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Varieties of topological groups III

Sidney A. Morris

This paper continues the investigation of varieties of

topological groups. It is shown that the family of all varieties

of topological groups with any given underlying algebraic variety

is a class and not a set. In fact the family of all B-varieties

with any given underlying algebraic variety is a class and not a

set. A variety generated by a family of topological groups of

bounded cardinal is not a full variety.

The varieties V(i?) and V(7) generated by the additive group

of reals and the circle group respectively each with its usual

topology are examined. In particular it is shown that a locally

compact Hausdorff abelian group is in VJ.T) if and only if it is

compact. Thus VJ.R) properly contains V(y) .

It is proved that any free topological group of a non-indiscrete

variety is disconnected. Finally, some comments are made on

topologies on free groups.

1. Subgroup topologies

We will use the notation and terminology developed in [6] and [7].

DEFINITION. Let G be a group and M a family of subgroups of G .

If M is an open basis at the identity for the topology T of G , then

T is 6aid to be a subgroup topology and G an 5-group. If all the

subgroups in M have index in G strictly less than an infinite cardinal

m , then T is said to be an 5(m)-topology and G an 5(m)-group.

The proof of the following lemma is elementary and therefore omitted.
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LEMMA 1.1. If A and B are subgroups of G of index strictly

less than an infinite cardinal m , then the subgroup A n B has index

in G strictly less than m .

THEOREM 1.2. Let G be any group and M the family of all normal

subgroups of G of index strictly less than some infinite cardinal m .

Then M is an open basis at the identity for a group topology x on G .

Further, T is discrete if and only if G has cardinal strictly less

than m .

Proof. We check 4.5 (i) - (v) of [3]. Clearly (i) - (iv) are

satisfied and (v) follows from Lemma 1.1. The last statement in the

theorem is obvious.

COROLLARY 1.3. Let G be any residually finite abstract group [9].

Then G admits a Hausdorff S{#)-topology.

THEOREM 1.4. Let £ be an algebraic variety which is generated

by its finite abstract groups. Then all free abstract groups of V.

admit Hausdorff 5(K )-topologies. In particular this is the case when £

is the algebraic variety of all groups or of all abelian groups, or any

locally finite algebraic variety.

Proof. This is an immediate consequence of Theorem 17-81 of [9] and

Corollary 1.3.

THEOREM 1.5. Let F be any algebraically relatively free abstract

•group. Then for any cardinal m > N . F admits a Hausdorff

S(m)-topology.

Proof. This result follows from Theorem 1.2 and the fact, implied by

Theorem 17.81 of [9], that F is residually countable.

THEOREM 1.6. If G is a Hausdorff S-group, then it is totally

disconnected.

Proof. Let C be the component of the identity e . If C =f {e}

then it has a proper subset A containing e which is open in the

induced topology T on C . Clearly A contains a subgroup B of C

which is open (and therefore closed) in T . This implies C is not

connected, which is a contradiction. Thus C = {e} , and the proof is
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complete.

2. S(m)-varieties

THEOREM 2.1. Let m be any infinite cardinal and {G : a € 1} be

a family of S{.m)-groups. Then the variety generated by this family

contains only S(m)-groups.

Proof. Clearly it is sufficient to show that subgroups, quotient

groups and cartesian products of 5(m)-groups are 5(m)-groups.

Let G toe a group with an open basis at the identity e consisting'

of a family M of subgroups of index in G strictly less than m . For

any subgroup H of G , the family N = {N. : N'. = M. n B , M. ( M) is

an open basis at e for the induced topology on H . Since the index of

each N. in H is strictly less than m , the indeced topology on H is

an 5(m)-topology. Thus subgroups of S(m)-groups are S(m)-groups.

Now consider the quotient group G/K for K any normal subgroup of

G . Let $ be the natural homomorphism of G onto G/K . Then

{$(A?.} : M. £ M] is an open basis at the identity of G/K for the

quotient topology. Furthermore, the index of each $(M.) in G/K is

strictly less than m . Thus G/K has an S(m)-topology. Hence quotient

groups of 5(m)-groups are 5(m)-groups.

Let G be the cartesian product of a set {G. : j £ J} of

5(m)-groups. Let the family {N., : k £ K.} of subgroups of index

strictly less than m in G- be an open basis at the identity of G.

