n+3 :

|0 S(x, k, o) <
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Proof of Proposition 6. We first consider the case k = 0. Since

1 1
B(x, 0, ¢):= (3 — 0)BS(, x, 0, ¢) = ex {x — —dy(x, )2} ,
5 XX X g g\/ﬂ p 2 + g
where d4(x, ¢):= d4+(x,0,0)= % + %, direct computation (proof by recursion) yields, for
anyn €N,
(> =207\~ P
8)':6()6, O, g):exp{—T Zaj#, (16)

J=0

where, for each j, P; is a polynomial of degree j independent of ¢.

Since dy (5, €)=y (5, ) =0, 92ds (5, ¢) = — L, the induction simplifies to

C

n N .
——, ifniseven,
= S-n+l
0,

"B (x, 0, §)|X o
1f n 18 odd,

—S-
-2

for some constant C,, > 0 independent of ¢, proving the third statement in the proposition.
Similarly, if x =0, simplifications occur which yield, for any n € N,

Ay o 1 <y '
NG(x,0,5)| _o=exp {—g} Z i1 = oni1 SXP {—g} Zajgn_],
=0 j=0

and the second statement in the proposition follows.

Finally, in the general case x € R\ {O, %2 }, we can rewrite (16) for any p € R as

n (§2 - 2x)2 . p—2j
0y 6(x, 0, ¢)= s exp R jzo akPj(x)g
1 (c? — 2x)?
= o exp {_—85-2 Hy p(x, ©).

For each neN,peN, H, is a two-dimensional function consisting only of powers of c?
and x%/¢2. Since the exponential factor contains these very same terms, there exists a strictly
positive constant Cy ,, independent of x and ¢, such that

(¢ —2x?

8§2 } Hn,p(x» §)= Cn,p,

exp {—
proving the proposition in the case k = 0.
The case k € R follows directly from the observation that &(x, 0, ¢) = &(x — k, 0, c)ek.
Finally, since dd(x, k, 0) = —dyd4(x, k, o) and 92d(x, k, 0) = —32d(x, k, o), the same
simplifications occur if we take a partial derivative with respect to k instead of x.
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6.2. Proofs of the main results

6.2.1. Proof of Theorem 1: level. To prove this result, we draw insights from the proofs of
[2, Theorem 8] and [5, Proposition 3.1]. By definition

Tr = BS (0, My, Mo, o) = :BS(Iy),

and we write ]%(x) := BS(O0, x, x, up). Using Proposition 5 at time 0, we see that [1o =TI'r,
where

~ 1 t
I=E |:BS(Z)JTO) + 5 / 0,G(s, M;, Mo, us)|®s|ds] , forteT,
0

which is a deterministic path. The fundamental theorem of integration reads
T T
< < <=
Zr =BS(I't) =BS(Tp) + / 9,BS(I'y)dr =BS(I'g) + / BS'(I'y)o,I",dt
0 0

< 1 T(—/
:BS(FO)—i—E/ BS'(I') E[1©//0:G/]dz,
0

where G;:= G(t, M, Mo, u;). We can deal with the integral by computing ](3—5/ and 0,G
explicitly:

BS/(I) = (efmw’ (d+ (Dﬁ,, Mo, ](B_S(Ft))) T z)fl ,
"N (dy(x, k, 0)) (1 _di(xk, O’)) .

aG ) ’k’ =
KOs x ko) === = VT s

Since I':R; — R and 1(3_S:R — R are continuous, the following is uniformly bounded for all
T<1:
N/(d+(m57 mOv MO))

N7 (dy (am, 90, BS()

1 v 2 2
)) =exp {§ ((T —s5)BS(Iy)” — uo)} .
Therefore, by (Hy) we obtain

T T N (dy (O, Mo, )
limE[/ ](3~_S/(F,)|®,|8x6,dt}=limE / N (dy (O 2_”’)) '21' dr | =o0.
mo Lo oo v (d (my, mo, BS(T) ) 247VT

Since ') =E []’3\3(9)?0)] and ug = ]% (]’BVS(SDTO)), we have
BS(ro) =BS (E [BS0)]) — Elug — uo] = E [BS(E [BS@Mo)] ) - BS(BS(Mo)) | + Eluol.
17
The Clark—Ocone formula yields

N T ~ '
BSOM) = [B5@0)] + Y [ B [D{BS ] aw,
i=1
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and by the gamma-vega—delta relation (12) we have

o? T
9,BS(0, x,x,0)=exp{x— —T1¢,/—, (18)
8 2
which in turn implies
~ 1.2
) o 30BS(9ﬁo) T ’ ] eSﬁO*guO /T . 2
Ul := E; IDIBSOp) | =E; | ————— D! dr|=E; | ——— D! dr|.
L R e o A B ey R

19)

Define A, := E, [ﬁg(ﬂﬁo)], so that the difference we are interested in from (17) reads, after
we apply the standard 1t6’s formula,
< < <
BS(Ty) — Efug] = IE[BS(AO) _ BS(AT)]
N

T iy L T )
=-) E [ f BS'(A)UdW; + 5 / BS"(As)(UY) dsi|. (20)
=1 0 0

The stochastic integral above has zero expectation by the same argument as used for
[5, Proposition 3.1]. Moreover, (Hs) states that ug is dominated almost surely by Z € L, and
therefore so are A and

<
BS(Ay)

B(_S//(As) — — 2°
42 N[ (d+ (9015, Mo, BS(AS)))

by continuity. Plugging in the expression for U’ from (19), we apply (Hs) to conclude that the
second integral of (20) tends to zero.

6.2.2. Proof of Theorem 2: skew. This proof follows from arguments similar to those of
[4, Proposition 5.1]. We recall that ITo(k) = BS(O, Mo, k, IT(k)). On the one hand, by the
chain rule we have

W Io(k) = xBS(0, Mo, k, Zr(k)) + 05BS(0, Mo, k, Zr(k)) ok Ly (k). (1)

On the other hand, the decomposition obtained in Proposition 5 yields
T
W Tlo(k) =E[0xBS(0, M7, k, up)| + E [ / 5 0k Gls, Ms, Mo, us)|®s|ds} . (22
0

Equating (21) and (22) gives

E [0xBS(0, M7, k, up)] — %BS(0, Mo, k, Zr(k))

(k) =
kLt (k) 3,BS(0, Mo, k, Ir(k))

E [y 8aGes, My, Mo, u)|@,1ds

+ 20, BS(0, Mo, k, Zr(k)) ’

(23)

https://doi.org/10.1017/apr.2024.45 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2024.45

