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COORDINATES OF THE REPRESENTATION SPACE
IN THE SEMISIMPLE LIE GROUP OF RANK ONE

INKANG KIM

In this paper we show that the space of irreducible representations from a finitely
presented group into the group of isometries of a rank one symmetric space of non-
compact type, embeds into Kn for some n, where the coordinates are the translation
lengths of isometries in the representation. The ingredients of the proof consist of
the two facts that the representation is determined by its marked length spectrum
and that the nested sequence of algebraic subvarieties is stabilised at a finite step
by the Noetherian property of the polynomial ring. As a minor application, we use
this fact to simplify McMullen's proof about the exponential algebraic convergence of
Thurston's double limit to the geometrically infinite manifold in the space of discrete
faithful representations of K\ (S) in Iso+ (H^).

1. INTRODUCTION

It is known that the lengths of 9<; — 9 closed geodesies of the Riemann surface S of
genus g, determine the hyperbolic structure of the surface in the Teichmiiller space [2],
So there is a smooth map from the Teichmuller space of the genus-g surface into K99"9

where a point p corresponds to the point (lp(gi), • • •,lp(ggg-9)). Here lp(g) is the length
in the /^-metric of the closed geodesic in the homotopy class of g e TTI(S).

It was not known that such a result holds for higher dimensional cases. In this paper
we answer the question affirmatively for all dimensions of rank one symmetric spaces of
noncompact type. The theorem is much more general than the question, namely such a
parameterisation is true even for the space 5R° of non-elementary irreducible representa-
tions.

The translation length of an isometry is a minimum distance it moves. The marked
length spectrum of a representation is a function associating the translation length of the
isometry p{g), to each g in the group. See Section 3 for definitions.

The idea of the proof is very simple. By [4], it is known that an irreducible represen-
tation into the group of isometries of hyperbolic n-space is determined up to conjugacy

Received 23rd March, 1998
I want to thank C.T. McMullen for asking the question about our main theorem and many useful
suggestions. Also I want to thank A. Casson for his help as an adviser.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 SA2.00+0.00.

435

https://doi.org/10.1017/S000497270003241X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003241X


436 I. Kim [2]

by its marked length spectrum. So the task is to choose a finite set of elements of the
group such that the marked length spectrum on this set determines the representation
up to conjugacy. This can be done using the Noetherian property of the polynomial
ring. More precisely we find some polynomial equations defining the subvariety of 9? x 5R,
which consists of pairs of representations having the same marked length spectrum on
the finite set of elements in the group, using the Lorentzian model of hyperbolic space.
As we increase the number of elements of the group, the number of subvarieties defined
by these elements decreases. But this should be stable after a finite number of steps by
the Noetherian property of the polynomial ring. We can state the main theorem in the
algebraic point of view as follows.

THEOREM. Let R°(G) be the space of irreducible representations from a finitely

presented group G into Iso (X). Then there is a finite set of elements, gx, • • •, gN such

that if lyp(gi)) — M<K<?i)J for i = l,---,N, then they are conjugate, and so Xp — X<P

for any p,4>£ R°(G) where x<t> 1S the character of <p when Iso (X) is identified with some

subgroup in GLn{¥) where W = R or C.

2. T H E SPACE OF REPRESENTATIONS: ALGEBRAIC VARIETY

Let G = {gi, i = 1, • • •, n\ n = •• • = rk = 1). The space of representations R{G)
from G to GLm{¥) is a set of homomorphisms from G into GLm(F). It is the set of
points (p(pi), • • • ,p{gn)) in GLm(F)n C I™2"" which satisfy p(^) = 1. Then it is easy
to see that R(G) is an algebraic variety. In this paper we are particularly interested when
representations are in Iso (#£). The Lie group Iso (Hf?) acts on R{G) by conjugation. A
representation is irreducible if it does not leave invariant any totally geodesic subspace
except Hp. Let R°(G) be the set of irreducible representations. Then the action of
iso(Hp) is free on R°(G) since apa~l = p for some a ^ 1 € lso(H^) only if p is
reducible and a is an identity on the totally geodesic subspace which p leaves invariant.
Furthermore R°(G) is open since a small perturbation of an irreducible representation
remains as an irreducible representation. So SR°(G) = R°{G)/lso(H$) is a smooth open
set in 5R(G) = R(G)/Iso (H$). See [3, 1] for references. In this paper we want to find a
smooth parametrisation of 5R(G)° by the translation lengths of the finite set of isometries.