3 0
for its topology. The family T of all subgroups of G of the form

1 f H • , where H. = G. for all but a finite number of j in J and3 3 °
H. 4 G. implies H. = N., for some k i K. , is an open basis at the
0 3 3 3 *• 3

identity for the product topology on G . Since each group in T is of

index in G strictly less than m , G has an S(m)-topology. Thus

cartesian products of 5(m)-groups are S(m)-groups. The proof of the

theorem is complete.
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COROLLARY 2.2. Let {G : a € 1} be a family of S-groups. Then

the variety generated by this family contains only S-groups.

Proof. This result is a consequence of the proof of the above

theorem.

DEFINITION. A variety which contains only 5-groups (s(m)-groups)

is said to be an S-variety (s{m)-variety) .

It is obvious that every 5(m)-variety is an S-variety whilst there

exist S-varieties which are not S(m)-varieties for any m .

THEOREM 2.3. Let £ be any algebraic variety. For each infinite

cardinal m let V be the class of all S(m)-groups G such that

G € £ . Then V is a variety such that V = £ and for any infinite

cardinal n k m , V 4 V .

Proof. By Theorems 1.2 and 2.1, V is a variety and V = £ •

Without loss of generality, assume n > m . Let G be any abstract group

in £ of order m . Then by Theorem 1.2, G with the discrete topology

is in V but not V^ . Thus V^ =f V^ .

REMARK 2.4. One outstanding unsolved problem in the theory of

algebraic varieties of abstract groups is:- How many algebraic varieties

are there? (See [9])1. Theorem 2.3 provides the answer to the

corresponding question for varieties of (topological) groups. The family

of all varieties of groups is a class and not a set. In fact for each

algebraic variety £ , the family of all varieties with underlying

algebraic variety £ is a class and not a set.

THEOREM 2.5. If V is an S-variety then it is not a ^-variety

and therefore not a full variety.

Proof. This follows immediately from Theorem 1.6, and Theorems 2.3

and 2.1 of [7].

THEOREM 2.6. Let F be algebraically relatively free and the

1 This problem has very recently been solved by A.Ju. Ol'sanskii

(unpublished), who has shown that there are 2 such varieties. - Editor
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family of all normal subgroups of index in F strictly lees than some

infinite cardinal m be an open basis at the identity for the topology

of F . Further, let X be any subspaae of F which is a free algebraic

basis of F . Then F is F[x, V(F)) (cf. Theorem 3.2 of [6];. If m

is strictly greater than N > then X has the discrete topology.

Proof. The fact that F is F(X, ^(.F)) follows from the proof of

Theorem 2.1. To show that X is discrete if m > N , let x be any

element of X and 1 be X - x . Let G be the smallest normal

subgroup of F containing 7 . Clearly G is of countable index and is

therefore open. Thus xG n X is an open subset of X . Since

xG n X = {x} , X has the discrete topology.

3. Some basic questions answered

In the theory of varieties of groups the following questions

naturally arise: Let A be any group in a (non-indiscrete) variety V. .

If B is a group algebraically isomorphic to A which has

(i) a strictly finer topology than A or

(ii) a strictly coarser topology than A ,

is B necessarily in V. ?

In the light of the results of §1 and §2 these questions can now be

answered.

EXAMPLE 3.1. Let V_ be any algebraic variety and m any cardinal

> c . Let X be the V of Theorem 2.3. Then by Theorem 1.2, if F

is any free abstract group of £ of cardinal a , F with the discrete

topology T is in V . Let W be the full variety with the property

that W = £ , and Fx = F(X, W) , where X is the closed interval [0, l]

of reals. By Theorems 1.1 and 1.2 of [7], Fj is Hausdorff. Clearly

then by Theorem 1.6, Fj f X whilst Fy is algebraically isomorphic to

F and has a strictly coarser topology than T . Thus question (i) above

is answered in the negative.

Let Y be a set of cardinal m and F^ be the free abstract group

of V on ? . By Theorem 1.5, F2 appears in V with a Hausdorff

topology. However, Theorem 1.2 shows that F2 with the discrete topology
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does not appear in .V . Thus question (ii) above is answered in the

negative.

In [5] it was shown that if V_ is the variety of all groups or all

abelian groups and X is any Tychonoff space, then F(X, V) is

Hausdorff. This prompted the author to ask the question: If V_ is any

variety and X is any Hausdorff space such that F(X, V) exists, is

F(X, _V) necessarily Hausdorff? The example below provided by John Looker

shows that the answer is in the negative.