Rough multi-factor volatility for SPX and VIX options 543

which in particular also holds for k =97. Performing simple algebraic manipulations and
using the derivatives of the Black—Scholes function ATM as in [4, Proposition 5.1], we find the
following (remember we drop the k-dependence in Z7 when ATM):

1 T
E[akBS(Oa m()s m()a MO)] - akBS(O» §)')‘t()v m()’ IT) = E]E [/ EaxG(sv ms» SJJI()7 MS)|®S|dS} .
0

By (23), this in turn yields
E [ fy Lls. 95, Mo, u5)|©41ds

hlr = , (24)

ang(o, Mo, Mo, IT>

where L := (% + ) % dyG. We write Lg := L(s, M, My, uy) for simplicity and apply Lemma 2
to Ly [ 1©,|dr, which yields

T T T T
]E[/ L‘Y|®S|ds]:E[Lo/ |®S|ds]+E[/ (33 — 82)Ly| O] </ |®,|dr)dsj|
0 0 0 K
T N o T
+E / astZ{qsgDIS(/ |®,|dr>}ds =R + Ry +Rs.
0 ; s
j=1

We combine (18) with the bound 937 G(, x, k, 0) < C(a«/T — t)_"_2 from Corollary 2 to

obtain
R, c [/T|®s| (/T ) }
<__F O,|dr)ds|,
9BS(0, Mo, Mo, Zr) ~ /T o ub s O]

Rs - Ch /Tlﬁ:{qsiDi</T|@)|d>}d
-~ _ Hdr)rds |,
35 BS(0, Mo, Mo, Ir) ~— /T 0 ud i U

and both converge to zero by (Hg). We are left with R;. From Section 6.6, we have

2
expix — 5T} /1 1
L0, x, x, u) = - )
( o u) u2n T 4 + 2M2T

and therefore by (18),

Ly 1 " 1 1 T( 2 IZ>
=\-+—=] —F=expy—o\u— .
3,BS(0, Mo, Mo, ) \4 227 ) wor 7 |8\

This yields

R ug Tiro
=E|(2+1 —— (i -13) | &r |,
T3, BS(0, Mo, Mo, Z7) [( 2 F )eXp{ 8 (”0 T) r

fOT |O;|ds
where A7 := ~—————. Furthermore,
2T§“u(3)
T/, 2 1 2 2
sup |[exp ——(uo —IT) — 1| =sup |exp = (TIT — uo) -1
weR 8 we 8

https://doi.org/10.1017/apr.2024.45 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2024.45

544 A. JACQUIER ET AL

not only is finite but converges to zero as T goes to zero. Hence,

2 2
. uo Tir —1 Yo
1;%E|:<2 +1)exp{ 8(140 IT>}RT]_1T11%]E|:<2 +1) 8],

We can finally conclude by (Hé) that

Ry
li =lim E[R7],
10 T3, BS(, Mo, Mo, Tp) 110 A7

which has a finite limit.

6.2.3. Proof of Theorem 3: curvature. Step 1. Let us start by simply taking a second derivative
with respect to k (we write BS(Oy, Z7(k)) as short for BS(0, Mg, Mo, Zr(k))):

8k<8UBS(9ﬁ0, Tr(k) akIT(k)> = 0, BS (Mo, Zr(k)) 92 Tr (k)
n [akng(imo, Tr(k)) + 8BS (Mo, IT(k))akIT(k)] WIr(k).

Taking the derivative with respect to k in (24) and equating with the above formula yields

R L1 (k)3 BS(Mo, Zr) = —92BS(Mo, Zr (k) L1 (k)* — ke BS (Mo, L7 (k) Ly (k)
T
+E [/ O L(s, My, My, us)IGSIdS:| =:T1+ T2+ Ts.
0

A similar expression is presented in [3], and we notice that 71 and 73 in the expression above,
after being multiplied by 7—*, are identical to those from [3, Equation (25)] and can therefore
be dealt with in the same way. Step 1 shows that 7~*T; tends to zero as T | 0, and Step 2
yields T, = — 3 Zr(k).

Step 2. Recall that L = % (% + Bk) dyG. We need the anticipative [t6’s formula (Lemma 2)

twice on 73. Indeed, even though the bound on 9]G worsens as n increases, it is more than
compensated for by the additional integrations. The terms with more integrals (i.e. more reg-
ularity) tend to zero as T goes to zero, by (Hg ), and we compute the others in closed form.
For clarity we write Ly = L(s, 9, Mo, uy) for all s > 0. By a first application of Lemma 2 on
WL [, YT |©,|ds we obtain

T T T
T3:E[8kLo/ |®s|ds]+E[/ (83 — 82)0 L | Oy (/ |(~),|dr> ds]
0 0 K}

T N o T
+E / akasZ{#Dg(/ |®r|dr>}ds =81 + S5 + S5.
0 ; K
j=1

To deal with S5, we apply Lemma 2 again on (37 — 82)d;Ls fST 19, (frT |®y|dy) dr=:HZ,,
which yields
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T T N
S, =FE | HoZo + / (93 — 0%)H,| @) Z,ds + / OcHy Y~ (¢IDiZ,) ds | =:S5 + S5 + 5.
0 0 .
j=1
We will deal with these terms in the last step. For S3, we apply Lemma 2 once more to

T N o T .
duLs / Z{¢£D’, < / |®y|dy>}dr=:HSZs,
K j=1 r

and obtain

T T N
S3=E | HoZo + f (8 — 8D H,|©,|Z,ds + f OcH, Y~ ($IDIZ,) ds | =:§ + S5 + 5.
0 0 .
j=1
Step 3. We now evaluate the derivative at k=1 and drop the k-dependence. To
summarise,
Ti+Ta+ S + 85 + S5+ S5 + 5% + S5 + S5

R Tr=
K 35BS (0, Mo, Mo, Tr)

’

where

- T
S1=E 3kLo/ |®s|ds},
L 0

r T T
s=E |t [ 10/ (/ |®y|dy)dr]
L 0 r
_N T N o T
Si=E HO/O Z{qs;D/,(/ |®y|dy>}dr ,
L j=1 ’

