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ON LADDER HEIGHT DENSITIES AND
LAGUERRE SERIES IN THE STUDY
OF STOCHASTIC FUNCTIONALS.
I. BASIC METHODS AND RESULTS

MICHAEL SCHRÖDER ∗

Abstract

In this paper we develop methods for reducing the study, the computation, and the
construction of stochastic functionals to those of standard concepts such as the moments
of the pertinent random variables. Principally, our methods are based on the notion of
ladder height densities and their Laguerre expansions, and our results provide a unifying
framework for the distinct approaches of Dufresne (2000) and Schröder (2005).

Keywords: Laguerre series methods for stochastic functionals; ladder height density

2000 Mathematics Subject Classification: Primary 65C50; 33C45; 60G99
Secondary 33C90; 91B28

1. Introduction

In this paper we develop methods from orthogonal series into principal ways of analyzing,
computing, and constructing stochastic functionals. The main ideas are as follows. Stochastic
functionals in their simplest form are expectations,

E[ρ(Y )],
of images of positive random variables Y under functions ρ. Examples of such functionals
include the risk-neutral values of contingent claims, with ρ(Y ) then the pay-off. It was in fact
the observation of Dufresne (2000) that option prices can be constructed as values of probability
density functions which has motivated our paper. One of our basic contributions here is to lift
this construction to the functional level and to extend Dufresne’s approach as follows: expand
these densities in Laguerre series, a concept recalled in Section 2; thus obtain a representation of
the pertinent functionals as Laguerre series; and reconstruct the coefficients of these Laguerre
reduction series in terms of the moments of Y .

Alternative approaches to representing stochastic functionals using Laguerre reduction series
have been developed in Schröder (2005). The idea of one of them is to expand the pertinent
densities as Laguerre series whose coefficients are then in terms of the moments of Y , thus
representing the functionals as integrals of these series, and obtain Laguerre reduction series
on term-by-term integration. A further motivation for this paper is to establish connections
between these alternative approaches.

Since both of the described approaches are obviously wrong in general as they stand, the
basic idea here is to proceed in the spirit of Schröder (2005) and delineate classes of functionals
for which such Laguerre reduction series do exist. We do this by setting up a framework of
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970 M. SCHRÖDER

sufficient conditions in terms of the local behaviour of the functions involved, comparing them
locally with power mappings or powers of the exponential mapping.

To be able to address both of these aspects and, thus, provide a synthesis of the above
two approaches in particular, in Section 4 we first set up how to associate families of ladder
height densities with given stochastic functionals. Ladder height density is a concept originally
introduced in Dufresne (2000) for option valuation. In Section 3 we extend it into a general
context. How Laguerre reduction series for the functionals we have started with are constructed
from these families of densities is developed in Section 5. In this way, in Sections 4 and 5 we give
a general methodology for associating with a given stochastic functional a family of Laguerre
reduction series which represent it.

As an application of these general results, in Section 6 we give a construction of a class
of functionals with particularly simple associated Laguerre reduction series families, which
contain only the two basic types of reduction series described above. We nevertheless expect
this section to be of a particular relevance for applications, for two particular reasons. First,
the class of functionals considered is large enough to contain option and power option value
functionals. Second, the two Laguerre reduction series associated with each of its functionals
address opposite basic needs: the series constructed in the spirit of Dufresne (2000) should
enable the construction of these functionals from statistical data, which is a new point of view,
and the other series should enable their actual numerical computation.

The power of the above results is demonstrated in Schröder (2006), the companion paper
to this one, which studies their applications to exponential functionals of Brownian motion in
general, and the valuation ofAsian options in particular. The author would be more than gratified
if this and the present paper were to furnish starting points of further work on constructive
approaches to stochastic functionals. In this sense the author wishes to thank the referee for
drawing his attention to the different context and the apparently different purpose to which
Laguerre expansions have already been put to work in Anh and Leonenko (1999). There they
were found to be instrumental in characterizing limiting fields of rescaled solutions of the heat
equation with initial conditions that are nonlinear functionals of random fields with long-range
dependence that are not necessarily Gaussian.

2. Preliminaries and examples

2.1. Laguerre series

In this section we collect pertinent properties of Laguerre polynomials from Lebedev (1972,
Section 4) and Sansone (1991). Fixing any real number α > −1, for any nonnegative integer
m the mth α-Laguerre polynomial, Lαm(z), is

Lαm(z) =
m∑
k=0

αm,kz
k, where αm,k = (−1)k

k!
(
m+ α

m− k

)
,

for any complex number z. The first three α-Laguerre polynomials are Lα0 (z) = 1, Lα1 (z) =
1 + α − z, and Lα2 (z) = 1

2 (1 + α)(2 + α)− (2 + α)z+ 1
2z

2. For any positive integer n, they
satisfy the recurrence relation (n+ 1)Lαn+1(z) = (2n+ 1 + α − z)Lαn(z)− (n+ α)Lαn−1(z).

Their structural setting is a generalization of the classical Hilbert spaces of square-integrable
functions. LetL2

α(0,∞) be the Hilbert space of all complex-valued functions F on the positive
reals that are α-square integrable, i.e. that satisfy

‖F‖2
α =

∫ ∞

0
wα(x)|F |2(x) dx < ∞,
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with the weight wα on (0,∞) given by wα(x) = xα exp(−x). Then L2
α(0,∞) carries the

sesquilinear form 〈 , 〉α given by

〈F,G〉α =
∫ ∞

0
wα(x)F (x)G(x) dx,

and an orthogonal basis for L2
α(0,∞) is furnished by the Lαm(z), which satisfy ‖Lαm‖2

α =
�(m + α + 1)/m!. By expressing any F in L2

α(0,∞) in this basis, we obtain its α-Laguerre
series,

F =
∞∑
m=0

cmL
α
m, where cm = 〈F,Lαm〉α

〈Lαm,Lαm〉α ,

for any nonnegative integer m. The cm are the α-Laguerre coefficients of this series, whose
convergence to F is in α-mean: limM→∞ ‖F − ∑M

m=0 cmL
α
m‖α = 0.

2.2. Growth measures

Our point of view is that Laguerre expandability is determined by local data. In this section
we recall two growth measures proposed in Schröder (2005, Section 2.3) for making this
operational and review basic properties derived there, with the Laguerre expansion criterion,
Proposition 2.2 below, as a typical result. Our growth measures apply to any complex-valued
function f on the positive reals and the idea of them is to describe the behaviour of f at
any point A of the extended nonnegative real line, [0,∞], by comparison with that of power
mappings and powers of the exponential function, respectively. Define the exponential growth
order, δA(f ), of f nearA as the supremum over all real δ such that limx→A exp(δx)f (x) = 0:

δA(f ) = sup
{
δ ∈ R : lim

x→A
exp(δx)f (x) = 0

}
.

The polynomial growth order, γA(f ), of f near A is defined as follows: if A is finite it is the
supremum over all real γ such that limx→A f (x)/x

γ = 0, with the limits taken in the positive
reals, i.e.

γA(f ) = sup
{
γ ∈ R : lim

x→A
f (x)/xγ = 0

}
;

otherwise it is defined as γ∞(f ) = γ0(f
∗), where f ∗(x) = f (1/x). The respective sets of

real numbers δ and γ defining these growth orders may be empty, in which case the suprema
are both −∞.

In this paper, the growth orders γ0 and δ∞ are of particular relevance. They are illustrated
next.

Example 2.1. For any real c ≥ 0, define the functions gc(x) = (c−x)+ and hc(x) = (x−c)+
on the reals. The growth orders shown in Table 1 can then be checked.

Our growth measures may fail to be addititive but they are log-additive on products.

Proposition 2.1. For any two functions f , g : (0,∞) → C that are continuous at the point A
in [0,∞], we have δA(fg) = δA(f )+ δA(g) if (δA(f ), δA(g)) 	= (±∞,∓∞) and γA(fg) =
γA(f )+ γA(g) if (γA(f ), γA(g)) 	= (±∞,∓∞).

The point of this result, which is Schröder (2005, Proposition 2.1), is to assert that the sums
of the growth measures are not just lower bounds for the respective growth measures of the
product function, but upper bounds as well.
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Table 1: Examples of the growth orders γ0 and δ∞.

f γ0(f ) δ∞(f )
x �→ eax , a ∈ R 0 −a
x �→ xa , a ∈ R a 0
gc, c > 0 0 ∞
h0 1 0
hc, c > 0 ∞ 0

The last results can now be applied to give the following Laguerre expansion criterion for
a function to have an α-Laguerre series in the sense of Section 2.1.

Proposition 2.2. Any continuous function f : (0,∞) → C is in L2
α(0,∞) if it satisfies

2γ0(|f |) > −(α + 1) and 2δ∞(|f |) > −1.

To prove this result, which supersedes Schröder (2005, Proposition 2.2), we have to show
that wα|f |2 is integrable on the positive reals. Sufficient for this is the following: make sure
that near ∞ this function decays to 0 at an exponential rate, and that near 0 it can be majorized
by a scalar multiple of a power map xγ with γ > −1. Then, using the log-additivity and
the results of Example 2.1, respectively transcribe these conditions in terms of δ∞ and γ0 to
complete the proof.

