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Abstract

In a tree, a level consists of all those nodes that are the same distance from the root.
We derive asymptotic approximations to the correlation coefficients of two level sizes in
random recursive trees and binary search trees. These coefficients undergo sharp sign-
changes when one level is fixed and the other is varying. We also propose a new means
of deriving an asymptotic estimate for the expected width, which is the number of nodes
at the most abundant level. Crucial to our methods of proof is the uniformity achieved
by singularity analysis.
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1. Introduction

This paper is a sequel to Drmota and Hwang (2005) and Fuchs et al. (2005), in which the
authors addressed the limit distributions of profiles (the numbers of nodes at each level) in
random recursive trees and binary search trees. Further to the many intriguing phenomena
unveiled there, we show in this paper that the correlation coefficients of two level sizes, in both
classes of tree, exhibit sharp sign-changes. The method of proof used to derive the uniform
estimates of covariances will be useful in obtaining the asymptotics of the expected widths, for
which only almost-sure results, but no moment estimates, were previously known.

1.1. Random recursive trees

Recursive trees of n nodes are nonplane, rooted, labeled trees with labels {1, ..., n} (at
nodes) such that the labels along any path from the root form a strictly increasing sequence.
By a random recursive tree, we mean that all recursive trees of n nodes are equally likely. An
alternative way of constructing a random recursive tree of n nodes is as follows. We start from
a single node with label 1; then, at the ith insertion step, the new label i chooses any of the
previous i — 1 nodes to be its parent with equal probability (and we link them by an edge), and
the same procedure continues until the tree contains n nodes. This procedure implies that there
are (n — 1)! such trees.
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Recursive trees (following Meir and Moon (1974)) have also appeared in other fields under
different names: ‘concave node-weighted trees’ in Tapia and Myers (1967), ‘growing trees’
in Na and Rapoport (1970), ‘pyramid scheme’ in Gastwirth (1977), ‘heap-ordered trees’ in
Grossman and Larson (1989), and ‘random circuits with fanin one’ in Arya et al. (1999).
They have been introduced as simple growing models for several real-life networks like social
systems (Na and Rapoport (1970)), sales-distribution networks (Moon (1974)), and the Internet;
see Fuchs et al. (2005) for more references. Their simple tree representations also found
applications in many linear tree algorithms; see Mitchell ez al. (1979).

1.2. Profile of random recursive trees

We consider the number of nodes, denoted by Y, , at distance k from the root in a random
recursive tree of n nodes. Many properties of Y, ; are known. We briefly summarize the
interesting phenomena exhibited by Y, x, as follows; see Drmota and Hwang (2005) and Fuchs
et al. (2005) for more information.

— For large, fixed n, the mean of Y, x is asymptotically unimodal in k, but the variance is
asymptotically bimodal.

— The normalized random variables Y, /E(Y, x) converge in distribution to some limit
law Y (o) when k > 1 and where « := lim, . k/logn € [0, e).

— Convergence of all moments of Yy, x /E(Y, &) to Y (@) holds only for « € [0, 1].

— If @ = 0 (and k£ > 1) then the sequence of the centered and normalized random variables
(Ynk — E(Yu1))/var(Y, ;)'/? converges in distribution to the standard normal law.

— Ifa = 1and |k—logn| — oothen (¥, x —E(Y,,,k))/var(Y,,,k)1/2 converges in distribution
(and with all moments) to Y'(1) = (dY («)/ da)|q=1, the limit law converged to by the
total path length )", kY, 1.

— Ifk =logn+ O(1) then (Y,  — E(Yn,k))/var(Yn,k)1/2 does not converge to a fixed limit
law.

1.3. Covariance of Y, ; and Y, j,

The results derived in the authors’ previous papers dealt with stochastic behaviors of a single
level size. In this paper, we examine the asymptotics of the correlation coefficient of two level
sizes, which turns out to undergo a sharp sign-change at « = 1 (when the other level is fixed
and not near log n).

To state our results, we first introduce some notation. Define

1 1

,V) = — , 1.1
) = o ato—m  TarDFe+ D) (1.1
where I is the gamma function, and

p(s, t) := cast +c1(s +t) + co, (1.2)

where the coefficients are given by
= fry(1,1) =2 — ¢x?,
s D =2l —y) = £B) + 1, (1.3)

%fu(?iz(lyl)=C2(1+2y—y2)+2C1(1_y)_ﬁn{

cl -

co:
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Here, a prime or a superscript in parentheses denotes partial differentiation with respect to the
variables in subscript, y denotes Euler’s constant, and ¢ (3) := Y =1 j 3. Also define

_1//(0(-!-1)-!-)/—01

3= fylo, 1) = Fat D) ,
cai=—5 (@ 1)
@+ D+l-?+ @)= -p? -y @+ D -1+’

2T (o + 1) ’

where ¥ (x) denotes the derivative of log I'(x). For k, h > 1, let @,  := k/logn and B, :=
h/logn, and let « and B be their respective limit ratios, if they exist (when n tends to infinity).