EXAMPLE 3.2. Let V be the class of all groups G having the

property that the intersection of all neighbourhoods of the identity in G

contains the commutator subgroup of G . It can be readily verified that

V is a variety such that £ is the algebraic variety of all abstract

groups. Clearly the additive group of reals with the usual topology is in

V̂  . Thus, by Corollary 2.:.0 of [6], F(X, V) exists for any Tychonoff

space X . However, it is not Hausdorff.

It was shown in [7] that moderately free groups on Hausdorff spaces

are Hausdorff. This, together with the above example, led I.D. Macdonald

to ask the question:- If the Hausdorff group F is a free group of the

variety it generates is it necessarily moderately free? Example 3-3 shows

that this is not so.

EXAMPLE 3.3. Let Z be the additive group of integers with the

finest 5(N )-topology. By Theorem l.k, Z is Hausdorff. Further, by

Theorem 1.2, Z is not discrete whilst by Theorem 2.6 Z is free in the

variety it generates.

4. T(m)-topologies

DEFINITION. The group G is said to be a T(m)-group if there

exists an S(m)-group which is algebraically isomorphic to G and has a

finer topology than G .

Clearly if G is any group of cardinal n , then for any infinite

cardinal m > n , G is a T(m)-group. (Simply compare G and G with

the discrete topology.)

LEMMA 4.1. Let {G : a d 1} and {H : a € 1} be families of
a a
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groups such that for each a £ I , H is algebraioally isomorphio to G

and has a finer topology than G^ . Then for any group G in the variety

X generated by the family {G : a € J> there is a group H in the

variety W generated by {H : a £ 1} which is algebraioally isomorphio

to G and has a finer topology than G .

Proof. Clearly G is in V̂  if and only if it can be obtained from

{G : a £ 1} by a finite number of applications of the operations of

taking cartesian products, subgroups and quotient groups. If we apply the

same operations (as those used to obtain G) to the family {H : a £ 1}

we obtain a group H which is algebraically isomorphic to G and has a

finer topology than G . Further H is in W .

THEOREM 4.2. A variety generated by a family of T(m)-groups

contains only T(m)-groups.

Proof. This result is an immediate consequence of Theorem 2.1 and

Lemma U.I.

DEFINITION. A variety which contains only T(m)-groups is said to be

a T(m)-variety.

COROLLARY 4.3. A T(m)-variety is not a full variety.

Proof. This follows from Theorem 1.2.

THEOREM 4.4. Let {G : a £ 1} be a family of groups each of

cardinal strictly leas than some infinite cardinal m . Then the variety

generated by {G : a € J} is a T{m)-variety and consequently not a full

variety.

Proof. This is immediate from Theorem U.2 and Corollary U.3-

REMARK 4.5. The above result contrasts with the algebraic result

that every abstract variety is generated by its finitely generated

abstract groups.

Theorem U.U can be strengthened in the case that m = K .

THEOREM 4.6. A variety generated by finite groups is an

s(tt )-variety and consequently not a ^-variety.
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Proof. It is easily proved [S] that finite groups are S(N )-groups.

The result then follows from Theorems 2.1 and 2.5.

THEOREM 4.7. Let R be the additive group of reals and T the

circle group each having its usual topology. Then V[H) and VJ.T) are

^-varieties but not full varieties.

Proof. The fact that j{R) and j{T) are not full varieties

follows from Theorem 4.4. That VJ.R) and VJ.T) are 0-varieties can be

deduced from the proof of Theorem 4.5 of [6].

The next lemma is obvious.

LEMMA 4.8. If V̂  is a ^-variety and W is a variety such that

W = £ and | D I J then W is a ^-variety.

LEMMA 4.9. If W is any full variety, X = [0, l] and

F = F{X, W) ,, then i(F) is a ^-variety.

Proof. This result follows from Theorems 1.1, 1.2 and 2.3 of [7] and

Theorem 3.3 of [6].

THEOREM 4.10. Let V be any algebraic variety. Then the family

of all Q-varieties W such that £ = £ is a class and not a set.

Proof. For each cardinal m strictly greater than c , let W be

the family of all T(m)-groups <?• such that G ( £ . By Theorem h.2 this

is a variety and clearly W 2. YJ.F) (in the notation of Lemma 4.9). Thus

by Lemmas 4.8 and 4.9. W is a 3-variety. Further for n any cardinal

strictly greater than m , it is clear that W ^ W . The proof is

complete.