3. Ladder height densities

Ladder height density was proposed in Dufresne (2000). It is a recursively defined concept.
Dufresne (2000) used the first and second iterates to represent option values as probability
densities, and studied their Laguerre expandability. We consider the general iterates, and, as a
first step, in this section study their structural properties.

3.1. Statement and discussion of main results

To make precise the ladder height construction of probability density functions, let g be
any function on the positive real line which takes its values in the nonnegative reals and
which is integrable with total mass 1. For any nonnegative integer k, the kth ladder height
density function, λk(g), is then recursively defined by k-fold iterated integration, as follows:
let λ0(g) = g and

λk+1(g)(x) = 1

M1[λk(g)]
∫ ∞

x

λk(g)(w) dw,

for any positive real x, if the first moment integral, M1[λk(g)], is well defined, finite, and
positive. The moment functionals Mκ , for any real κ , are here defined for any measurable
function h on the positive reals by

Mκ [h] =
∫ ∞

0
xκh(x) dx.

Two questions are immediate. First, do probability density functions again result from this
construction? Second, how often can we iterate this construction, i.e. which of the λk(g) are
well defined? We address these questions in the following basic result, which is proved in
Section 3.3.
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Theorem 3.1. For any positive integer k, the function λk(g) is well defined if and only if the
momentsM0[g], . . . ,Mk[g] exist and are finite and positive. Then λk(g) is a probability density
function and, for any positive real x, we have

λk(g)(x) = k

Mk[g]
∫ ∞

x

(w − x)k−1g(w) dw.

3.2. Moments of ladder height densities

Working in the setting of Section 3.1, in this section we study the �th moments of the
Section 3.1 ladder height densities λk(g) for nonnegative real �. More precisely, recalling the
moment functionals M�, we establish the following two results.

Proposition 3.1. If λ1(g), . . . , λk(g) are well defined, we have

M�[λk(g)] = �(�+ 1)

�(�+m+ 1)

M�+m[λk−m(g)]∏m
j=1M1[λk−j (g)]

for any positive integer m ≤ k, with either both sides finite or both sides infinite.

Corollary 3.1. If λ1(g), . . . , λk(g) are well defined, we have

k∏
m=0

M1[λm(g)] = Mk+1[g]
(k + 1)! and

(
�+ k

�

)
M�[λk(g)] = M�+k[g]

Mk[g]

for any nonnegative integer �, with either both sides finite or both sides infinite.

Proof of Proposition 3.1. The identity of Proposition 3.1 combines the recursive nature of
ladder height densities with a Tonelli–Fubini argument. In fact, in the integrand of the defining
integral of the �th moment, first express the values of the function λk(g) using their respective
defining integrals in terms of λk−1(g):

M�[λk(g)] = 1

M1[λk−1(g)]
∫ ∞

0

∫ ∞

x

x�λk−1(g)(y) dy dx.

With λk−1(g) nonnegative and measurable, Tonelli’s theorem justifies interchanging the order
of integration here, and on performing the inner integration we obtain

M�[λk(g)] = (�+ 1)−1

M1[λk−1(g)]M�+1[λk−1(g)].

By induction on k, this moment is given by the formula of the proposition with m and k there
replaced by m − 1 and k − 1, respectively. The formula of the proposition for M�[λk(g)]
is then seen to follow on substitution. This completes the induction and, thus, the proof of
Proposition 3.1.

Proof of Corollary 3.1. The formulae of Corollary 3.1 are specializations of Proposition 3.1.
The first one is obtained by setting � = 1 and m = k there. Substitution of the expression thus
obtained for the second denominator in the proposition gives the second formula, and the proof
of Corollary 3.1 is complete.
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3.3. Proof of Theorem 3.1

The theorem’s statements about the moments are established first, by induction. By con-
struction, λ1(g) is well defined if and only if M1[g] is finite and positive. Thus, assume
λ1(g), . . . , λk(g) to be well defined. Using the second formula of Corollary 3.1, we have

M1[λk(g)] = 1

k + 1

Mk+1[g]
M1[g] .

Inductively, the ladder height densities λ1(g), . . . , λk(g), λk+1(g) are hence well defined if
and only if the moments M1[g], . . . ,Mk[g],Mk+1[g] are finite and positive, as was to be
shown. From Proposition 3.1, the mean, M0[λn(g)], of any such λn(g) is then equal to
M1[λn(g)]/M1[λn(g)] = 1. Hence, λn(g) is a probability density.

As a first step in proving the theorem’s formula for λk+1(g), an inductive Tonelli–Fubini
argument analogous to that used in establishing Proposition 3.1 shows that

λk+1(g)(x) = 1

�(k + 1)
∏k
j=0M1[λj (g)]

∫ ∞

x

(w − x)kg(w) dw.

By interpreting the prefactor of the integral using the first formula of Corollary 3.1, we recover
the formula of the theorem. The proof of Theorem 3.1 is thus complete.

4. Ladder height densities and stochastic functionals

In this section we propose an axiomatic framework for connecting ladder height densities
and stochastic functionals, with Theorem 4.1 and Corollary 4.1 as the main results.

4.1. Stochastic functionals

Working with any filtered probability space with time set [t0, T ], the stochastic functionals
to be considered are expectations of the form

E[ρ(Y ) | Ft ], t ∈ [t0, T ],

conditional on information at time t . Here Y is any FT -measurable, positive random variable
and ρ is any real-valued function on the positive reals, and they are such that the random variable
ρ(Y ) is FT -integrable. Moreover, let ρ be a product of two functions, to be specified below, of
the form

ρ(y) = ψ(y)ϕ(a, y), y ∈ (0,∞).

Here ψ is a function on the positive reals, ϕ is a function on the product of two copies of the
positive reals, and a is a positive real that depends on ρ. To fix ideas, it seems instructive to
discuss the reciprocal option construction, originating in Dufresne (2000, Section 6).

Example 4.1. Consider any put option with strike price K > 0 on an asset with positive price
process Z, and let Y = 1/Z be the reciprocal of Z. Assuming risk-neutral valuation to hold
for Z, with the concepts of Example 2.1 we then have for the option value E[gK(Z) | Ft ] =
E[ρ(Y ) | Ft ], where ρ = ψϕ with ψ(y) = K/y and ϕ = h1/K . Analogous results with the
roles of g and h interchanged hold for call options.
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4.2. Statement and discussion of the main representability results

In this section we develop an axiomatic framework under which the stochastic functionals
of Section 4.1 can be constructed as values of the ladder height density functions described in
Section 3. The main results are Theorem 4.1 and its corollary, and a first and fundamental set
of conditions for the validity of these representability results is as follows.

Definition 4.1. The triple (ψ, ϕ, Y ) is called admissible if the following three conditions are
satisfied.

(A1) The function ψ is such that E[ψ(Y ) | Ft ] is finite and positive.

(A2) There is a function χ from the positive reals into themselves such that ϕ is χ -homo-
geneous, i.e. satisfies ϕ(λc, λx) = χ(λ)ϕ(c, x), for all positive reals λ, c, and x.

(A3) There is a functionL from the positive reals into themselves such that, for any real c > 0,
the function ϕ satisfies ϕ(c, x) = 0 for all x in (0, L(c)].

If the context is clear then, for any real c > 0, we denote by ϕc the function ϕ used in
Definition 4.1; i.e. ϕc(x) ≡ ϕ(c, x) for any real x > 0.

While a systematic construction of admissible triples is deferred to Section 4.3, there is
nevertheless the following immediate example.

Example 4.2. We illustrate the axioms for admissibility with examples from option valuation.
Here consider the terminal value of the underlying and the strike price as variables. For call
options, thus let ϕ(c, x) = (x− c)+, whence (A2) and (A3) hold with χ(λ) = λ and L(c) = c.
For put options, however, (A3) fails since (c − x)+ is never 0 for x in (0, c).

It is instructive to study the immediate consequences of (ψ, ϕ, Y ) being admissible. The
χ -homogeneity property, condition (A2), gives ϕ(a, Y ) = χ(a/c)ϕ(c,X) for any positive real
c, with X = (c/a)Y . We thus obtain

E[ρ(Y ) | Ft ] = χ

(
a

c

)
E

[
ψ

(
a

c
X

)
ϕ(c,X)

∣∣∣∣ Ft

]
.

We record two consequences of this identity in the following two propositions.
First, the positivity and finiteness condition, (A1), implies the following result.

Proposition 4.1. If fX,t is the probability density function of X conditional on information at
time t , then

gc(x) = 1

E[ψ(Y ) | Ft ]ψ
(
a

c
x

)
fX,t (x), x ∈ (0,∞),

defines a probability density function on the positive real line.

Using the vanishing property of ϕ, condition (A3), we thus arrive at the following result.

Proposition 4.2. If (ψ, ϕ, Y ) is admissible then, for any real c > 0, we have

E[ρ(Y ) | Ft ] = χ

(
a

c

)
E[ψ(Y ) | Ft ]

∫ ∞

L(c)

ϕ(c, x)gc(x) dx.

Our idea is to construct ladder height densities from gc, ultimately by fractional integration.
Further properties of ϕ and gc are needed for this. We formalize these as follows.
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Definition 4.2. For any nonnegative integer k and any positive real c, the pair (ϕ, gc) is said to
permit k-fold ladder height densities if the following three properties are satisfied.