T T T
SS=E fo (83 — 82)H,| O] (/ |®,|</ |®y|dy>dr)ds],
N r

T N o T T
SS=FE f axHX,Z(qsgD{Y(f 109, (f |®y|dy>dr>ds>ds ,
0 . K r
j=1

[ 7 N T N o T
SE=FE /O (aﬁ—af)Hs|®s|/ Z{qjﬁD’,(/ |G)y|dy>}drds ,
| N ]=] r

r _ N T N o T
S§=FE /O d.H, Y~ { ¢fDf /Z{WVD/,(/ |®y|dy>}dr ds
k=1 Soj=1 r

‘We recall once agairflvthe bound 97 G(¢, x, k, 0) < C(o\/T — t)_n_l as T —t goes to zero. We
observe that H and H consist of derivatives of G up to the sixth and the fourth order, respec-
tively; therefore S’z’, SE, S’3’, Sg tend to zero by (Hg ). In order to deal with Sy, S‘zl, and S‘3‘, we use
the explicit partial derivatives from Section 6.6 and (18); as in the proof of Theorem 2, (Hg )
implies that only the higher derivatives of ug remain in the limit:
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s, | E [akLo Id |®s|ds]
lim =lim
710 T*3,BS(0, Mo, Mo, Ir) 740 T* 3, BS(0, Mo, Mo, Zr)

im g | (141 /T|® d
=lm=E|—(=-+—
T0 T+ | uoT \8  2u3T ) Jo s18

1 r S
—1limE —lf 1©,|ds _hm—f
T\LO 21’% T§+)\ 0 J,

S5 o1 Zo 15 3 5 1
lim =lim —E | —= o T T
710 T*3,BS((0, Mo, Mo, Ir)) TI0 T VT \ 2ud  2uj 32u} 64
-15 (7 T
—limE —1/ 19, (/ |®y|dy> dr |,
TJ,O 2ugT§+)L 0 r
S5 1 Zy 3 3 1
lim —lim—E| =2 [ =+ +—
T10 T*9 BS(O Mo, My, IT) 740 T* |:u0\/7 <2ug Su% 16):|

im 2 uTz“/o ]Z{wx(/r 00)|

1

Hence, to conclude, the claim follows from

p O Ta+ 8148548
70 T  T10 T*9,BS(My, I7) "

6.3. Proof of Proposition 1: VIX asymptotics

In this section, we will repeatedly interchange the Malliavin derivative and conditional
expectation, which is justified by [42, Proposition 1.2.8].

Proposition 7. In the case where A = VIX, the conditions in (C) imply the assumptions (ﬁw)
forany X\ € (—%, Oland y € (—1,3H — %].

Proof. We write a < b when there exists X € L” such that a < Xb almost surely, and a ~ b if
a < band b < a. The assumption (Hy) is given by the first item of (Cy), and (Hj) corresponds
to (Cy). Since 1/M is dominated, so is 1/VIX. We then have, for i =1, 2 and by Cauchy-
Schwarz,

T+A D’

i vrdr ea T+ A -y — (T — y)Hi+
m; :]Ey ; S_,/ (r_y)H_dr: ( + y) ( y) )
2AVIXy i,

If H< %, then the incremental function x+— (x + A)'+ — xf+ is decreasing by concavity.
For j=1,2 and t <s, this implies by domination of 1/M that ¢' ~m' is also dominated
and
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» i
qu&i . D{vmy 3 myD’sMy

STYT M M?2

y y

T+A T+A T+A
5/ (r—y)H‘(r—s)H‘dr—i—/ (r—y)H‘dr/ (r—s)"-dr
T T T

A2H AH+1
<o+
2H HY

(25)

Combining these two estimates, we obtain

T N
ot =20/ [[ (L oiois) vz 1
§o\i=l

It is clear by now that indices and sums do not influence the estimates, so we informally drop
them for more clarity and continue with the higher derivatives:

T T T
D;®; = D¢, / ¢rDsprdr + s / D¢, Dy dr + ¢ / ¢, DD, dr,
s s s

where the first and second terms behave like T — s. For r < s <y < T, we deduce from (25) that
D;D;¢y consists of five terms, of which four behave like (T — s), and only one features three
derivatives:

T+A T+A

=9y [ ey

T

~(T+ A=y i1 — (T — )1,

Dthmy S /
T

IfH > %, then concavity implies D;®; < (T — ). Otherwise, if H < é, then
DO, (T —s)+ [(T + A=) - A3H+%] (T — $PHVE < (T — 5) 4+ 2(T — 5)H+1
In the second derivative of ©, the first and second terms behave like (7 — s) and D,®; <

(T —s5)+ (T — s)(3H+%)Al respectively; hence we focus on fST D, D;Ds¢ydy, where the new
term is

T+A
D,,D;Dymy, ~ / (r = w=r=)"= (== (r—y)=dr ST+ A — )1 (T~
T
IfH > 4—1‘, then D;0; < (T — s) by concavity. Otherwise, when H < %,
D, DO, < (T — 5)+ (T — 5)BH+DAL 4 [(T FA - A4H] (T — s

<(T = 5) + (T — 5)BH+DN Lo _ g

where the last inequality holds by yet again the same concavity argument. U
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This yields a rule for checking that the quantities in our assumptions indeed converge. We
summarise the above estimates in the case H < %: there exists Z € I” such that fors < T and T
small enough,

©,<Z(T—s). DO,<ZT—sCH+DN  DP@, < Z(T — 5)“!

hold almost surely. Thanks to the Cauchy—Schwarz inequality we can disentangle the numer-
ators (integrals and derivatives of ®) and denominators (powers of u) of the assumptions,
which are both uniformly bounded in LP. We can easily deduce that (H3), (Hg), (Hs), (Hé),
(Hg ) are satisfied (convergence to zero). In (Hé), E[R7] behaves as T~*, so it converges for
any A € (—%, 0], and the uniform L? bound is satisfied thanks to (C3). Moreover, in the limit
the first term in (H; ) behaves as 7~ and the second behaves as T3/ _%_V; therefore both
assumptions are satisfied for any A € (—%, 0] and y € (—1, 3H — %]. Similarly, (C3) ensures

the uniform L2 bounds.

6.3.1. Convergence lemmas. We require some preliminaries before we dive into the compu-
tations. We present three versions of integral convergence tailored to our purposes, which are
essential for computing the limits in Theorems 1, 2, and 3. The conditions they require hold
thanks to the continuity of (C4). Recall the local Taylor theorem: if a function g(-) is con-
tinuous on [0, §] for some § > 0, then there exists a continuous function &(-) on [0, §] with
lim, o (x) = 0 such that g(x) = g(0) 4 &(x) for any x € [0, 5].