3. ISOMETRIES OF HYPERBOLIC SPACE AND THE MARKED LENGTH SPECTRUM

The translation length of an isometry a acting on a hyperbolic space H equipped
with a hyperbolic metric d, is defined as:

l(a)=m(H{d(x,a(x))}.

There are three kinds of isometries in hyperbolic space. When l(a) = 0 and it is
realised in the space, a is called elliptic. When l(a) = 0 but it is not realised in the
space, a is called parabolic. Finally when /(a) > 0, a is called hyperbolic.
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When we identify Iso (H?) with a component of Op(n, 1) when F = C or R, the
trace of a parabolic element is n + 1 and the trace of an elliptic or a hyperbolic element
is 2 5^ cos 0i ± e + 2 cosh r, e — 0,1 for real hyperbolic, £} el9> + 2 cosh r for complex
hyperbolic, where r is the translation length of the isometry.

DEFINITION 1 . Two representations p, <f>: G ->• Iso (H) have the same marked

length spectrum if and only ifl(p(g)j = l(<f>(g) J for all g € G.

A representation is non-elementary if the image under the representation is non-
elementary, that is, its limit set is infinite. Here is the theorem that we need in this
paper.

THEOREM 1 . Let p, (j> be non-elementary, irreducible representations from a
group G into Iso (X) where X is a rank one symmetric space of non-compact type.
If they have the same marked length spectrum, then they are conjugate.

The proof is quite long and needs understanding of the sub-Riemannian nature of
the ideal boundary of rank one symmetric spaces. Since it is a separate issue, we just
refer the readers to [5].

4. RING OF SYMMETRIC FUNCTIONS

The subring of symmetric functions in a polynomial ring is finitely generated. A
well-known basis of the ring is the set of elementary symmetric functions:

S2=

Sn =

To introduce another well-known basis, we need the following concepts. A partition
A of n is any finite sequence of non-negative integers in decreasing order: A = (Ai, • • •, A*)
such that 53 Ai = n. Let

t = l

Define P\ = IIP^, for a partition A — (Ai, • • •, A*). It is known that the set of symmetric
functions of the degree n is generated by P\ as a vector space, where A is a partition of
n. For example when n = 3, a basis of the degree-3 symmetric functions is Pf, P2P\,Pz.
So the ring of symmetric functions of degree up to n is generated by P\, • • •, Pn-

The following lemma is elementary, yet important to define the algebraic subvarieties
in our later discussion.

https://doi.org/10.1017/S000497270003241X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003241X


438 I. Kim [4]

LEMMA 1 . For any positive integer n, Pn+i(xi,- • •, xn) can be expressed as some
polynomial in Pi{x\, • • •, xn) for i — 1, • • •, n.

PROOF: Consider the ring of symmetric functions in variables x\, • • • ,xn. Then the
elementary symmetric function sn+i is equal to zero since there are only n variables. Yet
sn+1 can be expressed as the linear combination of PA where A are partitions of n + 1.
This implies that Pn + i can be expressed as a polynomial in Pk where k — 1, • • •, n. D

5. PARAMETRISATION OF THE SPACE OF IRREDUCIBLE REPRESENTATIONS BY A

FINITE SET OF TRANSLATION LENGTHS

LEMMA 2 . Let A be a hyperbolic isometry in Iso (H$) where F = R or C. Then
there is a polynomial relation among trAk and coshr where r is the translation length
of a hyperbolic isometry.

PROOF: If we identify lso(H$) with a component of Or(n, 1) in the Lorentzian
model, then by conjugating the isometry, we can put A into the form:

COSf/i

— sin 61

0
0
0
0

sine?!