(LH1) All ladder height density functions λ1(gc), . . . , λk(gc) are well defined, i.e. all moments
M1[λ�(gc)] with 0 ≤ � < k are finite and positive.

(LH2) There is a function L from the positive reals into themselves, which we require to
coincide with the function L in (A3) if (ψ, ϕ, Y ) is admissible, such that for any real
c > 0 the map ϕc is k-fold continuously differentiable on (L(c),∞).

(LH3) For any real c > 0, the following limits exist and are finite for all �, 0 ≤ � < k:

lim
x→∞(ϕ

(�)
c λ�+1(gc))(x) and lim

x↓L(c)(ϕ
(�)
c λ�+1(gc))(x).

Here ϕ(�)c denotes any �th derivative of the map ϕc.

Under the conditions of Definition 4.2, the representation of Proposition 4.2 can be developed
into a representation in terms of ladder height densities as follows.

Theorem 4.1. If (ψ, ϕ, Y ) is admissible and the pairs (ϕ, gc) permit k-fold ladder height
densities, then we have the following representation for the expectation E[ρ(Y ) | Ft ] in terms
of ladder height densities gc = λ0(gc), λ1(gc), . . . , λk(gc):

E[ρ(Y ) | Ft ] =
k−1∑
�=0

a�(gc)[(ϕ(�)c λ�+1(gc))(x)]L(c)x=∞ + ak−1(gc)

∫ ∞

L(c)

(ϕ(k)c λk(gc))(x) dx.

Here the coefficients a�(gc) are

a�(gc) = χ

(
a

c

)
(c/a)�+1

(�+ 1)! E[Y �+1ψ(Y ) | Ft ]

for any positive real c and any nonnegative integer � smaller than k.

Corollary 4.1. Let (ψ, ϕ, Y ) be admissible and let the pairs (ϕ, gc) permit k-fold ladder height
densities. Then we have the representation

E[ρ(Y ) | Ft ] =
k−1∑
�=0

a�(gc)[(ϕ(�)c λ�+1(gc))(x)]L(c)x=∞ + ak(gc)ϕ
(k)
c (x0)λk+1(gc)(L(c))

if x �→ ϕ
(k)
c (x) is constant on (L(c),∞) and λk+1(gc) is well defined.

The proofs of these two results are given in Section 4.4 and ultimately reduce to fractional
integration. Making them rigorous, however, requires a fair amount of checking of compati-
bilities among the normalizing first moments of the various ladder height densities. Immediate
from Corollary 4.1, however, is the following result.

Corollary 4.2. Let (ψ, ϕ, Y ) be admissible and let the pairs (ϕ, gc) permit k-fold ladder height
densities. Then we have the ladder height representation

E[ρ(Y ) | Ft ] = ak(gc)ϕ
(k)
c (x0)λk+1(gc)(L(c))
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if x �→ ϕ
(k)
c (x) is constant on (L(c),∞), if λk+1(gc) is well defined, and if we have (LH3) in

the following sharper form:

lim
x→∞(ϕ

(�)
c λ�+1(gc))(x) = lim

x↓L(c)(ϕ
(�)
c λ�+1(gc))(x) = 0 for all � ∈ {0, . . . , k − 1}.

Recalling Example 4.1, notice how Corollary 4.2 generalizes a key insight of Dufresne
(2000): option values are values of two-fold ladder height densities.

4.3. Constructing admissible functions

In this section we present a systematic way of constructing functions ρ that satisfy the
conditions of Definition 4.1, Definition 4.2, and, in particular, Theorem 4.1. For this, let f be
any function on the positive real line which is equal to 0 on any subinterval (0, x0]. Assume
that the function χ from the positive reals into themselves is multiplicative, i.e. assume that χ
generalizes power mappings in the sense that χ(ab) = χ(a)χ(b) for any positive reals a and
b. Then we have the following lemma.

Lemma 4.1. In the above setting, the function given on two copies of the positive real line by
ϕ(c, x) = χ(c)f (x/c) satisfies axioms (A2) and (A3) of Definition 4.1.

In fact, we have ϕ(λc, λx) = χ(λ)ϕ(c, x) for any positive reals λ, c, and x, which is (A2).
Defining L(c) = x0c, we have ϕ(c, x) = 0 for all x in (0, L(c)] and, hence, (A3).

If, furthermore, f is piecewise n-fold continuously differentiable then, for any real c > 0,
ϕ(c, ·) inherits this property. We then find the following result for the Section 2.2 growth
measures.

Lemma 4.2. In the above setting, assume that x0 is not a point of discontinuity of f and its
derivatives. For any nonnegative integer � ≤ n, L(c) is then not a point of discontinuity of the
�th derivative of ϕ(c, ·), and we have

cδ∞(ϕ(�)(c, ·)) = δ∞(f (�)) and γL(c)(ϕ
(�)(c, ·)) = γx0(f

(�)).

To conclude this section we illustrate these concepts by extending Examples 4.1 and 4.2.

Example 4.3. In continuation of Examples 4.1 and 4.2, the factor ϕ = ha there can, for any
positive real a, be obtained by the above construction. In fact, using the function f (x) =
(x − x0)

+, we arrive at ϕ(c, x) = χ(c)(x/c − x0)
+. For x0 = 1 and χ the identity mapping,

we thus find that ϕ(a, x) = (x − a)+ = ha(x). Regarding growth measures, notice that, for
any c > 0, any �th derivative, ϕ(�)(c, ·), of ϕ(c, ·) is nonzero and of at most linear order on
(x0,∞) if � ≤ 1; otherwise it is identically 0. For any integer � ≥ 2, we thus obtain

δ∞(ϕ(c, ·)) = 0, δ∞(ϕ(1)(c, ·)) = 0, δ∞(ϕ(�)(c, ·)) = ∞,

γL(c)(ϕ(c, ·)) = ∞, γL(c)(ϕ
(1)(c, ·)) = −∞, γL(c)(ϕ

(�)(c, ·)) = ∞,

since moreover ϕ(x, x0) = 0 and ϕ(1)(c, x0) = 1.

4.4. Preliminaries on moments of the densities gc

As a preliminary to proving the representability results of Section 4.2, in this section we
discuss the �th moments, for any real �, of the probability density gc. From Proposition 4.1 the
latter is given by

gc(x) = 1

E[ψ(Y ) | Ft ]ψ
(
a

c
x

)
fX,t (x), x ∈ (0,∞),
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whereX = (c/a)Y . Recalling the moment functionalsM� from Section 3.1, the precise results
to be established are as follows.

Lemma 4.3. The moments M�[gc] of the probability density function gc, assuming their exis-
tence and finiteness, are given by

M�[gc] =
(
c

a

)�E[Y �ψ(Y ) | Ft ]
E[ψ(Y ) | Ft ] .

Lemma 4.4. Let � be any nonnegative integer. If λ�(gc) is well defined then

M1[λ�(gc)] = 1

�+ 1

M�+1[gc]
M�[gc] = c/a

�+ 1

E[Y �+1ψ(Y ) | Ft ]
E[Y �ψ(Y ) | Ft ] .

To establish Lemma 4.3, we revert to the definitions, whereby

E[ψ(Y ) | Ft ]M�[gc] =
∫ ∞

0
x�ψ

(
a

c
x

)
fX,t (x) dx = E

[
X�ψ

(
a

c
X

) ∣∣∣∣ Ft

]
.

Since X = (c/a)Y by definition, Lemma 4.3 follows. To establish Lemma 4.4, notice that the
first identity there follows from the second formula of Corollary 3.1, while the second follows
from using Lemma 4.3.

4.5. Proof of the representability results

In this section we give proofs of the representability results Theorem 4.1 and Corollary 4.1.
First, we show how the corollary follows from the theorem if (∂kϕ/∂xk)(c, x) = ϕ0 for any

x in (L(c),∞). This is because the integration term on the right-hand side of the theorem’s
formula then becomes the value at L(c) of λk+1(gc), on division byM1[λk(gc)], assuming this
moment to be finite and positive. The product ak−1(gc)M1[λk(gc)] which results is equal to
ak(gc), using Lemma 4.4, and the proof of Corollary 4.1 is complete.

We prove the theorem’s formula ultimately by successive partial integration starting from
the result of Proposition 4.2. The renormalizations in the construction of ladder height densities
result in compatibilities that have to be checked, and we give these proofs in two steps.

As a first step, we let (ϕ, g) be any pair which satisfies the three conditions of Definition 4.2
for any real c > 0 and, setting b�(g) = ∏�

m=0M1[λm(g)], then prove the identity

∫ ∞

L(c)

(ϕcg)(x) dx =
k−1∑
�=0

b�(g)[(ϕ(�)c λ�+1(g))(x)]L(c)x=∞ + bk−1(g)

∫ ∞

L(c)

(ϕ(k)c λk(g))(x) dx,

which we will use in step two. We prove the identity by induction on k, with the k = 0 case
trivially true. Thus, let k ≥ 1. Then λ1(g) is well defined by (LH1) of Definition 4.2, and can
be checked to satisfy λ0(g) = −M1[λ0(g)]λ1(g)

′. Formal partial integration thus gives

∫ ∞

L(c)

(ϕcλ0(g))(x) dx = M1[λ0(g)][(ϕcλ1(g))(x)]L(c)x=∞ +M1[λ0(g)]
∫ ∞

L(c)

(ϕ(1)c λ1(g))(x) dx.

