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ON A GENERALIZED DIVISOR PROBLEM II

YUK-KAM LAU

Abstract. We investigate the Ω±-result of ∆a(x) and its number of sign-
changes in an interval [1, T ], denoted by Xa(T ), for −1 ≤ a < −1/2. We can
prove that T �a Xa(T ) which is the best possible in order of magnitude.

§1. Introduction

Let −1 < a < 0 and define

∆a(x) =
∑

n≤x

σa(n) − ζ(1 − a)x− ζ(1 + a)

1 + a
x1+a +

1

2
ζ(−a)(1.1)

where σa(n) =
∑

d|n d
a. The case a = −1 is defined by taking the right-

hand limit. Here, we do not half the last term in the sum when x is

an integer, in order to match the definition of some authors and to help

simplifying later calculations. As was discussed in [4], the behaviour of

∆a(x) for −1 ≤ a < −1/2 is different from the case −1/2 < a ≤ 0 and

a = −1/2 appears as a critical point. Furthermore, we find in [5] that the

limiting distribution for the case −1 ≤ a < −1/2 is symmetric while the

case a = 0 is not. This further supports the change in nature. Therefore,

we want to explore more properties of ∆a(x) in these two ranges in order

to realize their differences.

In [4], we investigated the oscillatory nature of ∆a(x) for −1/2 ≤ a < 0.

In this paper, we continue our study for the other case by considering the

extreme values and the number of sign-changes of ∆a(x). Certainly, large

extreme values show a great amplitude of fluctuation and plenty of sign-

changes tell us that it is very oscillatory.

Through the mean square formula (see [4, Section 1]), we expect that

∆a(x) � xε when −1 ≤ a < −1/2. The theorem below gives a result in the

opposite direction.
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Theorem 1. We have, for −1 < a ≤ −1/2,

∆a(x) = Ω±

(

exp

(

(1 + o(1))
1

1 − |a|

( |a|
2

)1−|a| (log x)1−|a|

log log x

))

and ∆−1(x) = Ω±(log log x).

This result, which seems to be the sharpest to date, was obtained by

Pétermann [9] for −1 ≤ a < −25/38. We extend the range of a up to −1/2

by his argument together with a simple idea, which is the use of an averaged

result of G|a|(x) (in Lemma 2.3) instead of a bound derived by the method

of exponent pairs.

Concerning with the sign-changes of ∆a(x), Pétermann studied this

problem as well and he obtained in [6] that

Xa(T ) ≥ 8

3

(

1 − ζ(2|a|)
4ζ(2 + 2|a|)

)

T + o(T )(1.2)

where Xa(T ) denotes the number of sign-changes of ∆a(x) in [1, T ]. (Here,

a sign-change of a function f at x0 means f(x0−)f(x0+) < 0.) It should

be remarked that (i) Xa(T ) � T and (ii) the main term in (1.2) is positive

only when a < −0.6236622010 . . . . It is apparent that ∆a(x) decreases by

an amount of −ζ(1 − a) + o(1) (as n → ∞) when x varies over [n, n + 1)

where n is an integer. The sign-changes counted in Xa(T ) may be due to

the fact that plenty of ∆a(n) (n ∈ N) just lie above the x-axis. This leads to

the consideration of sign-changes at integral points. In [2] and [8], problem

of this type has been studied for the Euler Phi function. Let us denote by

Na(T ) the number of sign-changes on integers (i.e. ∆a(n)∆a(n + 1) < 0

with n ∈ N). Clearly, the determination of Na(T ) is harder and it was

shown in [8] that N−1(T ) � T 0.71468244.

Our next result can extend the range of a in (1.2) to −1/2 and this

shows the consistency in oscillatory behaviour of ∆a(x) for a ∈ [−1,−1/2).

(Note that the case a = −1/2 is not included.) Moreover, it yields a lower

bound for N−1(T ). Let us say that a real-valued function f(x) has a sign-

change behind an integer n if f(n)f(n+ r) < 0 and

f(n+ 1) = f(n+ 2) = · · · = f(n+ r − 1) = 0

for some natural number r (independent of n). Then we have
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Theorem 2. Let Na,0(T ) = Card{n ∈ [1, T ] : ∆a(x) has a sign-change

behind n}. Then, Na,0(T ) �a T for −1 ≤ a < −1/2 and all sufficiently

large T .

An immediate consequence is Xa(T ) � T for −1 ≤ a < −1/2 by

looking at the graph of ∆a(x). Another consequence is an improvement of

the lower bound for N−1(T ), which is best possible in order of magnitude.