COS 0i

0
0
0
0

0

0
0
0
0

0
0

±1

0
0

0
0
0
0

coshr
sinhr

0
0
0
0

sinhr
coshr

in real hyperbolic case. complex hyperbolic case, A can be conjugated into the form:

ei$l 0 0 0 0
0
0
0

0
0

0
0
0

0
coshr
sinhr

0
sinhr
coshr

Then

for real hyperbolic, and

tr Ak = VJ cos k6i + 2 cosh kr

trAk = 9i +2coshA;r

for complex hyperbolic. Since cos kO can be expressed in terms of cos"10 for m $J fc,we
get

cosfc #i = Pk(trAm, cosh mr)

for some polynomial Pk and m— 1, • • • ,k for the real hyperbolic space. Then by Lemma

1, there is a polynomial P such that P(trAm,coshrnr) = 0 , 1 ^ m ^ \(n - l ) /2 + 1.

For the complex hyperbolic case, Lemma 1 can be used directly. D
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Now we are ready to prove the main theorem (for both real and complex cases).

THEOREM 2 . Lefc5R°(G) be the space of irreducible representations, up to conju-

gacy, from a finitely presented group G into Iso (X) where X = H£ or H£. Then there

is a smooth embedding f from !R0(G) into R* and g\,- • • ,9k S G for some k, such that

( )

PROOF: From Section 2, we know R(G) x R(G) is an algebraic variety. Then for any
given finite set Sk = {g\,---,gk} C G, the set Vk consisting of pairs of representations
which have the same marked length spectrum on 5*, is an algebraic subvariety by Lemma
2 since if p and 4> have the same marked length spectrum on Sk, there are polynomials
Pi and P! such that Pi(tTp(g?), cosh run) = 0 = f?(tr <£(#"), cosh mr*) for 1 ^ i ^ k.
As we increase the sets Sk C Sjt+i to exhaust G, the corresponding algebraic subvarieties
Vk are decreasing but by the Noetherian property of the polynomial ring, V^ = V^ for
some positive integer N. Let V£ = \vk n (R°(G) X fl°(G)) } J(lso{H%) x Iso(#£)j.
By Theorem 1 saying that an irreducible representation is determined up to conjugacy
by its marked length spectrum, V£, is the subset of a diagonal of Sft°(G) x 5R°(G). So
we conclude that there is a finite set of elements </i, • • • ,g^ £ G such that an irreducible
representation is determined up to conjugacy by its marked length spectrum on this set.

Since the function lg : 5R°(G) —> K, defined by lg(<j>) = l{<fi(g)) is a smooth function,
the map / is smooth. D

It is worthwhile to mention the following corollary, in dimension 2 and 3.

COROLLARY 1 . There is an embedding which is smooth except at the reducible
representations, from the space of non-elementary representations from a finitely pre-
sented group into the group of isometries of real hyperbolic 2 or 3 space, to K* where the
mapping is given by the translation lengths of some k elements in the group.

PROOF: It follows from the fact that in dimension 2 or 3, we do not need irreducibil-
ity of a representation to conclude that the representation is determined by its marked
length spectrum. See [4] or [5]. D

In 3-dimensional topology, it is important to determine when two homotopy equiv-
alent 3-manifolds are homeomorphic. Corollary 1 in turn implies the following corollary.

COROLLARY 2 . Let M, N be two hyperbolic 3-manifolds which are homotopy
equivalent. M and N are isometric, so homeomorphic, if the lengths of closed geodesies
of some finite set of conjugacy classes in ni(M) = TTI(N) are the same.