To make this rigorous, notice thatM1[λ0(g)] is finite by (LH1), that (LH3) asserts the existence
and finiteness of the limits of (ϕcλ1(g))(x) as x tends to L(c) and ∞, and that (LH2) gives the
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required partial differentiability of ϕ. Using λ�+m(g) = λ�(λm(g)), it can now be checked that
(∂ϕ/∂x, λ1(g)) permits (k − 1)-fold ladder height densities. Thus, inductively,

∫ ∞

L(c)

(ϕ(1)c λ1(g))(x) dx =
k−2∑
�=0

b�(λ1(g))[(ϕ(�+1)
c λ�+1(λ1(g)))(x)]L(c)x=∞

+ bk−2(λ1(g))

∫ ∞

L(c)

(ϕcλk(λ1(g)))(x) dx.

Here first use λ�+1(λ1(g)) = λ�+2(g) and λk−1(λ1(g)) = λk(g). Then revert to the definitions,
whereby

M1[λ0(g)]b�(λ1(g)) = M1[λ0(g)]
�∏

m=0

M1[λm(λ1(g))] = b�+1(g),

using λm(λ1(g)) = λm+1(g). The induction process for the first step is complete.
As a second step, we compute the coefficients b�(g) of the first step for g = gc. In fact,

successively applying the first formula of Corollary 3.1, and Lemma 4.3, yields

b�(gc) = M�+1[gc]
(�+ 1)! = (c/a)�+1

(�+ 1)!
E[Y �+1ψ(Y ) | Ft ]

E[ψ(Y ) | Ft ] .

Referring to the Proposition 4.2 representation, the coefficients a�(gc) of the theorem are
obtained by multiplying b�(gc) by χ(a/c)E[ψ(Y ) | Ft ]. The proof of Theorem 4.1 is thus
complete.

5. Ladder height Laguerre reduction series

5.1. Ladder height Laguerre reduction series in an axiomatic setting

The results of Section 4.2 give a general strategy for studying the stochastic functionals of
Section 4.1 using ladder height densities. This section develops the pertinent general results, in
particular Theorem 5.1 and Theorem 5.3 and its addenda. They are specialized to the context
of Section 4.2 in the next section.

If g is any probability density function on the positive reals which is suitably ‘nice’ (in a
sense to made precise below), our principal idea is to study two problems. As a first step,
we study Laguerre expandability of the weighted ladder height density functions λN,κ(g), in
the sense of Section 2.1. They depend on parameter pairs κ = (β, δ) of real numbers, are
defined by

λN,κ(g)(x) = x−βeδxλN(g)(x), x ∈ (0,∞),

and are denoted by λN,β,δ if the entries of κ are to be stressed. Moreover, let φ be any suitably
nice function on any subinterval Ic = (c,∞) of the positive reals. Defining

φκ(x) ≡ φβ,δ(x) = xβe−δxφ(x)

for any x in Ic, the second problem is then to give conditions under which Laguerre expanding
the ladder height density factors of integrals of the form

∫
Ic

(φκλN,κ(g))(x) dx
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leads to convergent series expansions on term-by-term integration. The series that result are in
terms of the integrals defined by

I
ξ
k (g) =

∫ ∞

0
xα−β+ke(δ−1)xλN(g)(x) dx =

∫ ∞

0
xk(wαλN,κ(g))(x) dx.

Here ξ is the extension of κ to the parameter quadruple ξ = (N, α, β, δ)with any real α > −1,
and from Section 2.1 we have the weight function wα(x) = xα exp(−x).

For the first of these Laguerre expansion problems, our results are as follows.

Theorem 5.1. If in the above settingλN(g) is well defined, then, for anyα > −1 and κ = (β, δ)

such that λN,κ(g) is in L2
α(0,∞), we have the absolutely convergent ladder height Laguerre

reduction series

λN,κ(g)(x) =
∞∑
n=0

bξn(g)L
α
n(x), ξ = (N, α, β, δ),

with α-Laguerre coefficients

bξn(g) =
n∑
k=0

(−1)k

�(k + α + 1)

(
n

k

)
I
ξ
k (g).

The proof of this result reduces to identifying the Laguerre coefficients bn ≡ b
ξ
n. From Sec-

tion 2.1, these are given by bn = 〈λN,κ(g), Lαn〉α/〈Lαn, Lαn〉α . Linearly expanding the Laguerre
polynomials in the first scalar product yields bn = ∑

(αn,k/〈Lαn, Lαn〉α)〈λN,κ(g), xk〉α . Here
〈λN,κ(g), xk〉α = I

ξ
k (g), on reverting to the integral that defines this scalar product. Making

explicit the normalization of the Section 2.1 coefficients αn,k , the proof of Theorem 5.1 is
complete.

The previous theorem requires us to develop practicable criteria for the Laguerre expand-
ability it requires. For this we single out a class of densities g, as follows.

Definition 5.1. A probability density function g is said to be Laguerre admissible if it has the
following three properties.

(L0) g is continuous on (0,∞) with positive values.

(L1) δ∞(g) > 0, i.e. there is a real δ > 0 such that g(x) dominates exp(−δx) as x tends to ∞,
in the sense that limx→∞ exp(δx)g(x) is 0.

(L2) γ0(g) > −1, i.e. there is a real γ > −1 such that g(x) dominates xγ as x tends to 0, in
the sense that limx↓0 g(x)/x

γ is 0.

We give sufficient conditions for the Laguerre expandability of ladder height densities in
terms of the densities their construction starts with. Our precise result is provided by the
following Laguerre expandability criterion.

Theorem 5.2. Let g be Laguerre admissible and such that the ladder height density λN(g) is
well defined. Then, for any reals α > −1, β, and δ satisfying the two inequalities

α + 2(γ0(g)+N − β) > −1 and 1 + 2(δ∞(g)− δ) > 0,

the mapping λN,β,δ(g) is in L2
α(0,∞).
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As shown in Section 5.4, this follows from permanence properties of the growth orders δ∞(g)
and γ0(g) under the ladder height construction. These properties are established in Section 5.3
and basically assert that these orders only increase under this process.

For the second of the two Laguerre expansion problems, our results are as follows.

Theorem 5.3. In the above setting, let g be such that λN(g) is well defined. For any α > −1
and κ = (β, δ) such that λN,κ(g) is in L2

α(0,∞) and φ2
κ/wα is in L1(Ic), where Ic = (c,∞),

we then have the absolutely convergent ladder height Laguerre reduction series

∫
Ic

(φκλN,κ(g))(x) dx =
∞∑
n=0

bξn(g)

∫
Ic

(φκL
α
n)(x) dx

with α-Laguerre coefficients

bξn(g) =
n∑
k=0

(−1)k

�(k + α + 1)

(
n

k

)
I
ξ
k (g),

where ξ = (N, α, β, δ). Its error terms, RN = ∑∞
n=N+1 b

ξ
n(g)

∫
I
(φκL

α
n)(x) dx, satisfy

R2
N ≤

(
‖φκ‖2

α −
N∑
n=0

bξn(g)
2‖Lαn‖2

α

)
Dξ,

where Dξ = ∫
Ic
(φ2
κ/wα)(x) dx and, recall, ‖Lαn‖2

α = �(n+ α + 1)/n!.
Addendum 5.1. Assume that φ is continuous on Ic = (c,∞), that g is Laguerre admissible,
and that λN(g) is well defined. It is then sufficient for λN,κ(g) to be in L2

α(0,∞) and φ2
κ/wα

to be in L1(Ic) that φ satisfies 2γc(φ) > −1 and that the reals β and δ satisfy the following
two inequalities in terms of the growth measures γ0 and δ∞:

β <
α + 1

2
+ γ0(g)+N and

1

2
− δ∞(φ) < δ <

1

2
+ δ∞(g).

Addendum 5.2. We have the following alternative representation:

‖φκ(g)‖2
α −

N∑
n=0

bξn(g)
2‖Lαn‖2

α =
∞∑

n=N+1

bξn(g)
2‖Lαn‖2

α.

These results incorporate the effects of Theorem 5.2 as a new feature and are analogous
to those in Schröder (2005, Section 3.3); they specialize to the latter results for N = 0. The
difficulty in proving them is ultimately to show how convergence in α-mean of the Laguerre
series of φκ(g) translates into ordinary convergence on integration. Proofs are now finally given
here, in Section 5.5, as an application of Hilbert space theory.

Laguerre expansion of the functions and integrals in Theorem 4.1 is thus reduced to two
problems: first, to studying the Laguerre expandability of ladder height densities and, second,
to evaluating the above integrals I (g). In general, these integrals define new classes of higher
transcendental functions. However, they become expressible in terms of the Section 3.1
moments, M�[g], of g when δ = 1 can be used, as follows.
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Proposition 5.1. Defining ξ(1) = (N, α, β, δ)|δ=1 in the above setting, we have

I
ξ(1)
k (g) = MN+δk [g]

MN [g]
(
N + δk

δk

)−1

, where δk = α − β + k,

with both sides either finite or infinite.