Lemma 3. If [ : R%_ — R is such that f(T, -) is continuous on [0, §o] for some 89 > 0 and
1Tilf(1)f(T, 0) =10, 0), then

1T
1;1%;/() J(T, y)dy=£(0, 0). (26)

Proof. For T < §p, we can write
T

1 (T 1 (7 1
;/ ST, y)dy = ;/ [f(T, 0) + oM ]dy =f(T, 0) + ;/ go(y)dy,
0 0 0

where the function &g is continuous on [0, §p] and converges to zero at the origin. Hence, for
any no > 0, there exists §o > 0 such that, for any y < &g, |eo(y)| < no. For all T < 8y A do,

1 T
— d
‘T [0 go(y)dy

Since ng can be taken as small as desired, the fact that limy o (7, 0) =f(0, 0) concludes the
proof. O

= 1o-

Lemmad. Letf : Ri — R be such that, for eachy < T, f(T, y, -) is continuous on [0, 5y] with
80 >0, f(T, -, 0) is continuous on [0, 81] with §1 > 0, and limg o (T, 0, 0) =£(0, 0, 0). Then

| £(0,0,0)
lim — T,y, s)dsdy ="—""—. 27
T%Tzfo /Of(,y,s)sy > 27
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Proof. For T < 8 A 81, we can write

L 1 Ty
ﬁfo { ) f(T,y, S)ds} dy:ﬁfo [) [f(T, v, O)—|—go(s)] ds} dy

y
= f(T,y,0)y+ /0 eo(s)ds} dy

y
=7/, (f(T,O,0)+81(Y))y+/O 80(s)ds} dy

—f(T’O’O)-i-l ! + ’ dsp d
—T ﬁfo {81()’))’ /(;80(5) S} Y,

where ¢1(+) is continuous on [0, 81] and &y(-) is continuous on [0, 80] and both are null at the
origin. For any 11 > 0, there exists 61 > (0 such that for any y € [0, 81] we have |e1(y)] < n1.
Therefore, for the first integral, we have, for T’ < 81 A Sy A b1,

]fT (y)d<1/T| (y)|d<1/T dy< 2
— e — e — —.
72 ), O s | lelydys o | omydy <

Likewise, since~ go(+) tends to zero at the origin, for any 1o > 0 there exists 50 > 0 such that,
for any y € [0, &o], we have |e9(y)| < no. Therefore, for the second integral, we have, for 7' <

8o A 8o A 61,
1 (T 1 (T 10
<— dsdy < — dsdy < —.
_T2/0 /0|80(S)|sy_T2/0 /OTIOS}’_Z

1 (T
T2 /(; /0 go(s)dsdy

Since 11 and 5o can be taken as small as desired, taking the limit of f(7', 0, 0) as T goes to zero
concludes the proof. ]

LemmaS5. Let f: Ri — R be such that, for all 0 <s<y<T, the functions f(T,y,s, "),
fT,y,-,0), f(T,-,0,0) are continuous on [0, dol, [0, §1], [0, 821, respectively, for some
80, 81, 82 > 0, and limr o f(T, 0, 0, 0) =£(0, 0, 0, 0). Then the following limit holds:

f(O 0,0, O)
lTl%ﬁ[ / /f(T y, s, Hdtdsdy =——— (28)

Proof. For T < g A 81 A 82, we can write

IR YA
), {/0 (/0 f(T,y,s, t)dt) ds} dy
1 (T(r/ 18
zﬁ 0 {/0 (/0 [f(T,)’,S,0)+8o(t)]dt)ds}dy
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1 T y s
=73 / <f(T7 v, s, 0)s + / 80(t)dt> ds} dy
T> Jo Lo 0

T y s
= i3 / ([f(T, ,0,0)+ ()]s +/ eo(t)dt) ds} dy
T 0 o

0
1 T y2 y s
= 73 f(T,y,0, 0)5 +/ (81(S)S +/ eo(t)dt) ds} dy
0 0 0
1 T

2 y s
=7 [£(T,0,0,0)+ ez(y)]y? + / (81(S)s + / so(t)dt) ds} dy
0 0

0
7,0,0,00 1 (T 2 y s
=]¥ + = /0 {(c;z(y)yE +/O <81(s)s +/O so(t)dt> ds} dy,

where the function &; is continuous on [0, 8], the function &; is continuous on [0, §1], and the
function &g is continuous on [0, o], all converging to zero at the origin. By the same argument
as in the previous proof, for any ng, 11, n2 > 0, there exists § > 0 such that for all T < 8 we
have |eo(T)| < no, le1(T)| < n1, and |e2(T)| < n2. This implies

1 T 2 y s
7/ @@1+/ mm+/ammds®§@iﬂi@
T Jo 2 Jo 0 6

Since 712, 171 and 719 can be taken as small as desired, taking the limit of f(7,0,0,0) as T goes to
zero concludes the proof. (|

To apply these lemmas, we will use a modified version of the martingale convergence the-
orem, which holds in our setting thanks to domination provided by (Cy) and (Cz) and the
continuity of (Cg).

Lemma 6. Let (X;)>0 be almost surely continuous in a neighbourhood of zero, with

sup,< 1X;| =Z € L. Then the conditional expectation process ([ X;])i>0 is also almost surely
continuous in a neighbourhood of zero. In particular,

lim E;[X;] = E[Xp].
t}0

Remark 8. The process (X;);>0 is not necessarily adapted.

Proof. All the limits are taken in the almost sure sense. Let § > 0 be such that X is con-
tinuous on [0, §], and fix ¢t < §. We set a sequence {#,},en on [0, §] which converges to 7 as n
goes infinity. Assume first that {#,},cn is a monotone sequence. Since F;, tends monotonically
to F; and X is dominated, the classical martingale convergence theorem (MCT) asserts that
lim;4 00 By, [X/] = E,[X;]. For fixed n € N and any q > |t, — ¢,

X, —Xil = sup [Xp —Xi|. (29)
lp—tl<q

Let us fix ¢ > 0. By the MCT, there exists ng € N such that, if n > ng, then

IE,"|: sup |Xp_Xt|i|_Et|: sup |Xp—Xt|] <e
lp—tl<q lp—t1=q

and by dominated convergence there exists §’' > 0 with Et[ SUp|p_s<s 1 Xp — X,|] < &. There
exists n; € N such that |r, —¢| <& for all n>ny; thus if n>ngVn, then (29) yields

https://doi.org/10.1017/apr.2024.45 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2024.45

Rough multi-factor volatility for SPX and VIX options 551

E, [1X;, —X/|] <2¢ and

lim ]Etn [Xt,l] =E/J[X:]. (30)
ntoo

Now we consider the general case where {#,},en is not monotone. From every subsequence
of {t,}neN, One can extract a further subsequence which is monotone. Let us call this sub-
subsequence {1, }xen. Therefore, (30) holds with #,, instead of #,. Since every subsequence of
(E;, [X;, Dnen has a further subsequence that converges to the same limit, the original sequence
also converges to this limit. (|

For convenience, we use the following definition.