Corollary. We have N−1(T ) � T .

§2. Proof of Theorem 1

To prove Theorem 1, we need some lemmas. Lemma 2.1 is our ba-

sic tool. By using it, we obtain Lemmas 2.2 and 2.3 which rely on the

arguments in [7] and [9].

Lemma 2.1. For −1 ≤ a ≤ −1/2, let ψ(u) = u − [u] − 1/2 where [u]
is the integral part of u,

∆a(t) = −
∑

n≤
√

t

naψ

(

t

n

)

− ta
∑

n≤
√

t

n|a|ψ

(

t

n

)

+O(ta/2).

For the case −1 < a ≤ −1/2, it was proved in Chowla [1, Lemma 15]

but, in fact, the argument applies to the case a = −1 as well.

Define Ga(x) =
∑

n≤√
x n

aψ(x/n). Then one can find the following

result in [7] or [9]. We include a proof here as it helps us to prove the next

lemma.

Lemma 2.2. Let A be a squarefree integer and B be an integer with

|B| ≤ A− 1. For −1 ≤ a ≤ −1/2, we have

1

X

∑

m≤X

Ga(Am+B) =
∑

n≤
√

AX+B

(A,n)na−1ψ

(

B

(A,n)

)

+O(A(AX)a/2)

where (A,n) is the greatest common divisor of A and n. In particular,

1

X

∑

m≤X

Ga(Am) = −1

2
ζ(1 − a)

∏

p|A
(1 + pa − pa−1) +O(A(AX)a/2),

1

X

∑

m≤X

Ga(Am− 1) =
1

2
ζ(1 − a)

∏

p|A
(1 + pa − pa−1)

−ζ(1 − a) +O(A(AX)a/2).
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Proof. Let n∗ = n/(A,n). Then it is not difficult to see that

∑

u≤m≤v

ψ

(

Am+B

n

)

=
v − u

n∗

n∗−1
∑

m=0

ψ

(

m

n∗
+
B

n

)

+O(n∗)(2.1)

=
v − u

n∗
ψ

(

B

(A,n)

)

+O(n∗).

(See [7, Lemma 1] for details.) From the definition of Ga(x) and (2.1),

1

X

∑

m≤X

Ga(Am+B)(2.2)

=
1

X

∑

n≤
√

AX+B

na

(

(X − max(1,
n2 −B

A
))

1

n∗
ψ

(

B

(A,n)

)

+O(n∗)

)

=
∑

n≤
√

AX+B

(A,n)na−1ψ

(

B

(A,n)

)

− X−1
∑

n≤
√

AX+B

(A,n)na−1 max

(

1,
n2 −B

A

)

ψ

(

B

(A,n)

)

+ O



X−1
∑

n≤
√

AX+B

na+1



 .

The O-term is obviously � A(AX)a/2 and the second sum in (2.2) is

� (AX)−1
∑

n≤
√

AX

(A,n)na+1 +AX−1(2.3)

� (AX)−1
∑

d|A
da+2

∑

n�
√

AX/d

na+1 +AX−1

� (AX)a/2σ0(A) +AX−1 � A(AX)a/2.

This yields the first part of Lemma 1.

When B = 0, we have ψ(0) = −1/2 and the first sum in (2.2) is equal
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to

−1

2

∑

n≤
√

AX

na−1(A,n)

= −1

2

∑

d|A
da

∞
∑

n=1
(n,A/d)=1

na−1 +O(A(AX)a/2)

= −1

2
ζ(1 − a)

∏

p|A
(1 + pa − pa−1) +O(A(AX)a/2).

The case B = −1 follows by similar argument with ψ(−1/(A,n)) = 1/2 −
1/(A,n).

Lemma 2.3. Let −1 ≤ a ≤ −1/2. For B = 0 or −1, we have

1

X

∑

m≤X

(Am+B)aG|a|(Am+B) � (AX)a/2(A+ (AX)ε)

where A is a squarefree integer.

Proof. Consider the case B = 0, we have, from (2.1),
∑

u≤m≤v ψ(Am
n ) �

(v − u)/n∗ + n∗. This yields

∑

n2/A≤m≤X

maψ

(

Am

n

)

� Xa+1

n∗
+

(

n2

A

)a

n∗.