This, as well as a formula for more general integrals I (g), is proved in Section 5.6.

5.2. Ladder height Laguerre reduction series for stochastic functionals

In this section we translate the ladder height Laguerre reduction series obtained in Section 5.1
into the stochastic functionals setting of Section 4.1. The main results are Theorem 5.5 and
Theorem 5.6 and its addendum. Thus, consider expectations

E[ρ(Y ) | Ft ]
conditional on information Ft at time t , where the function ρ on the positive reals is such that
the image, ρ(Y ), of the positive random variable Y is FT -integrable. Moreover, assume that ρ
is a product of two functions of positive real arguments,

ρ(y) = ψ(y)ϕ(a, y), y ∈ (0,∞),

such that the triple (ψ, ϕ, Y ) is admissible in the sense of Definition 4.1 and where a is a
positive real that depends on ρ. From Proposition 4.1 we then have, for any positive real c, the
probability density function gc on the positive real line given by

gc(x) = 1

E[ψ(Y ) | Ft ]ψ
(
a

c
x

)
fX,t (x), x ∈ (0,∞).

Here fX,t is the probability density function of the random variable X = (c/a)Y conditional
on information at time t . It is related to the probability density function f ≡ fY,t , which is
conditional on information about Y at time t , by fX,t (x) = (a/c)f ((a/c)x), for any real x > 0.

As a first step of the analysis we express the growth measures of gc in terms of those of ψ
and the density f = fY,t , in the following two results.

Theorem 5.4. If (ψ, ϕ, Y ) is admissible then

γ0(gc) = a

c
(γ0(ψ)+ γ0(f )) and δ∞(gc) = a

c
(δ∞(ψ)+ δ∞(f )).

Corollary 5.1. If gc is continuous then any ladder height density λN(gc) is well defined if

a

c
(γ0(ψ)+ γ0(f )) > −2 and δ∞(ψ)+ δ∞(f ) > 0.

Proof. To reduce the corollary to the theorem, recall from Theorem 3.1 that λN(gc) is well
defined if and only if the momentsM1[gc], . . . ,MN+1[gc] of gc are finite. For this we have to
analyze integrability on the nonnegative real line of the mappings m�(y) = y�gc(y), which is
implied by γ0(m�) > −1 and δ∞(m�) > 0. Since γ0(m�) = �+ γ0(gc), the theorem translates
this condition on γ0 into −1 < �+ (a/c)(γ0(ψ)+ γ0(f )) for all �, whence the γ0-condition of
the corollary follows. On the other hand, δ∞(m�) = δ∞(gc). Hence, δ∞(m�) > 0 if and only
if δ∞(gc) > 0. Using the theorem’s formula for δ∞(gc), this last condition translates into the
δ∞-condition of the corollary. The proof of Corollary 5.1 is thus complete.
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Proof of Theorem 5.4. We first analyze the behaviour of the growth measures under post-
multiplication by positive reals µ. The identity exp(δx)ψ(µx) = exp((δ/µ)µx)ψ(µx) shows
that δ∞(x �→ ψ(µx)) = µδ∞(ψ), and we analogously have γ0(x �→ ψ(µx)) = µγ0(ψ). By
the relation fX,t (x) = µf (µx) with µ = a/c, we similarly have δ∞(fX,t ) = (a/c)δ∞(f ) and
γ0(fX,t ) = (a/c)γ0(f ). Applied to the defining relation of gc, the log-additivity of γ0 thus
first gives γ0(gc) = (a/c)γ0(ψ) + γ0(fX,t ) and, hence, on substitution for γ0(fX,t ), the first
statement of the theorem. For the second statement, notice that log-additivity of δ∞ similarly
implies that δ∞(gc) = (a/c)δ∞(ψ) + δ∞(fX,t ). On substitution for δ∞(fX,t ), the proof of
Theorem 5.4 is thus complete.

To address Laguerre expandability of the above functionals, let (ψ, ϕ, Y ) be admissible in
the sense of Definition 4.1 and assume that (ϕa, gc) permits k-fold ladder height densities in the
sense of Definition 4.2. Then, for any positive real c, we have the representation of Theorem 4.1,
namely

E[ρ(Y ) | Ft ] =
k−1∑
�=0

a�(gc)[(ϕ(�)c λ�+1(gc))(x)]L(c)x=∞ + ak−1(gc)

∫ ∞

L(c)

(ϕ(k)c λk(gc))(x) dx,

as well as those of Corollaries 4.1 and 4.2, whose coefficients a�(gc) are, in terms of ψ-twisted
moments,

a�(gc) = χ

(
a

c

)
(c/a)�+1

(�+ 1)! E[Y �+1ψ(Y ) | Ft ].

Laguerre expansion of these functionals thus reduces to two problems: first, Laguerre expansion
of the ladder height densities λN(gc) at, in particular, the point L(c), thus accounting for the
Laguerre expansion of the terms in the sum of the above representation; second, application of
Laguerre expansions to integrals of such ladder height densities λN(gc), thus accounting for
the integral summand of the above representation.

We now address these two problems in turn, by specializing the results of Section 5.1,
assuming that δ = 1 there. The first problem, Laguerre expansion of the ladder height densities
themselves, is dealt with by the following result.

Theorem 5.5. Let (ψ, ϕ, Y ) be admissible, let gc be continuous, and let the reals α > −1 and
β satisfy the following two inequalities:

1 < 2
a

c
(δ∞(ψ)+ δ∞(f )) and max{2β − (2N + α + 1),−2} < 2

a

c
(γ0(ψ)+ γ0(f )).

The ladder height density λN(gc) is then well defined, and we have the absolutely convergent
ladder height Laguerre reduction series representation

λN(gc)(x) = wβ(x)

∞∑
n=0

bN,nL
α
n(x).

Here wβ is the Section 2.1 weight function, given by wβ(x) = xβ exp(−x) on the positive
reals, and the α-Laguerre coefficients bN,n = b

ξ(1)
n (gc) are given by

bN,n =
n∑
k=0

(−1)k

�(k + α + 1)

(
n

k

)
I
ξ(1)
k (gc).
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Here the I ξ(1)k are the Proposition 5.1 quotients of ψ-twisted moments for the parameter
quadruple ξ(1) = (N, α, β, δ)|δ=1, given by

I
ξ(1)
k (gc) =

(
c

a

)δk E[YN+δkψ(Y ) | Ft ]
E[YNψ(Y ) | Ft ]

(
N + δk

δk

)−1

for any reals α > −1 and β and any nonnegative integers N and k, setting δk = α − β + k.
In terms of the same coefficients bN,n, the second problem, namely Laguerre expansion of

the integrals of the N th derivatives of ϕc multiplied by the N -fold ladder height densities, is
taken care of as follows.

Theorem 5.6. Let (ψ, ϕ, Y ) be admissible and gc be continuous. Assume both that ϕc isN -fold
continuously differentiable on the subinterval I = (L(c),∞) of the positive real line and that,
for reals α > −1 and β, the following four inequalities in terms of the growth measures γc, γ0,
and δ∞ are satisfied:

−1 <
a

c
(γ0(ψ)+ γ0(f )), β <

α + 1

2
+ a

c
(γ0(ψ)+ γ0(f ))+N,

2γc(ϕ
(N)
c ) > −1, −δ∞(ϕ(N)c ) < 1

2 <
a

c
(δ∞(ψ)+ δ∞(f )).

Then the ladder height density λN(gc) is well defined and, with wβ the weight function given
by wβ(x) = xβ exp(−x) for real x > 0, we have the absolutely convergent ladder height
Laguerre reduction series representation

∫
I

(ϕ(N)a λN(gc))(x) dx =
∞∑
n=0

bN,n

∫
I

(ϕ(N)c wβL
α
n)(x) dx.

Its error terms, RN = ∑∞
n=N+1 bN,n

∫
I
(ϕ
(N)
c wβL

α
n)(x) dx, satisfy

R2
N ≤

(
‖ϕ(N)c wβ‖2

α −
N∑
n=0

b2
N,n‖Lαn‖2

α

)
Dα(β),

where Dα(β) = ∫
I
((ϕ

(N)
c wβ)

2/wα)(x) dx and, recall, ‖Lαn‖2
α = �(n+ α + 1)/n!.

Addendum 5.3. We have the following alternative representation:

‖ϕ(N)c wβ‖2
α −

N∑
n=0

b2
N,n‖Lαn‖2

α =
∞∑

n=N+1

b2
N,n‖Lαn‖2

α.

Proof of the expansion results. The expansions presented in the last two theorems are ob-
tained by specializing Theorem 5.2 and, respectively, Theorem 5.3 plus its addenda, using
Theorem 5.4 and Corollary 5.1. We discuss the two together.

First, forλN(gc) to be well defined it is sufficient, from Corollary 5.1, that the two inequalities
−2 < γ0(gc) and 0 < δ∞(gc) are satisfied. For gc to be Laguerre admissible in the sense of
Definition 5.1, we have to strengthen the first of them to −1 < γ0(gc).