Definition 2. Let k, n € N with k < n. For a function f : R', — R, we define

lim fx1, -+, xp):= lim - -- lim lim f(xq, - - - , xp).
0<x;<xy<--<x; 0 Hd0  x2l0x10

Notice that the right-hand sides of (26), (27), and (28) correspond to

1

lim f(T,y), —  lim T,v,s), and
yf,”of( y) s:yswa( Y, )

> lim  f(T,y,s,t),

1
6 1<s<y<T|]0
respectively.

6.3.2. Proof of Proposition 1. Let us recall some important quantities:

1 T+A
My=E, [VIXr] =E, | |~ / Erv.dr | .
T

e D;,Erv,dri| B [ [ D;vrdr:|
'y T ooAaviv.. | ™% S aaaw. |

| =E,[DiM,]=E, | “Z
my =1y [DyM,] y[ 2AVIXy 2AVIXy

mi E, [( Tea D;v,dr) /(2AVIXT)]

i_ Y _
= M, E,[VIX7] ' Gb

We also recall that J; and Gy, i, j € [1, N], were defined in (9). In this proof we will define
f(0):= limy o f(x), forevery f : Ry — R, as soon as the limit exists and even if f is not actually
continuous around zero. In this way we make it continuous, which allows us to apply the
convergence lemmas.

Level. By (Cq) and the MCT, limy o E,[VIX7]=E[VIX7] and (M,)y>0 is continuous
around zero, almost surely. By (C4) and the dominated convergence theorem (DCT), we
have limy o fTT+A D;v,dr = TT+A Df)v,dr and ( TTJrA D;v,dr)yzo is continuous around zero,
almost surely. Let i € [1, N]; from (Cy) and (Cz) we also obtain that almost surely

1
VIX7

T+A
/T Div,dr 5x2{(r+ A =y (T—y)H+},

for some X € L2, Therefore it is dominated, and by Lemma 6, almost surely mg is continuous

at zero and T
. Div,dr
limm! =E [A} .

yio YT 2AVIXy
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Since My > O forally <7, ¢' is also continuous at zero and limy<7y0 ¢’ = J,/(ZAVIX ). By
virtue of Theorem 1 and Lemma 3, we obtain

. . : /1
limZr =lim Eluo] = lim [, 2AVIXZ
Skew. To obtain the skew limit we need to compute a few Malliavin derivatives. For all i, j €
[1, N1,
. i+ DiDiv,dr VX7 — f; +° Div,dr DVIX7
Dim}, =E, 2
2AVIXZ
fT+A D’D’ vrdr TT+A D;,vrdr fTT+A Dlv,dr
B T AR, 4A2VIX3. ’
which yields
Diqﬁl _ D]gm§ B mi,D(;M),
ST M, M2
fT+A D’D’ vrdr T+A D;, vdr fT+A D’vrdr my T+A D]vrdr
= 2AVIX7M, 4N2VIX3M 2AVIX7M?

—E, [ Uy, )+ BL(y, 5) + Cl(y, s)]

Based on (Cy), (C3), and (Cy), foreach T > 0, A?, B?, and C? are dominated and almost surely
continuous in both arguments. For each s > 0, Lemma 6 and the DCT yield, almost surely, that
(D), ¢> )y>0 and (D’ ¢0)s>0 are continuous around zero. In particular,

lim B, [A70, ) + B70, ) + €10, 9)] = E[A7(, 0) + BJ, 0) + G, 0)]
11?011Ey[ Yy, 0)+ BY(y, 0) + Cl(y, 0)] = E[A%(0, 0) + BY(0, 0) + CL(0, 0)].
y

By the DCT again this yields

JiJ;

~ 2AVIXZ

Therefore ¢§D§(¢;)2 satisfies the continuity requirements of f(7, y, s) in Lemma 4. We combine
this lemma with the limits above to see that, almost surely,

1
g%T— / ¢! / D/(¢})* dyds—hm— / / D/ (¢! )stdy—E 11m ¢§D§(¢)

__Ji JiGij i
C4AVIXZ | 2A2VIXE  2A3VIXS |
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We also recall that limr o up = 3 A”\ﬁ‘xz almost surely; hence, with (Cz) and (C3), the DCT
0

implies

lim Sy = 3 lim f o ¢4 Jy DG} s Z - i (32)

0" T £y 2 372 2||J||3 Gii = AVIX2 )

ij=1 ij=1

Curvature. We now turn our attention to the curvature. By the same arguments as above

we have
. o 2 2
N T T

_ (Zi,j:l Jo ¢ D§(¢;)2dyd5> 2AVIX3 [ & Jilj

limE . = A DG - >

T10 uh T 71 = AVIX;

For the last term of (8) we need to go one step further and compute more Malliavin derivatives,
since

N T ' T o T o
pie} =3 (vfo] [ Diteiar-+20] [ DieDigiay+20 [ eiDiDigfar)
i=1 N N N

N T
=: Z/ Yk, s, y, T)dy.
=179

Thus we zoom in on the last term of the display above:

D¥Dmi, My — Dimi DM, DimiDiMy +miDSDiM,  2m! DM, DiM,
W i W T

Py
D,D’qu;z

5
=:y 015y, 1),

We zoom in again on Q’{k(t, 5,9, T):

S A DiDivdr [ Divdr 1A D’v,drj|

KoV i — YT A7 K _
DfD]Smy_D’DQDyMy_D’E{ 2AVIXy AA2VIXS.

=Ky |« [ ik ﬂl]k]

Some additional computations lead to

VIX7 [, 7% D'DiDiyv,dr — D¥VIX7 [ DiDiv,dr
2AVIXZ
S 4 DiDiDiv,dr  f14 Divdr 72 DiDvdr
2AVIXy 4A2VIX; ’

ijk
oy =
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fTT+A DfD;v,dr fTT+A Dlv,dr + fT+A D ! vydr fT+A DfDﬂ.-vrdr
4A2VIXS.

ijk
,BT =

DIVIX] [ 74 Div,dr [ 2 Dlv,dr
+ 6
4A2VIX
fT+A DkD’ dr 7 T+A D’vrd —|—fT+A D \vrdr T+A DfD’S.vrdr
4A2VIXS.
3fT+A DKy, dr T+A ;vrdr fTT+A Dlv,dr
- :
8A3VIX5T