Then,

X−1
∑

m≤X

(Am)aG|a|(Am)

= AaX−1
∑

n≤
√

AX

n|a|
∑

n2/A≤m≤X

maψ

(

Am

n

)

� AaX−1
∑

n≤
√

AX

n|a|
(

Xa+1

n∗
+

(

n2

A

)a

n∗
)

� (AX)a
∑

n≤
√

AX

n|a|−1(A,n) +X−1
∑

n≤
√

AX

na+1

� σ0(A)(AX)a/2 +A(AX)a/2
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by using the argument in (2.3).

To prove the case B = −1, it suffices to check thatG|a|(Am)−G|a|(Am−
1) � (Am)|a|/2+ε. This follows from the observation that if n does not
divide Am,

ψ

(

Am

n

)

− ψ

(

Am− 1

n

)

=
1

n
,

and � 1 otherwise.

Proof of Theorem 1. Taking A =
∏

2<p≤y p where y is chosen such that

A � X |a|/(2+a), by Lemmas 2.2 and 2.3, we have immediately that

X−1
∑

m≤X

∆a(Am) =
1

2
ζ(1 − a)

∏

p|A
(1 + pa − pa−1) +O(A(AX)a/2),

and

X−1
∑

m≤X

∆a(Am− 1)

= −1

2
ζ(1 − a)

∏

p|A
(1 + pa − pa−1) + ζ(1 − a) +O(A(AX)a/2).

The value of
∏

2<p≤y(1 + pa − pa−1) is equal to

exp





∑

2<p≤y

pa +O(
∑

2<p≤y

p2a)



(2.4)

=

{

exp((1 + o(1))y1+a/((1 + a) log y), if −1 < a ≤ −1/2
exp(log log y +O(1)) if a = −1,

by the Prime Number Theorem. Observing that sup1≤u≤AX ∆a(u) ≥ X−1
∑

m≤X ∆a(Am) (and sup1≤u≤AX(−∆a(u)) ≥ −X−1
∑

m≤X ∆a(Am − 1)),

our result follows after replacing AX by x. Noting that x � X 2/(2+a) �
e2y/|a|, we have y = (|a| log x)/2 +O(1).

§3. Proof of Theorem 2 and Corollary

Our approach is to show that there are many integers at which ∆a(x)

takes negative values. From the definition, we see that the graph of ∆a(x)

is essentially a straight line of negative slope on each interval [n, n+ 1). If
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the number of integers n satisfying ∆a(n) > 0 is small, then the absolute

value of the integral of ∆a(x) should be large since the positive area cannot

give much cancellation to the negative. We find that it is not the case and

hence Theorem 2 can be proved. (This method can be applied to the case

of the Euler Phi function as well.)

To complete the first task, we consider the distribution functions. Let

Pa,X(u) = X−1 Card{1 ≤ n ≤ X : ∆a(n) ≤ u} and Da,X(u) = X−1µ{t ∈
[1, X] : ∆a(t) ≤ u} where Card means the cardinality and µ is the Lebesgue

measure. We have

Da,X(u− ζ(1 − a)) ≤ Pa,X(u) ≤ Da,X(u) +O(X−1).(3.1)

(This can be seen as follows: by (1.1), for any t ∈ [n, n+ 1),

∆a(n) − ∆a(t) = (t− n)(ζ(1 − a) + ζ(1 + a)ξa)

for some ξ ∈ (n, t). As ζ(1 + a) < 0 for −1 < a < 0, ∆a(t) ≤ ∆a(n) for all

sufficiently large n. This yields the right side. Also, it follows that ∆a(n) ≤
∆a(t)+ζ(1−a) and hence the left side of (3.1).) From [5, Theorem 3], we see

that Da(u) = limX→∞Da,X(u) is a symmetric (i.e. 1 −Da(u) = Da(−u))
probability distribution function. Moreover, we can prove

Lemma 3.1. For all real u, 0 < Da(u) < 1.

Proof. As a distribution function is increasing, it suffices to show
Da(−u) > 0 for all sufficiently large u. Let u be any large number, and
define y by the equations log u = y1+a/ log y if −1 < a < −1/2 or u = log y
if a = −1. Write A =

∏

2≤p≤y p, then σa(A) =
∏

p|A(1 + pa) � u (see
(2.5)). Since σa(Am) ≥ σa(A) for any integer m, we get

∆a(Am) − ∆a(Am− 1) = σa(Am) +O(1) � u.

This implies |∆a(Am)| � u or |∆a(Am− 1)| � u; hence

1 − Pa,X(u) + Pa,X(−u) = X−1 Card{1 ≤ n ≤ X : |∆a(n)| ≥ u} � A−1.