5. _V(R) and V(T)

In this section R and T will denote the additive group of reals

and the circle group respectively each with its usual topology.

THEOREM 5.1. Let M be a family of groups each having the

property that it can be imbedded in a compact abelian group. Then every

group in the variety generated by this family also has this property.

Proof. It is obvious that this property is preserved by the
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operations of taking subgroups, quotient groups and cartesian products.

From this the result immediately follows.

LEMMA 5.2. If G is a locally compact Hausdorff subgroup of a

compact group H , then G is compact.

Proof. Let N .be the closure of the identity in H . Then H/N is

a compact Hausdorff group. If p is the natural homomorphism of H onto

H/N , then p(G) is topologically isomorphic with G . Therefore by

Theorem 5.11 of [3], p(G) (and therefore G) is compact.

LEMMA 5.3. If G is a compact Hausdorff abelian group then it can

be imbedded in a suitable cartesian product of copies of T .

Proof. Just as Theorem 2.2.6 of [70] follows from Theorem 2.1.2 so

too does this result.

THEOREM 5.4. Let G be a locally compact Hausdorff abelian group.

Then G is in the variety VJ.T) generated by T if and only if G is

compact.

Proof. If G is in V^T) , then by Theorem 5.1 and Lemma 5.2, G

is compact. Conversely if G is compact then by Lemma 5-3 G is in

COROLLARY 5.5. The variety ^(R) properly contains V{T) .

THEOREM 5.6. If G is a locally compact Hausdorff compactly

generated abelian group, then G is in VJ.R) .

Proof. This result follows from Theorem 9.8 of [3] and Theorem 5-1*-

COROLLARY 5.7. A locally compact Hausdorff compactly generated

abelian group is a T{m)-group, for any m > c .

Proof. This is an immediate consequence of Theorems k.2 and 5-6.

THEOREM 5.8. Let G be a connected Hausdorff locally compact

non-compact abelian group. Then VJ.G) = V{R) .

Proof. This follows from Theorem 9.lit of [3] and Theorem 5.It.

COROLLARY 5.9. A connected Hausdorff locally compact abelian group

is a T(m)-group for any m > c .

Proof. This follows from Theorems 5-8, 5-*t and It.2.
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LEMMA 5.10. The abelian group G is a T{m)-group if and only if

every open neighbourhood of the identity contains a subgroup of index

strictly less than m .

LEMMA 5.11. The group T is not a T(c)-group.

Proof. This i s obvious from Lemma 5-10 and the fact that subgroups

of T are f i n i t e or dense.

THEOREM 5.12. The varieties v(T) and V(f?) are T(m)-varieties

if and only if m > a .

6. Miscellaneous results

Theorem 6.1 generalizes Theorem 1.13 of [7].

THEOREM 6.1. If V. is any non-indiscrete variety and F(X, V.) is

the free group of £ on any space X , then F(X, V_) is disconnected.

Proof. Let G be any non-indiscrete group in V, . Then G has a

proper open subset 0 . Let g be any element of G not in 0 . Then

the subgroup H of G generated by g is a non-indiscrete countable

group. Thus, by p. 32 of [I], H is a non-indiscrete countable

completely regular space. Therefore H is disconnected.

Define the continuous mapping <f> of X into H by <$>{X) = g .

Then there exists a continuous homomorphism $ of F(X, V.) onto H such

that $\X = <t> . Consequently F{X, V) is disconnected.

COROLLARY 6.2. Any non-indiscrete relatively free group is

disconnected.

Proof. This is a corollary of the proof of Theorem 6.1.

The author is indebted to Professor John L. Kelley for Theorem 6.3

and Corollary '6.U.

THEOREM 6.3. Let X be any completely regular space and Y be

the quotient space of X obtained by identifying any pair of points of X

which are limit points of each other and giving 1 the quotient topology.

If Y can be imbedded in a Bausdorff group G } then X can be imbedded

in the product group G * K , for K any sufficiently large indiscrete

group.
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Proof. Let / be the natural mapping of X into Y , p the

projection of G * K onto K and <j> the imbedding of Y into G .

Consider the diagram:

Clearly any 1 - 1 map 8 which makes the above diagram commute is

an imbedding. Further it is obvious that if the cardinal of K is

greater than the cardinal of G then such maps do exist and the result is

proved.