We notice, crucially, that we have already justified the continuity of ¢ and D¢ around zero
in the proofs of level and skew, respectively. Furthermore, by Lemma 6, the first two terms
in Y9 as well as Q», O3, O4, Qs all converge to some finite limit as t <s <y | 0 and are
continuous around zero, almost surely. Similarly, 87 and the second term in oy are almost
surely continuous around zero, and their conditional expectation converges almost surely to
some finite limit as t <s <y | 0 by the DCT and Lemma 6. Taking the limit as T goes to zero
afterwards, we see that all of the aforementioned terms tend to a finite limit. On the other hand,
by (Cy4), the DCT, and Lemma 6 we know that the conditional expectation of the first term in
a7 is almost surely continuous around zero, and its limit is

% DD|Diy,dr . T4 DED] Div,dr
2AVIX7 2AVIX7 '

lim
t<s<yl0

Since y < 0, only this term contributes in the limit:

Y sy, T) , o [ DIDiDy,dr
lim 2= lim 2fplplE,
1<s<y<T|0 T 1<s<y<T}0 b 2TY AVIX7M,,
T+A Nk TN
g B[S DipiDyiar]
 8AYVIXS 710 7 ’

where we applied the DCT at the end. Moreover, we know by (C3) that this limit is finite for

y =3H — %; hence the conditions of Lemma 5 are satisfied. We also recall that limg o up =
I/l

2AVIX2

almost surely; hence Lemma 5 yields the almost sure limit

1 T N ok T
lim ——— D Q;|d dr
710 u(5)T3+y/0 kg{% ) (/t 1©s] s)}

N
Kxik, s, y, T
Z LS UL IRV
oy T3 T3H—f
28X & E | f " D{DyDvidr |
JiJiJk 11m .
I 2 T3H-3

i,j,k=1
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The first two terms in (8) tend to zero since y < 0; hence Theorem 3 and the DCT yield the
final result:

T+A N ]
o 2avixe T E DD Dy, | ar
lim - = 5 Z J,'Jj]k lim . .
TL0 73H—5 3] eyt T10 T3H-1

6.4. Proofs in the two-factor rough Bergomi model

6.4.1. Proof of Proposition 2. We start with a useful lemma for Gaussian processes.
Lemma 7. If B is a Gaussian process with ||B||r := sup |B;|, then E[erIBlT] is finite for all
1<T

peR.
Proof. The Borell-TIS inequality asserts that E[||B||7] < oo and

2
X
P(IBlly — ElIB|l7 > x) < exp {——2} ,

207
where a% = sup,.r E[Btz]; see [1, Theorem 2.1.1]. We then follow the proof of [1, Theorem
2.1.2]:

00 o0 1
E [epHBHr] zf P (e””B”T > x) dr < e + E[|1Bl1] +f P <||B||T > ﬂ) dr.
0 e’ VE[|Bl 1] p
The Borell-TIS inequality in particular reads as follows:
log (x'/P) — E[||B :
P(||B||T>log (x‘/l’)) <exp {—( gl )2 . LIBIr]) } . forallu> E[||Bl].
ot

After a change of variable this yields

h ! > — E[|1B7])?
[ e (s> )acs op | CTEUIBID]
e’ VE[|Bllr] 14 Ww 20T

which is finite as desired. O

By the above lemma, ||v||7 € L?, so that we can compute its Malliavin derivatives
Dy, = vo(r — )"~ (x vE} + 777,053) and  Djv,=voxnp(r—y"E. (33

Without explicitly computing further derivatives, one notices that (C4) holds and that there
exist C >0 and a random variable X = C||<5'r1 + &2 ||T €L? for all p>1 such that Djv, <

X(r —y/*=, DDiv, < X(r — )~ (r —y)-, and DID\Diy, < X(r — 0= (r — )= (r — -,
implying (Cz). The following lemma yields (Cy).

Lemma 8. In the two-factor rough Bergomi model (10) with 0 < T < T»,

1 T> —-P
E|sup (E v,dr
ysg( y[Tz—Tl /'n ' D

is finite for all p > 1. In particular, 1/M is dominated in LP.
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Proof. We first apply an exp-log identity, then Jensen’s inequality (using the concavity of
the logarithm function), to obtain

1 T —P 1 T
E / vdr] =ex {— lo ( / vdr)}
y|:T2_T1 " r p p 10g T2—T1 - r
b
/ log (Ey[vr])dr}.
T

We further bound log E,[v,] as follows, using the concavity of the logarithm and (10):

— log Ey[v,] < —%{ log <2xv0Ey[€rl]> +log (27v0Ey[53]> } (34)

which we now compute as

v2r2H y r
Ey[é’rl]zexp — +v/ (r—s)HdWSI}Ey |:exp {v/ (r—s)HdWsl”
4H 0 y

2 y
=exp 1H [(r — ) — r2H] +v /0 (r— s)H‘dWSI} ,
y
E,[€7] =exp | 2 [ (= = 2| 41 fo (r— s/ d(oW! + ﬁwf)} . (35)

Let us deal with the first term of (34), as the second one is analogous. We have

2H 2H.
/Tz [(r ) _ rZH] dr — (T2 — wy+ —(Ty — )2+ — 157 + 17
T

2H,

)

1
which is clearly bounded below for all 0 < u < T|. Moreover, by Fubini’s theorem,

T, pry y 2 Y (T> — pH+ — (Ty — pH+ _
f / (r— HP-dw!ldr = / / (r — HP-drdW! = / =07 = =07y _
T Jo 0 JT 0 Hy

is a Gaussian process. Since exp{-} is increasing, sup,¢o 7} exp(B;} = exp{sup;e(o, 7] B.}; thus

E supexp(— P /Tz/y(r—s)H‘dW]dr> <E|:exp( P ||1§|| >j|<oo
y<T\ =T Jr, Jo s - T,—1 " T ’

by Lemma 7, which concludes the proof. (|

Combining (33) and (35), we obtain E),[D;vr], i=1, 2. The following lemma proves that
(C3) is satisfied.

Lemma 9. For any p > 1, E[u; "] is uniformly bounded in s and T, with s <T.