In Theorem 5.5 we have to ensure that λN,β,1(gc) is additionally in L2
α(0,∞). From

Theorem 5.2, for this it is sufficient that the two inequalities 2(γ0(gc)+ N − β) > −(α + 1)
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and 2δ∞(gc) > 1 are also satisfied. The four inequalities that result can be checked to reduce
to the two inequalities of Theorem 5.5 on applying Theorem 5.4. Translating Theorem 5.1 into
the present context completes the proof of Theorem 5.5.

We obtain Theorem 5.6 by specializing Theorem 5.3. From Addendum 5.1, for this it is
sufficient that 2γc(φ) > −1 and that the two inequalities β < (α + 1)/2 + γ0(gc) + N

and −δ∞(φ) < 1
2 < δ∞(gc) are satisfied, writing φ for the N th derivative of ϕc. The

five inequalities that result are seen to reduce to the three inequalities of Theorem 5.6 using
Theorem 5.4. An application of Theorem 5.3 with δ = 1 then yields Theorem 5.6, and
Addendum 5.3 follows from translating Addendum 5.2.

It thus remains to establish the explicit formula for the I (gc) coefficient integrals. Because
any κth moment of gc is, from Lemma 4.3, given by

Mκ [gc] =
(
c

a

)κ E[Y κψ(Y ) | Ft ]
E[ψ(Y ) | Ft ] ,

this is seen to follow from Proposition 5.1, and the proofs are complete.

In summary, we have thus reduced the computation of expectations E[ρ(Y ) | Ft ] to the
computation of ψ-twisted moments E[Y κψ(Y ) | Ft ]. These functions ψ can be thought of as
factoring out the non-Laguerre-expandable part of the modified pay-off functions ρ. Typical
examples of ψ are functions with a pole at 0 of a sufficiently high order. If they are analytic,
they then behave like x−γ , with γ � 0, for small x. It is in this sense that ψ-twisted moments
are close to expectations E[Ym | Ft ] with integralm. All these results have been based on those
of Section 5.1. The proofs of the latter results are addressed in Sections 5.3 to 5.6.

5.3. Preliminaries on permanence properties of Laguerre admissibility

As a preliminary to establishing the Laguerre expandability results of Section 5.1, in this
section we study how the Laguerre admissibility of a function, in the sense of Definition 5.1,
is transferred to its ladder height densities. We establish the following permanence properties.

Proposition 5.2. Let g be any probability density function with well-defined ladder height
densities λ1(g), . . . , λk(g). If g is Laguerre admissible then all of these λ�(g) are also Laguerre
admissible, with growth orders δ∞(λ�(g)) ≥ δ∞(g) and γ0(λ�(g)) ≥ γ0(g)+ �.

To prove Proposition 5.2, first note that iterated integration as in the Section 3.1 definition of
ladder height densities preserves continuity and positivity. Property (L0) of Definition 5.1 thus
follows. To establish the remaining two properties, (L1) and (L2), it is sufficient to show that
the γ0-growth behaviour of g and the δ∞-growth behaviour of g are transferred to the λ�(g)
in the way indicated in the proposition. This we show by induction on �, with the case � = 0
holding because of the defining relation λ0(g) = g. To proceed, assume that λ�+1(g) is well
defined, whence

λ�+1(g)(x) = 1

M1[λ�(g)]
∫ ∞

x

λ�(g)(x) dx

follows from Section 3.1. Inductively, if there exists a nonzero real such that λ�(g)(x) behaves
like D� exp(−ax) as x tends to ∞, then λ�+1(g)(x) behaves like D�+1 exp(−ax) as x tends
to ∞, with D�+1 = D�/(aM1[λ�(g)]). Inductively, if there exists an a > −1 such that
λ�(g)(x) behaves like C�xa as x tends to 0, then λ�+1(g)(x) behaves like C�+1x

a+1 as x tends
to 0, with C�+1 = C�/(a + 1). This completes the induction and, thus, completes the proof of
Proposition 5.2.
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5.4. Proof of Theorem 5.2

Recalling the definition of functions inL2
α(0,∞) from Section 2.1, the proof of the Laguerre

expandability criterion, Theorem 5.2, reduces to ensuring the finiteness of the integrals∫ ∞

0
e−xxα(x−βeδxλN(g)(x))

2 dx.

With λN(g) being continuous, the existence of the above integrals reduces to studying the
integrability of their integrands near 0 and towards ∞ in the way made precise in Proposition 2.2.
The point is that the permanence properties established in Proposition 5.2 allow the thus-
obtained sufficient conditions to be written in terms of the growth measures of g itself, as
follows.

Integrability near 0 is determined by the γ0-growth order, α + 2(γ0(λN(g)) − β), of the
integrand, which has to be greater than −1. Sinceγ0(λN(g)) ≥ γ0(g)+N , from Proposition 5.2,
this is implied by the condition α + 2(γ0(g)+N − β) > −1 of the theorem.

Integrability towards ∞ is determined by the δ∞-growth order, 1 + 2(δ∞(λN(g)) − δ), of
the integrand, which has to be positive. Since δ∞(λN(g)) ≥ δ∞(g), from Proposition 5.2, this
is implied by the condition 1 + 2(δ∞(g) − δ) > 0 of the theorem. The proof of Theorem 5.2
is thus complete.

5.5. Proof of Theorem 5.3

The argument proving the Theorem 5.3 ladder height reduction series and Addendum 5.1
amounts to the argument used to establish Schröder (2005, Theorem 3.2 and Addendum 3.4),
which was omitted in that paper. Writing λ ≡ λN,κ(g) andφ ≡ φκ to simplify notation, the idea
is as follows. If λ is in L2

α(0,∞), let λ = ∑∞
n=0 bnL

α
n(y) be its α-Laguerre expansion, writing

bn ≡ b
ξ
n(g) for its nth α-Laguerre coefficient. If interchanging integration with Laguerre series

summation is justified, then
∫
I

(φλ)(x) dx =
∫
I

( ∞∑
n=0

bn(φL
α
n)(x)

)
dx =

∞∑
n=0

bn

∫
I

(φLαn)(x) dx,

which is the first assertion of the theorem. Reverting to definitions, a formal computation of
the coefficients gives

bn = 〈λ,Lαn〉α
〈Lαn, Lαn〉α

=
n∑
k=0

αn,k

〈Lαn, Lαn〉α
∫
I

xk(wαλ)(x) dx,

where αn,k (from Section 2.1) is the coefficient of zk in Lαn(z). The theorem’s representation
for bn now follows on inspection, recalling that 〈Lαn, Lαn〉α = �(n+ α + 1)/n!.

Establishing the theorem thus reduces to justifying the above term-by-term integration. The
difficulty here is to translate the convergence of the series to be proved into the convergence in
α-mean of the Laguerre series of λ. Thus, first write

λ =
N∑
n=0

bnL
α
n + rN , where rN =

∞∑
n=N+1

bnL
α
n.

Integrating the error terms rN , the task is then to establish that

lim
N→∞RN = 0, where RN =

∫ ∞

0
(φrN)(y) dy,
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from the convergence of the rN to 0 inα-mean. To do so, we proceed as follows. Decompose the
integrand of anyRN as the product of the functions φ/

√
wα and

√
wαrN , majorize the absolute

value of the integral by taking the absolute value under the integral sign, and then apply the
Hölder inequality of Dunford and Schwartz (1957, Lemma 2, p. 119) with p = q = 2, to obtain

R2
N ≤

∫ ∞

0

φ2

wα
(y) dy

∫ ∞

0
(wαr

2
N)(y) dy = Dξ‖rN‖2

α.

Under the conditions of the theorem, this inequality shows how RN goes to 0 with ‖rN‖2
α as N

tends to ∞. At this point we thus have convergence of both the theorem’s series and its series
representation forRN . Absolute convergence of the former series then follows from Riemann’s
theorem on conditionally convergent series; see Apostol (1974, Theorem 8.33, p. 197).

The norm factor of the last inequality is analyzed using Hilbert space theory along the lines
of Katznelson (1976, 5.2 Lemma, p. 28). For this, expand ‖rN‖2

α = 〈rN , rN 〉α bilinearly on
substitution of rN = λ − (b0L

α
0 + · · · + bNL

α
N) and use the fact that the Lαn are orthogonal

under 〈 , 〉α , to obtain

‖rN‖2
α = 〈λ, λ〉α − 2

N∑
n=0

bn〈λ,Lαn〉α +
N∑
n=0

b2
n〈Lαn, Lαn〉α.