COROLLARY 6.4. Any completely regular space can be imbedded in a

topological group.

Proof. This is an immediate consequence of Theorem 7 Chapter IV of

[4] and Theorem 6.3.

THEOREM 6.5. Let V be any variety for which F(X, i) exists for

all Tychonoff spaces X . Then for any completely regular space Y 3

F(Y, V) exists. In particular this is the case when ^ is a ^-variety

or more particularly a full variety.

Proof. The existence of F(Y, Vj can be deduced from Theorem 6.3

above and Lemma 2.7 and Theorem 2.6 of [6]. The last statement of the

theorem is obvious.

REMARK 6.6. We point out that Theorem 6.5 is applicable to

varieties other than ^-varieties. (See Example 3-2.)

Notation. If G is a group and N the closure of the identity,

then the quotient group G/N will be denoted by G* .

THEOREM 6.7. Let ^ be a variety and G a group such that

G d % . If G* i £ then G 6 V .

Proof. Let H be the indiscrete group algebraically isomorphic to

G . Since G f 1 , by Lemma 2.7 of [6], H € V . Let i be the natural

homomorphism of G onto H and p be the natural projection of G onto
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G* . Define the homomorphism <J> of G into G* * H by

^(S') = (p(<?)> £(<?)) for all <j in G . Then (f> is an imbedding. Since

G* x H is in V , C is in V .

THEOREM 6.8. Let M be a family of groups and N = {MS : Mi t M).

Then any Hausdorff group in the variety generated by the family M is in

the variety generated by the family N .

Proof. It is sufficient to show that for each positive integer n

and any group H obtainable from M by n operations (of taking

cartesian products, subgroups or quotient groups) the group H* is'

obtainable from N by n operations.

This proposition is proved by induction. Firstly consider n = 1 .

If H is a subgroup of M. € M then clearly H* is a subgroup of MS .

If H = M./k , M. f M then, by Theorem 5-36 of [3], H* is a quotient
J o

group of MS . Finally i f H = J~f M , M i M then H* = "f~f M * .
a f.I a a ad a

The remainder of the induction proof is obvious.

THEOREM 6.9. Let G be a compact Hausdorff abelian torsion group.

Then there exists a finite cyclic discrete group C such that G ( ¥_{C) .

Consequently G is an s(K ]-group.

Proof. This is immediate from Theorem 25-9 of [3].

7. Topologies on free groups

In this section we will examine Theorem 6 of [2]. At the bottom of

p. 7̂ *1 of [2] the following appears: "Finally, any group topology on

F (.X) relative to which X is embedded topologically is one for which

all functions f are continuous". This statement appeared not to be

obviously true to us. In correspondence Professor B.R. Gelbaum has agreed

that it is not obvious. In fact Example 7-1 shows that it is not true.

Thus, in Gelbaum's notation, T.„ is not necessarily the infimum of F ;
/Or

that is the last statement in Theorem 6 of [2] is false.

EXAMPLE 7.1. Let F (a) be the infinite cyclic group with

https://doi.org/10.1017/S0004972700041782 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041782


Varieties of topological groups 177

generator {a} which has as an open basis at the identity for its

topology T , the family of subgroups generated by a , n = 1, 2, ... .

Clearly T is Hausdorff. Consider the map f of {a} into the

quaternions given by f(a) = i . There exists a homomorphism f of

F (a) into the quaternions such that f{a) = f{a) = i . Then
o

f[FQ{a)) = {•£, -1, -i, 1} and / {l} is the subgroup of FQ(a)

generated by ah , which is not an open subset of T . Therefore T is

not continuous.

The question might be asked: In every Hausdorff group topology on

FQ(X) is X a closed subset? This would have been a consequence of

Theorem 6 of [2], but is in fact not so as Example 7.2 shows.

EXAMPLE 7.2. Let X be any infinite set and F{x) the free

abstract group on X . Let the family A of the normal closures of all

subgroups of F{X) which are generated by cofinite subsets of X be an

open basis at the identity for a group topology x on F{X) . Clearly

T is Hausdorff. Suppose X is closed. Then the complement C{X) of X

in F{X) is an open neighbourhood of the identity. Then C{X) contains

an element of A . Thus C{X) contains an element of X , which is a

contradiction. Hence X is not closed in X .
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