Proof. Since v, n, p+p >0, we have D)l,v, + ng, > (0 almost surely for all y<r.
Moreover, VIX and 1/VIX are dominated by some X € [ for all p > 1, so, almost surely
and independently of the sign of the numerator, we obtain

i TT+A D;v,dr - TT+A D;',vrdr
=Ly = Ly .
Y 2AVIXy 2AX
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Therefore, using that 1/M is dominated by X and Jensen’s inequality, we get

2
1 T—s XXT —s) X2N(T — 5) ) T
;ZTN:'ZSTN!.2§T N SXNW
s ./:v Zi:l (¢)) dy ./:v Zi:l (M)) dy j; (Zivzl mi) dy fs Zi:l mydy
T T+A .
fs fT+ Zii] Ey I:D;Vr/X] drdy

<4X°N AT—3)
— S

(36)

Hence we turn our attention to

|:< 1 T rT+A Dyl,vr + D%‘/r P
El(—t [ / E, | 22 gy
AT—-9)Js Jr X
1 T T+A D}v, + D}v,
=K €EXpy—p 10g m /; /T Ey T drdy
T pT+A
<E [exp {—ﬁ / [T E, [log <D;v, + Dﬁv,) —log (X)] drdy}i|

2p T T+A %
5<E[exp{_m / /T E, [1og(D;vr+D§w)]drdy”) JED]. @37)

using Jensen’s inequality, the Cauchy—Schwarz inequality, and the fact that ePEr[1og(X)]l <
E,[X?]. Convexity and (33) imply

1 _ _
— log (D;vr + ng,) <- 5{ log (2v0X v(r— y)H‘ 5}) + log (2v0)( n(p +p)r — y)H‘€r2> }
We focus on the first term; the other can be treated identically. From (35) we have
2,2H

4H

y
E, [log (2voxv(r —y)H—é'rl)] =log (2voxv(r—y)H‘) — + U/o (r— t)H‘thl.

(38)

Let us start with

T pT+A
/ / log (2vox v(r — y)H*) drdy
K T

T pT+A
=2(T —s)Avoxv + H_ / / log (r — y)drdy
K T

=2(T —s)Avoxv+H_

T
[ o+ s-yoesa-y-a+a-n-a-yioed-y+a-y

T+A—s T—s
=2(T —s)Avoxv+H_ {—A(T—s)—/ xlog (x)dx—i—/ xlog (x)dx}
A 0
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(T —s)?log (T —s5) (T —s)?
2 4 )

:2(T—s)Avoxv+H_{ —A(T—s)+<

(TH+A—=95)2log(T+A—s5) (T+A—5)?Alog(A) N A?
_( 2 - 4 2 T)

(T — s)log (T — ) B (T—s)>+2A+(T—s)

:2(T—s)Avoxv+(T—s)H_{—A—i—( 2 1 1

—Alog(T+ A —5)—

(T—s)log(T—{—A—s)}
2

Az
— 5 (log (T + A —5) ~log (4).

By Taylor’s theorem, log (T + A — s) — log (A) = % + &(T — s), where ¢: R — R is such
that e(x)/x tends to zero at the origin. We conclude that

p T pT+A "
- log (2 —y)y'—)drd
o [ [ e @ronvir =y gy

is uniformly bounded. Now we study the second term of (38):

T pT+A T2H+ —(T+ A 2H
— / / rZHdrdy =(T—y5%) (I'+4) .
s T 2H+

Therefore the following is uniformly bounded:

T pT+A |2.2H
L/ / v drdy.
2A(T —5s) Js Jr 4H

For the last term, by the stochastic Fubini theorem [48, Theorem 65], we get

T pT+A py T py pT+A
/ / (r—nf"-dw/drdy = / / / (r— n=drdw}dy
s T 0 K 0 JT

T (T + A= —(T—pff+
:// (T + )= (T -1 dydw!.
0 Jsvi Hy

Standard Gaussian computations then yield

p T pT+A y " |
E[eXp{_—4A(T—s)/S /T U/O (r—1p thdrdy”

g o N T T @A (@
_exp{5<4A(T—s>> /o (/v H, dy) R

The incremental function x — (x + A)#+ — xf+ is decreasing by concavity; hence (T + A —
O+ — (T — 1)+ < Af+ | and we obtain

(T —s)
3 9

T K T
/ (T—s\/t)zdtzf (T—s)zdt+/ (T — )*dt = (T — 5)*> +
0 0 K
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which implies that (39) is uniformly bounded. We have thus shown that (37) is uniformly
bounded in s, 7. O

Coming back to (36), by the Cauchy—Schwarz inequality we have

T »
Elu;7]* < 2’E[X"] E T;s
fs (m; + m}z,)dy

which is uniformly bounded for all s < T, and this concludes the proof.

6.4.2. Proof of Proposition 3. Level. We start with the derivatives
D_i Vi =V [X v(t — )M~ 5} + xnp(t — s)H- 5,2] and D%vt =voxnp(t — s)f- é'tz,

and recall, from the definitions in (9),

A Hy AH+
Ji= / voE [X er*Srl +7ner*5r2] dr=vo(xv + xnp) and Jy=voxnp .
0 Hy Hy
We also note that E[£/] = 1. This yields the norm
| H H
5 VAT — o VoAt
I = (Jf+J§>2 = \/(XV+xnp)2+x2n202= Yo, v, 1, x),
H, H,

with the function v defined in the proposition, which grants us the first limit by Proposition 1.
To simplify the notation below, we introduce tv := yv + xnp.
Skew. We compute the further derivatives

DéD(l)v, =1y (sztzH_lc‘fll +7772,02t2H_15}2) ,
DoDgv, =voxn’ppr €7,

D(Z)D(z)vt = vofnzﬁthH_lé',z.

Similarly to J, we recall that G;; = fOA ]E[D{)Df)vr]dr, so that
AZH ) - AZH ) AZH i
G =—— X , Gio=——voxn-pp, Gy =——voxn-p-.
= vo(xv™+Xn°p°) 12= S VOX PP 2= S VoX1IP

Notice that VIX% = vp; thus we have

e V3 AAH T V3 AAH T
J} (Gu - ) =2 w?(xv? +xn?p?) — 2——n?
2 2 7
AVIX2 | T 2HH? H
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J1)2 AW, At
2 | Gio — = o -1
( AVIX? 2HH? xmee HY xme

3A4H+1 s | WP 1o
:VO ) wx n o - ) )
H2 2H  H?