Here, substitute for 〈λ,Lαn〉α from the coefficient formula bn = 〈λ,Lαn〉α/〈Lαn, Lαn〉α . In the
above inequality for R2

N we thus first obtain

R2
N ≤ Dξ

(
‖λ‖2

α −
N∑
n=0

b2
n‖Lαn‖2

α

)
,

which is the inequality for R2
N in the theorem. On the other hand, taking the limit as N tends

to ∞, Parseval’s formula results in

0 = lim
N→∞ ‖rN‖2

α = ‖λ‖2
α −

∞∑
n=0

b2
n‖Lαn‖2

α

(see Katznelson (1976, 5.4 Lemma, p. 29)), which gives the assertion of Addendum 5.2.
Establishing the first addendum principally proceeds by reduction to the local properties

measured by γ0 and δ∞ along the lines of Section 2.2. First, the inequalities

−1 < α + 2(γ0(g)+N − β) and 0 < 1 + 2(δ∞(g)− δ),

from Theorem 5.2, are sufficient for λN,κ(g) to be inL2
α(0,∞). Arguing as for Proposition 2.2,

we find the inequalities

−1 < 2γc(φ) and 0 < 2(δ∞(φ)+ δ)− 1

to be sufficient for φ2
κ/wα to be in L1(I ), taking into account the fact that I = (c,∞) with

c > 0. These four inequalities can be checked to combine into the three given inAddendum 5.1.
The proofs of Theorem 5.3 and its two addenda are thus complete.
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5.6. Computing the integrals I
ξ

k
(g)

In this section, for particular choices of the parameter quadruples ξ = (N, α, β, δ) of
Section 5.1, we compute the integrals

I
ξ
k (g) =

∫ ∞

0
yα−β+ke(δ−1)yλN(g)(y) dy.

For δ = 1 they are equal to the moments Mα−β+k[λN(g)], and the second formula of Corol-
lary 3.1 applies to give Proposition 5.1.

To compute them in more general situations, express λN(g) by the integral displayed in
Theorem 3.1. Then apply Tonelli’s theorem and multiply out the power of w − x in the
resulting integrand. Thus, with both sides either finite or infinite,

I
ξ
k (g) = N

MN [g]
N−1∑
�=0

(−1)�
(
N − 1

�

)
J�,

where

J� =
∫ ∞

0
g(w)

wN

w�+1

∫ w

0
e(δ−1)yyK� dy dw

withK� = α−β+k+�. If δ 	= 1 then the inner integrals of the J� are values of the incomplete
gamma function; see Erdélyi et al. (1953, Chapter IX) or Press et al. (1992, Section 6.2) for
this function. If α − β is integral then these are expressible in terms of elementary functions.
Assuming that any K� is a nonnegative integer, we thus obtain

J� = K�!
(δ − 1)K�+1MN−(�+1)[g]

−
K�∑
p=0

K�!
(K� − p)! (δ − 1)p+1

∫ ∞

0
e−(δ−1)wwN+K�−(p+1)g(w) dw,

with both sides either finite or infinite. Here, notice that
∫ ∞

0 waebwg(w) dw = E[Wa exp(bW)]
if g is the probability density function of any random variable W .

6. Epilogue: functionals with two ladder height reduction series

In this section we identify a class of stochastic functionals for which our approach in this paper
enables a synthesis of the alternative points of view of Dufresne (2000) and Schröder (2005). On
the one hand, in Section 6.2 we show how such functionals can be represented as an absolutely
convergent series of complex numbers in the spirit of Schröder (2005), which should enable their
numerical computation. On the other hand, in Section 6.3 we show how to explicitly construct
such functionals as elements of Hilbert spaces, by giving an explicit representation in terms of
explicit Hilbert space bases. This type of representation is in the spirit of Dufresne (2000) and,
as indicated in Section 6.4, our point of view is that this approach should enable the construction
of such functionals from, in particular, statistical data.

6.1. Basic setting

We work in the setting introduced in Sections 4.1, 4.2, and 5.1, and thus consider expectations

E[ρ(Y ) | Ft ]
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conditional on information Ft at any time t in [t0, T ]. Here Y is any positive random variable
and ρ is any function on the positive reals such that ρ(Y ) is FT -integrable and can be factorized
as

ρ(x) = ψ(x)ϕ(a, x), x ∈ (0,∞),

for functions ψ , on the positive reals, and ϕ, on two copies of the positive reals, such that
the triple (ψ, ϕ, Y ) is admissible in the sense of Definition 4.1. Thus, E[ψ(Y ) | Ft ] is finite
and positive and there are functions χ and L from the positive reals into themselves such that,
for any real c > 0, we have ϕ(c, (0, L(c)]) = {0} and ϕ(λc, λx) = χ(λ)ϕ(c, x) for any
reals λ, x > 0. While in Section 4.3 we gave a systematic construction of such functions ϕ,
immediate examples are furnished by the pay-off functions of call options; see Example 4.2 for
a discussion.

For convenience, we assumeψ and f ≡ fY,t , the density of Y conditional on information Ft
at time t , to be continuous functions on the positive reals, and for any real c > 0 denote by ϕc
the function given by ϕc(x) ≡ ϕ(c, x), for any real x > 0. Notice that the growth measures γA
and δA (see Section 2.2) can then be applied to ψ and f , in particular.

6.2. The first type of reduction series

Using the concepts and the notation of Section 6.1, in this section we show how ladder height
reduction series provide a representation for the stochastic functionals of Section 6.1 in terms
of a Laguerre reduction series in the spirit of Schröder (2005). Our precise result about these
absolutely convergent series of complex numbers is as follows.

Theorem 6.1. In the setting of Section 6.1, let c > 0, α > −1, and β be any reals such that
(wβ/wα)ϕc is in L2

α(0,∞) and the following two inequalities in terms of the growth measures
γ0 and δ∞ of the functions ψ and f = fY,t are satisfied:

β − α + 1

2
<
a

c
(γ0(ψ)+ γ0(f )) and

1

2
<
a

c
(δ∞(ψ)+ δ∞(f )).

Then we have the absolutely convergent Laguerre reduction series representation

E[ρ(Y ) | Ft ] = χ

(
a

c

) ∞∑
n=0

an

〈
wβ

wα
ϕc, L

α
n

〉
α

,

whose remainder terms, RN = χ(a/c)
∑∞
n=N an〈(wβ/wα)ϕc, Lαn〉α , satisfy

R2
N ≤

∥∥∥∥wβwα ϕc
∥∥∥∥

2

α

χ2
(
a

c

) ∞∑
n=N

a2
n‖Lαn‖2

α,

recalling that ‖Lαn‖2
α = �(n+ α + 1)/n!.

Here, the wα are the weight functions of Section 2.1, given by wα(x) = xα exp(−x), and
the coefficients an depend on α, β, a, and c through linear combinations ofψ-twisted moments
of Y , as follows, setting δk = α − β + k:

an =
n∑
k=0

(−1)k

�(k + α + 1)

(
n

k

)(
c

a

)δk
E[Y δkψ(Y ) | Ft ].

This result can be checked to follow essentially from the specialization of Theorem 5.6 to
the case N = 0. Briefly, its relevance is in that it reduces the computation of E[ρ(Y ) | Ft ]
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to the computation of the scalar products 〈(wβ/wα)ϕc, Lαn〉α and the ψ-twisted moments
E[Y κψ(Y ) | Ft ]. From Section 2.1, the scalar products are integrals of ϕc. Together with
the ψ-twisted moments they may therefore be considered primitives of the problem.

6.3. The second type of reduction series

As a second step, this section addresses the construction of stochastic functionals as elements
of Hilbert spaces using ladder height reduction series. For this we have to amend the setting of
Section 6.1, which we adopt in this section.

For any positive integer N , we make the following three additional assumptions. First,
for some, and thus any, positive real c, let ϕc be (N − 1)-fold continuously differentiable on
(L(c),∞). Second, assume that the (N − 1)th derivative, ϕc(N−1), is then a nonzero constant.
Third, let c be such that the inequalities

0 < γA(ϕ
(�)
c )+ �+ 1 + a

c
(γA(ψ)+ γA(f )), A ∈ {L(c),∞},

hold for any � in {0, 1, . . . , N−2}. Here f ≡ fY,t is the density of Y conditional on information
at time t .

Our precise result, generalizing findings of Dufresne (2000), is then as follows.

Theorem 6.2. In the above setting, let the reals α > −1 and β satisfy the following two
inequalities:

1 < 2
a

c
(δ∞(ψ)+ δ∞(f )) and max{2β − (2N + α + 1),−2} < 2

a

c
(γ0(ψ)+ γ0(f )).

Then we have the ladder height reduction series representation

E[ρ(Y ) | Ft ] = wβ(L(c))

∞∑
n=0

bnL
α
n(L(c)),

which is the evaluation at the point L(c) of the element
∑∞
n=0 bnL

α
n of the Hilbert space

L2
α(0,∞) and, furthermore, is absolutely convergent as a series of complex numbers.

Here the coefficients bn depend onα, β, a, c, andN through linear combinations ofψ-twisted
moments of Y , as follows:

bn =
n∑
k=0

bn,k E[YN+δkψ(Y ) | Ft ]

with

bn,k = ϕ(N−1)
c (x0)

αn,k

‖Lαn‖2
α

χ

(
a

c

)
(c/a)N+δk
(δk + 1)N

and δk = α − β + k.

Moreover, here x0 is any element of (L(c),∞), wβ(x) = xβ exp(−x), and (λ)N is the N th
Pochhammer symbol of any complex number λ, recursively defined by (λ)0 = 1 and (λ)N =
(λ+N − 1)(λ)N−1 for N ≥ 1.