6. QUATERNIONIC AND CAYLEY HYPERBOLIC CASES

Since quaternions and Cayley numbers are not commutative, most of the properties
which hold in the real or complex field break down. But we want to prove that Theorem
2 holds in the quaternionic ring. For the Cayley hyperbolic case, the calculation is very
complicated and we leave the details for future work.
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There is a natural way to identify quaternions with a pair of complex numbers. Since
XQ + x\i + X2J + xsk = XQ + x\i + (x2 + i3i)j, Xo + x^i + X2J + x^k can be identified with
(XQ + xii, X2 + X31). So the n-dimensional quaternions H" can be identified with C2". By
this identification there is a group monomorphism sending a matrix A + Bj in GLn(M)
acting on (x\ + yxj, • • •, xn + ynj) on the right, to the matrix in

which acts on (xt, • • •, xn; yx, • • •, yn) on the right. Then Sp(n, 1) can be identified with
U(n, l ;n, 1) which preserves the (n, l;n, 1) symplectic form, that is, the form

v
n+l\/ )

lvl

Note the trace of A 4- Bj is not invariant under conjugation, but Reltr(A + Bj)) is
invariant under conjugation since the trace of

A
-B

B
A

is 2Re{ti A) = 2Re(tr (A + Bj)).

THEOREM 3 . Let 5ft°(G) be the space of irreducible representations, up to con-
jugacy, from a finitely presented group G into lso(H^). Then there is a smooth em-
bedding f from fR°(G) into Rk and <7i,••-,<& G G for some k, such that f(<j>) =

PROOF: A hyperbolic isometry in Iso (H^) which fixes 0 and 00 is of the form:

M O 0
0 cosh r sinh r
0 sinh r cosh r

where C + Dj = M € Sp(n - 1), which can be identified with

C O 0
0 cosh r sinh r

v 0 sinhr coshr
N = c

0
0

D

0
coshr
sinhr

0
0 )

0
sinhr
coshr
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Since

is in U(2n — 2), there is a matrix

so that

J =
E F
G H

J-

is equal to a diagonal matrix (elBl, • • •, etff2n-2). Then

0

0

0 >

/

0
0 ;

F
0

H

0

0
0

0

/

conjugates TV into the form:

TV' =

,4 0 0
0 cosh r sinh r
0 sinh r cosh r

B O 0
0 cosh r sinh r
0 sinh r cosh r

where A, B are diagonal matrices. Then tr TV' = ]T] cos 0; +4 cosh r. Now we can conclude
the same as in Lemma 2, saying that there is a polynomial relation between trTV and
coshr. By viewing R°(G) as a subset of CN for some TV, we can proceed with the proof
as in Theorem 2. D

It is a well-known fact that the irreducible representation 4>, from some group G
into GLn(W), is determined up to conjugacy by its character xP, where Xp(<?) = tr(p(ff)j •
In general, the translation length of an isometry does not determine the trace of the
isometry, but in the group of isometries of hyperbolic space, knowing a large enough
number of translation lengths of the group is sufficient to determine its character by our
theorem. So we get the following.

COROLLARY 3 . Let R?(G) be the space of irreducible representations from a
Bnitely presented group G into Iso (X) where X is a rank one symmetric space of non-
compact type other than a Cayley hyperbolic plane. Identify Iso (X) with some linear
subgroup in GLn(F), where F is real or complex. Then there is a finite set of elements,
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9U---,9N such that if /(/?(&)) = ' ( ^ ( f t ) ) for * = V ' - . N , then xP = X<t> for any

P,<t>eR°(G).

In [5], it is also shown that

THEOREM 1 ' . Let X be a rank one symmetric space of non-compact type. Let
p,cf>:G^> Iso (X) be two irreducible representations having proportional marked length
specta, that is, l(p(g)) = cl(<p(g)) for some constant c. Then c = 1 and so they are
conjugate.

This theorem is plausible for hyperbolic surfaces since if we pinch a closed geodesic,
the closed geodesies crossing that closed geodesic transversely tend to get longer. This
theorem asserts that it is also true for the higher dimensional case. From this theorem
and the same proof as in Theorem 2, we get

COROLLARY 3 ' . Let R°(G) be the space of irreducible representations from a

finitely presented group G into Iso (X) where X is a rank one symmetric space of non-

compact type other than a Cayley hyperbolic plane. Identify Iso (X) with some linear

subgroup in GLn(F) where F is reai or complex. Then there is a finite set of elements,

<7i> •"" i <?N such that ifllp(gi)] = cl(4>{gi)\ for i = 1, • • •, N and a fixed constant c, then

°
From the spectral theoretic point of view, this amounts to saying that a finite set of

the marked largest eigenvalues of the matrices in the image of a representation, determines
the irreducible representation up to conjugacy.