—vx ——n'p*

2 4H+1 4H+1
J%( 2 — 72 )—VSAH+ xn'pt s A7
2 = 2
AVIX2 2HH? H:
4H+1 -
=V(3)A . xn'pt (—1 ——X>
2 2 |-
H2 2H  H2

Finally, by Proposition 1 we obtain

s = oo [0t mist (o
710 29(p, v, 1, x)3 2H Hy
2 22| NP v+np 3 4-4 1 1
rrov2nls? | 1P _ v e L N
+ 20X n"p 2H Hi +Xnp 2H H%r

Curvature. For the last step we go one step further:

D(I)D(I)D(l)v, = (X v35,1 + 7773,035,2) H- D(2)D(1)D(l)vt =voxn’p*prt- Etz,

D%D%D(l)vt = v07n3 pp - 5,2, D(Z)DSD%V[ = v0717353 - 8,2.
We notice that

f]?-i—A P-4y i (T + A)3H—% _ T3H—% 2

lrif% 3H—1 -1 1 1= ’
772 TV0  3H 23H -1 1—-6H

By the curvature limit in Proposition 1, we have

Cr 2Avg { 5 A3 03 x4+ 303

lim = % Vo
T10 73H—1} Hy\S 0 g3 L 3y
T3 () e n U 2

A xXro’p 3 A xn’ep® A X’
+3v3 2 xXnpvo +3v3 X0 0o +v0 vy
3 1 0" 3 1 3 1
H, 5 —3H HY 3—3H  H 3 —3H
—2H 152
128A—2H {3

" 39(p, v, n, x) (1 — 6H)
{m3(x V4512 0%) + 300224 5202 + 3005030 5 0 +74n656}7

which yields the claim.
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6.5. Proofs for the stock price

6.5.1. Proof of Proposition 4. Since ¢ and u™” are dominated by the conditions (i) and (iii)
respectively, with the same notation as in the proof of Proposition 7, we obtain by (ii), as T
goes to zero,

D, ST,  ©,S(T—s,  DOST-9,  DDO,ST—5"2

Under our three assumptions it is straightforward to see that (Hy234s) are satisfied. Moreover,
the terms in (H ) behave as T27—* and the one in (H’\) as TH-—*, which means that if we set
A = H_ the former vanishes and the second yields a non-trivial behav10ur

Let us have a look at the short-time implied volatility. By Lemma 3 and the continuity of v

we have limr o up = vazl Vo ,oi2 = /vo almost surely; hence by Theorem 1 and the DCT,

%‘l?(% Tr= hm Eluo] = \/vo.

We then turn our attention to the short-time skew. With A = H_, Theorem 2 and the DCT imply

S N [fo ¢ J, Di(g} >2dyds] ZN: o E[M Jryr fD’vydyds:|

Jim TH- — 2 I H o V32 H
T10 = T10 T2+ = T3+

where we used Zf\’: 1 pi2 = 1. Foranyje[1, N]c, the Cauchy—Schwarz inequality yields

o (Vi) = [(F - I)T E[l?]".

: 1
where E[(Djvy)*]? < C(y — 5)/- for some finite constant C by (ii). Therefore,

Jo J{ BLyv; Dividyds i [ E[Dlv, Idyds
T¢0< fT2+H T%"'H )

1
277 T (T "
— dyd
SCIT% supE|:< 2_1)] Jo Jo —9)"dyds

3
1<T ) T2+H

Since the fraction is equal to ((H + %)HJF)_1 and lim supr E[(v/vi/vo — 1)*] is null by (iv),

we obtain
N
S ; Djvydyd
lim =3 2 g |lim —f()f e
= 2vg | Tl0 T3+H

6.5.2. Proof of Corollary 1. Since

1 T _%
- (s ) ]
T—sJ
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Lemmas 7 and 8 show that the assumptions (i)—(iii) of Proposition 4 hold. Moreover, v has
almost-sure continuous paths; hence :—(’) tends to one almost surely and (iv) holds by reverse

Fatou’s lemma. For 0 < s <y, (33) implies
EDywl=voy— )" (xv+xnp)  and  EID{w]=voy— )" x1p,
and clearly E[D?vy] = 0. Therefore, Proposition 4 implies

1im§_ﬂw P2 voxnp _ pixv+nx(pip + p2p)
1O 2v Hy(H+3) 20 Hi(H+3) QH)(H +3)

6.6. Partial derivatives of the Black—Scholes function
Recall the Black—Scholes formula (6) and assume ¢ := o+/T — t > 0 fixed. Then

0:BS(t, x, k, 0) =" N(d+(x, k, 7)),
'(d k
92BS(1, x, k, o) =" {N(d+(x, ko)) + M} ,
S
so that (we drop the dependence on ¢ and o in the G(-) notation)

o 2d+(x ko) Gk—3d_(xko0)
G(x, k) := (82 — 8,)BS(t, x, k, o) = =

¢/ 21 ¢/ 21
Now define
F k)= x dy(x, k, 0)? e d_(x, k, 0)? _xtk (x — k)? s
2 2 2 2¢2 8
We then have

1 x—k
8xf(X,k)=§—?, 3kf(ka)=§+?,
O2f(x, k) = 2f (x, k) = =02 (x, k) = ——

For the partial derivatives, noting that 8,G = #ﬂ d,fe/ implies the ATM formula

3,G(x, x) ! { 52}
X, X)= ———exp{x— =1},
) 2¢/2m P 8

and furthermore,

9 1]
oG xkf+3xf8kf) and 4G =—— (= +1).

_5~/_< cv2m \¢? 4

We further define the partial derivatives appearing in the proof of Theorem 2, after (24):

1 1
L(x, k) :== ( 1 O+ 28xk>G(x k)=

JE0 11
b= S (1LY,
c2r \4 252

gJ_ef(x k)<4+ af (x, k)——(akf(x k))* ——8k/<f(x k))
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Using dxf = 1 — 0yf and dyxf = —0yf = — kS, we compute

3 5 1 5 3
L= —— | 20 — =0 + =(0)° — = 20 0uf |,
k g«/ﬂ[“ﬂc 70" + 2 @0f) 4xxf+2xfxxf]
S0 1
hLx, x)=——==|-+-—).
9 sv2m (8 2§2>
Finally, we need the derivatives featuring in the proof of Theorem 3. We start with
H=0duL ’
= k =
! S 2m

3 0=+ L0 + a2 25 > (B
[ 7O’ =50+ O + L b =0 el +3(0uf) amf+2<axm]

/0 /] 3 3
O L(x, x) = <—+—+ )

cv2r \16 ' 8¢ ' 254

The next partial derivative yields
tsl= — o [2® = 20 + Lo® + 2arod — Sousogy
T o L4 4 2 4 2™

—%axmz S0/ (0 + %axxf)%ﬂ ,

SED 1
Lt )= —— (= + — ) ,
xxk (x x) c o (32+ 8§2)

and differentiating one last time we reach

3

Dkl = 8458518698822583
ook L = [4(xf) _Z(xf) +§(xf) +§ hoof (Oxf) _?xxf(xf)

sN2m
75 15 45 9 15
- Z(M)zaﬂ‘ + gaw‘(axf)“ + 7(axxf)2(am2 + Z(amff + j(axﬁ],

B 0 o0 /] 1 3 15

N)=——|——"—————— .
ek Var \64 3252 2cF T 266
We conclude that

of () 1 5 3 15
H(x, %) = Ok — Qo) L, ) = ——= [—— — — —— — — ).
(x, x) = (Fuxxk ©L(x, x) g@( >
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