Proof of Theorem 6.2. We prove the theorem by specializing Theorem 5.5. In fact, the two
inequalities displayed in Theorem 5.5 imply that the ladder height densities λ0(gc), . . . , λN(gc)
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are well defined. By successively using the log-additivity of γA (see Proposition 2.1), the
permanence properties in Proposition 5.2, and Theorem 5.4, we then have

γA(ϕ
(�)
c λ�+1(gc)) = γA(ϕ

(�)
c )+ γA(gc)+ �+ 1 ≥ γA(ϕ

(�)
c )+ �+ 1 + a

c
(γA(ψ)+ γA(f )).

The initial set of 2(N − 1) inequalities in γA thus imply that the limits of (ϕc(�)λ�+1(gc))(x)

as x tends to L(c) and to ∞ are equal to 0 for � in {0, 1, . . . , N − 2}. Hence, Corollary 4.2
gives

E[ρ(Y ) | Ft ] = ϕ(N−1)
c (x0)aN−1(gc)λN(gc)(L(c)),

where

aN−1(gc) = χ

(
a

c

)
(c/a)N

N ! E[YNψ(Y ) | Ft ].
Now substitute for λN(gc)(L(c)) the expansion of Theorem 5.5, namely

λN(gc)(L(c)) = wβ(L(c))

∞∑
n=0

bN,nL
α
n(L(c))

with

bN,n =
n∑
k=0

αn,k

‖Lαn‖2
α

(
c

a

)δk E[YN+δkψ(Y ) | Ft ]
E[YNψ(Y ) | Ft ]

(
N + δk

δk

)−1

.

On collecting terms, the proof of Theorem 6.2 is complete.

6.4. Constructing functionals from statistical data

A principal raison d’être for developing ladder height reduction series seems to be their
use not in computing stochastic functionals but rather in answering questions related to the
vector space or Hilbert space structure of the dual of L2

α(0,∞). Ordering aspects of such
functionals would furnish examples of such questions, but we want to stress methods for their
actual construction here.

In briefly discussing this last theme, we assume both that the Section 6.1 function L is the
identity mapping and that the convergence of the Theorem 6.2 reduction series in L2

α(0,∞) is
determined by the ratio θ = c/a ranging over some nonempty open subinterval of the positive
reals. This is a situation typical in option valuation where the parameter a can be interpreted as
being, or as being related to, the strike price of a call option. In this picture it makes sense to
think of the parameter a as ranging over the whole positive real line, and to require at time t an
empirically observed function for Rt(aθ) = E[(ψϕa)(Y ) | Ft ]. Assume that such a function
can be constructed in L2

α(0,∞) with Laguerre expansion

Rt(aθ) = wβ(aθ)

∞∑
n=0

b∗
nL

α
n(aθ), a ∈ (0,∞).

Its Laguerre coefficients b∗
n are thus determined from empirical data. To connect with this

paper’s approach, at this point now turn Theorem 6.2 into an ansatz by postulating the validity
of the representation,

Rt(aθ) = wβ(aθ)

∞∑
n=0

bnL
α
n(aθ), a ∈ (0,∞),
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given there. Since we have thus arrived at two representations of the same function in terms of
the Hilbert basis of L2

α(0,∞) furnished by the α-Laguerre polynomials Lαn , their coefficients
must be equal. For any nonnegative integer n, we thus obtain, on comparison,

b∗
n =

n∑
k=0

bn,k E[YN+δkψ(Y ) | Ft ],

where

bn,k = ϕ(N−1)
c (x0)

αn,k

‖Lαn‖2
α

χ

(
1

θ

)
θN+δk

(δk + 1)N

is nonzero for any k. Solving this system of equations determines theψ-twisted moments of Y .
These values can now be input to the Laguerre reduction series of Theorem 6.1 for numerical
use, or, proceeding optimistically, used to determine the law of Y .

On a conceptual level, the basis for this is the ladder height density representation furnished
by Corollary 4.2. More precisely, recall that this corollary states that the stochastic functionals
under consideration are equal to a nonzero constant times the value of a ladder height density.
Such ladder height representations extend to a multidimensional framework. In fact, if g is
the joint density of n positive random variables, then the iterative construction of Section 3.1
extends to one of kth ladder height densities λk(g) on the positive orthant, P+ = R

n
>0, of R

n,
as follows. Set λ0(g) = g and recursively define

λk+1(g)(x) = 1

M1[λk(g)]
∫
P+(x)

λk(g)(w) dw

for any x in P+ if the first multimoment,

M1[λk(g)] =
∫
P+
w1 · · ·wnλ(g)(w) dw,

of λk(g) is finite and positive. Here P+(x) is the translation of P+ by the vector x, i.e. P+(x)
consists of all vectors w = (w1, . . . , wn) in P+ such that wk > xk for all k. This construction
preserves, in particular, any product structure of g. If g is a product of functions of one
positive variable, then the results of Sections 4 and 5 carry over verbatim to any λk(g) when
applied to each of its factors separately. In a general situation, using multidimensional Laguerre
expansions as in Thangavelu (1993), extensions of the results suggest themselves, but care has
to be taken to make them rigorous. We hope to be able to discuss all this in fuller detail in
another publication.

6.5. A summary with a view towards generality

The concepts and constructions developed in this paper apply in greater generality, in part
at the level of Banach space-valued random variables. While we have been seeking to give
an exemplary discussion which can be adapted to the requisite needs of generality, it may be
worthwhile to summarize one of the key notions of the approach, the reduction series, both
from this point of view and from a slightly more general perspective.

Consider any random variable Y with values in any subinterval I = (a, b) of the reals. Then
let w be any positive function on I which is continuous almost everywhere and for which the
product, w|q|, of w and the absolute value of any polynomial q is integrable on I . Proceeding
as in Section 2.1, we define L2

w(I) to be the space of all real-valued functions F on I which
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are w-square integrable, i.e. such that ‖F‖2
w = ∫

I
w(x)|F(x)|2 dx < ∞. The norm ‖ · ‖w is

induced by the bilinear form 〈F,G〉w = ∫
I
w(x)F (x)G(x) dx, and when equipped with this

form L2
w(I) becomes a Hilbert space. As such it has a Hilbert space basis, P , by which we

understand a maximal subset of pairwise-orthogonal, nonzero-norm elements of L2
w(I).

To demonstrate the analogues of the results of Section 6.2 in this setting, we make the
necessary additional assumption that the quotient g = fY /w of the density fY of Y divided by
the weight w is in L2

w(I). Hence, we have the representation

g = fY

w
=

∑
p∈P

app

with coefficients

ap = 〈p, g〉w
〈p, p〉w = E[p(Y )]

〈p, p〉w ,
which is convergent inw-mean. By general theory, at most countably many of these coefficients
are nonzero, and we let {pn : n ∈ Zn≥0} be an enumeration of a subset of P such that ap = 0
for all p in its complement. Now define the N th order error term, rN , of this representation by

rN =
∞∑
k=N

apkpk,

which is such that ‖rN‖w goes to 0 asN tends to ∞. Proceeding along the lines of Section 6.2,
for functionals of Y associated with sufficiently nice functions ρ on I we thus obtain the
representation

E[ρ(Y )] =
N−1∑
k=0

E[p(Y )] 〈pk, ρ〉w
〈pk, pk〉w + RN,

whose remainder terms, RN , satisfy the estimate

|RN | ≤ ‖ρ‖w‖rN‖w
and will also converge to 0 as N tends to ∞ if ρ is in L2

w(I).
The second type of reduction series, from Section 6.3, can be similarly generalized to the

present situation, in both cases, and a reduction thus occurs from studying general functionals
E[ρ(Y )] to studying functionals E[p(Y )] associated with the Hilbert space basis elements p.

A crucial issue, however, is if this reduction increases the tractability of the problem. A test
case is furnished by option valuation where ρ is part of an affine linear map and the problems in
computing E[ρ(Y )] originate principally in the irrationalities caused by the pertinent truncations
of the density of Y . If now, for example, Bessel functions Jα turn out to be elements of P , the
above reduction entails a reduction to expectations E[Jα(Y )]. These will in general have more
severe irrationalities than do the expectations in the original problem and, so, will in general be
more difficult to understand and handle explicitly. To increase tractability, we would therefore
have to require that the functions in P not tend to increase the severity of the irrationalities in
the problems; polynomials should possess such properties to a high degree.

Asking for Hilbert space bases that consist of polynomials is equivalent to requiring that only
the zero functional of L2

w(I) takes the value 0 on all polynomials. To test this, it is sufficient to
require it on the monomials qn(x) = xn with n any nonnegative integer. Moreover, using the
Riesz representation theorem, a reduction thus occurs to the following moment problem:

for any nonzero F ∈ L2
w(I), there is an index nF with 〈qnF , F 〉w 	= 0,
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or, equivalently,
〈qnF , F 〉w = 0 for all n ∈ Z≥0 only if F = 0.

If this moment problem holds for w, Gram–Schmidt orthogonalization of the qn will produce
a basis P with the desired properties. With counterexamples furnished by many standard
choices of w, this is, however, a restrictive condition. It may be argued that it is sufficient to
have the density quotients fY /w in the closure of the polynomials. This, however, reduces to
constructing this closure inL2

w(I) and, thus, to solving a possibly more difficult problem. In this
way, the study of stochastic functionals finally relates to a classical problem: the construction
of ‘good’ orthogonal polynomials.
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