7. EXPONENTIAL ALGEBRAIC CONVERGENCE IN THE SPACE OF NON-ELEMENTARY

REPRESENTATIONS

In this section we only consider representations from a surface group into Iso+ (H^) =
PSL2(C) — SO0(3,1). In the late 70s Thurston constructed hyperbolic metrics on 3-
manifolds which fibre over the circle where the monodromy map is pseudo-Anosov. From
now on, ip is a, pseudo-Anosov map on a closed hyperbolic surface 5. First, pick any
accumulation point M$y of Q(rp~*(X), Yj in the boundary of the Bers slice Ty, where
Q(X, Y) is the hyperbolic 3-manifold which has two hyperbolic surfaces X and Y as
two ideal boundaries. Then the sequence ipn(M^<Y) converges to M^ by Thurston's
double limit theorem. Furthermore, M$ is a fixed point of ip, and there is an isometry
a : M$ -> M$ in the homotopy class of ip. Then M$/{a) is the desired hyperbolic
manifold. For the details and background, we refer readers to [6].

In this section we want to show that the convergence ipn(M^tY) -> M$ is exponen-
tially fast on the basis of McMullen's argument.

D E F I N I T I O N 2 . We say # —> p exponentially fast if for each g G G, there is a
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A < 1 such that

sup Pi(g)(x) - p(g)(x) =O(Xi)

Let V(S) be the space of non-elementary representations from 7Ti(5) into Iso+ (/ /R) up
to conjugacy in Iso+ (H^). Note here that even though a representation is reducible,
that is, fixes some hyperbolic 2-plane, any orientation preserving isometry which is an
identity on this plane must be an identity, so the conjugacy action is free on the space of
non-elementary representations. This implies that V(S) is a smooth manifold, actually
a complex manifold when we identify Iso+ (Hg) with PSL,2(C).

By Corollary 1, there is a smooth embedding of V(S) into WLN for some large N,
using the smooth functions [p] -> lp(g) for some g\, • • • ,gN 6 IT\(S).

On a smooth manifold, there is a natural notion of exponential convergence using a
local Euclidean chart. So it is sufficient to check this property in RN using a translation
length chart. The following theorem is due to McMullen [6]. In the proof he used the
character space of V(S) to embed it into C " for some large N. We use a translation
length coordinate chart to simplify the argument.

THEOREM 4 . (McMullen) For any pseudo-Anosov mapping ip € Mod (S), and
any Y € Teich(S), ^(M^y) converges to M$ exponentially fast.

PROOF: There is a quasi-isometry ^ : M$y -* M^,y realising ip. Furthermore
the injectivity radius of M^y in its convex core is bounded below and above. By the
Geometric inflexibility theorem (see [6, Theorem 2.11]) there are constants C and D > 0,
and a quasi-isometry

homotopic to ^ , such that the quasi-isometry constant L($,p) at a point p in its convex
core K satisfies

Let a : M^ —¥ M$ be an isometry realising tp and / : S —> M^, be a marking. Since a acts
like a translation along R when we identify M^ with 5 x K, its translates Ej = a'(f(S))
are disjoint. On the other hand there is an asymptotic isometry h : E -* E' between
geometrically infinite ends of M^ and M^y • Let /, : 5 -> M$y be the marking given by
the composition

fi^hoa^o f.

Then ipl{M$tY) = (/,-, M^y). Pick any non-trivial element 7 e ^ ( S ) . Let g and g{ be
geodesic representatives in M^, and ip'(M^tY). Then for a sufficiently large i, d(giy dK) ^
Ci > 0. By this estimate $ is a (1 + £j)-quasi-isometry at g,, where
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Then

This finishes the proof. D
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