Using (3.1) and taking X → ∞, we deduce that

1 −Da(u− ζ(1 − a)) +Da(−u) � A−1 > 0.

Replacing u by u+ ζ(1 − a) and observing that Da(−u) ≥ Da(−u− ζ(1 −
a)) (since ζ(1 − a) > 0), we conclude with the symmetry of Da(u) that
2Da(−u) = 1 −Da(u) +Da(−u) > 0. Our proof is then complete.

The next lemma is to show that the integral of ∆a(x) is small on aver-
age.
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Lemma 3.2. Let −1 ≤ a < −1/2 and 1 � h �
√
T . Define Ea(t) =

∫ t
0 ∆a(v) dv. We have

∫ 2T

T
(Ea(t+ h) −Ea(t))

2 dt� Th3+2a min((1 − |a|)−1, log h).

Proof. From [3], we can establish a (truncated) Voronoi-type formula
for Ea(t). This is obtained by taking δ = 1 + a, ρ = 1, φ(s) = ψ(s) =
π−sζ(s)ζ(s − a) and ∆(s) = Γ(s/2)Γ((s − a)/2) there. Then we see that
an = bn = σa(n), λn = µn = πn, A = 1, h = 4, k0(ρ) = −3/4, e0(ρ) =
1/(2

√
2π) and θρ = 3/4 + a/2 as ρ = 1. Noting that Ea(t) = π−1EA,1(πt),

we apply [3, Theorem 1] with X = 2T , Z = 4T and observe that the second
sum is � T−1/2

∑

n<4T σa(n)n−(3/4+a/2) min(1, |t − n|−2) � 1. We get for
t ∈ [T, 2T ],

Ea(t) =
1

2
√

2π2
t3/4+a/2

∑

n≤4T

σa(n)

n5/4+a/2
wT (n) cos

(

4π
√
nt− 3π

4

)

+O(1)

where wT (u) = 1 for 1 ≤ u ≤ 2T and wT (u) = 2−u/(2T ) for 2T ≤ u ≤ 4T .
Then Lemma 3.2 is complete with the argument in [4, Theorem 1].

Proof of Theorem 2. Let ε > 0 be a small fixed number. By Lemma 3.1,
Da(−ε − ζ(1 − a)) is a positive constant. Hence, for all sufficiently large
T , we have from (3.1) that Pa,T (−ε) ≥ Da,T (−ε − ζ(1 − a)) ≥ κ for some
positive constant κ depending on a and ε. Let H be a large number which
will be chosen later. Cutting the interval [T, 2T ] into subintervals of length
H, there are at least κT/H −O(1) subintervals, each of which contains an
integer n such that ∆a(n) < −ε < 0. We can then form a class C from
these subintervals such that (i) the cardinality of C ≥ κT/(4H), (ii) any
two intervals in C is separated by a distance not less than 2H, and (iii) for
any I ∈ C, ∆a(n) < 0 for some n ∈ I. This can be done by picking one
from every three consecutive subintervals.

Now, we single out the interval I ∈ C which has the following property:
there is nI ∈ I such that ∆a(m) ≤ 0 for all nI ≤ m ≤ nI + 2H. Let
M be the number of such intervals. When ∆a(m) ≤ 0,

∫m+1
m ∆a(u) du ≤

−ζ(1 − a)/2 +O(ma). Then, we have for all real t ∈ [nI , nI +H],

|Ea(t+H) −Ea(t)| =

∣

∣

∣

∣

∫ t+H

t
∆a(u) du

∣

∣

∣

∣

�a H.
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Hence
∫ nI+H
nI

(Ea(t+H)−Ea(t))
2 dt� H3 and this yieldsMH3 �

∫ 2T
T (Ea(t

+ H) − Ea(t))
2 dt. By Lemma 3.2, M � TH2a logH. We select a large

constant H so that κT/(4H) − O(TH2a logH) �a T . Therefore there are
�a T subintervals, in which there is an integer n satisfying ∆a(n) < 0 but
∆a(m) > 0 for some integer m in [n+ 1, n+H]. This completes the proof.

At last, we prove the corollary. It follows from the fact that the limiting
distribution P−1(u) = limX→∞ P−1,X(u) is a continuous function (see the
last section of [8]). Hence the number of n ∈ [1, T ] such that ∆−1(n) equals
zero is o(T ). This means that N−1(T ) = N−1,0(T ) + o(T ) and the result
follows.
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