Theorem 1.1. Ifa, B € [0, 2) then the correlation coefficient of Yy,  and Yy  satisfies

JOk—D@h =1 ,

| (o, B) ve=0pE
a’ .

9 17
p Wi Yoi) ~ | VI (@B B) rels (1.4)

C3ln,h + €4 .

- 1 =1

\/f(C(, W)P(tn,h, tn,h) lfa ;é ' /3 '
P(Sn ks> tuh) .

- . = = 1,
PGk Sng) P(tn.hs tn i) Ja=p

where s, :=k —logn and t, == h — logn.

By symmetry, all cases with «, 8 € [0, 2) are covered. In particular, the result here also
implies the estimates the authors derived for var(Y), x) in previous papers. A comparison of the
different approaches used so far for var(Y, i) is given in the final section.

1.4. Corollaries and intuitive interpretations

Corollary 1.1. The correlation coefficient of Y, x and Yy  is asymptotic to 0 if k = o(logn)
and k = o(h), where 0 < 8 < 2.

Thus, the sizes at the first few levels (k = o(log n)) are asymptotically independent of those
at levels that are much greater than k.

Corollary 1.2. The correlation coefficient of Yy,  and Y, j, is asymptoticto 1 if () o = B # 1
O < a,B < 2), or (ii) both |s, x| — o0 and |ty n| — 00 (not necessarily at the same rate)
wheno = 8 = 1.

The first case is intuitively clear, but the second case is less transparent.

Corollary 1.3. Asymptotically, the correlation coefficient p(Y, k, Yn n) exhibits a sharp sign-
change at B = 1 when a € (0, 2) is fixed and B is varied from 0 to 2.

Plots of the asymptotic correlation coefficient are given in Figures 1, 2, and 3, highlighting,
in particular, the discontinuous sign-change at 8 = 1.

Intuitively, the sizes of neighboring levels are expected to have positive correlation. The
sharp sign-change at 8 = 1 is roughly because of the property that almost all nodes in a random
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FIGURE 1: The asymptotic correlation coefficient of the number of nodes at two levels, plotted against
B. The discontinuity in sign at 8 = 1 is visible in both figures. Here o = %y ~ 0.28 (left) and
o = n'/2 %~ 1.77 (right), and B € (0, 2).
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FIGURE 2: Three-dimensional renderings of the limiting correlation coefficients f (e, B)/[f(a, o)

F(B, B)1Y? (left) and p(s, 1)/[p(s, )p(t, D1V (right).
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FIGURE 3: Asymptotic correlation coefficient when 8 = 1, plotted against ¢ with « = 0.1 (left), and
against o with r = %y (right).
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tree lie at the levels k = logn + O ((log n)1/2), each having about n/(log n)l/2 nodes (by the
estimate
(log m)* 1 <k=o0d0
E(Yy k) ~ m (1 <k = 0O(ogn)),
and the bimodal behavior of the variance near these levels; see Drmota and Hwang (2005)).
This implies that if one level k with, say, k/logn < 1 has more nodes, then (i) levels near log n
are likely to have more nodes, and (ii) levels with 4 /logn > 1 have fewer nodes available; this
also roughly explains why Y, x and Y, ;, are negatively correlated (see Figure 1).
Our method of proof starts from the relation

ZE(Y Y h)ukvhz n n+u+v-—1 _ n4+uv—1 ) (1.5)
— e u4+v—uv n n ’ '

see below for a self-contained proof or see van der Hofstad ef al. (2002). Then, (1.4) is derived
from a uniform estimate for the function on the right-hand side in the («, v)-plane (by applying
the singularity analysis of Flajolet and Odlyzko (1990)) and then by extending the saddle-point
method used in Hwang (1995).

1.4.1. Width. Our analytic approach is also useful in deriving a uniform estimate for
E((Yn,k - Yn,h)2)7

which turns out to be the crucial step in proving an asymptotic approximation to the expected
width, defined to be W,, := maxy Y, «.

Theorem 1.2. The width W,, satisfies

Wh
————— 1 1.6
n/y/2mlogn - (1.6)
almost surely, and
n
E(W,) = —=———(1 4+ O((logn)~"/*1og1 . 1.7
(W) «/W( + O((logn) oglogn)) 1.7

The almost-sure convergence is proved by modifying the martingale arguments used in
Chauvin et al. (2001) for random binary search trees. Such arguments, based on considering
the random polynomial ), ¥, <25, also provide a natural interpretation of the result (see Fuchs
et al. (2005)) that the sequence of random variables (Y, x — E(Y,,,k))/valr(Y,,,k)1/2 converges to
the same limit law as the total pathlength 7, :== ), kX, x whenk ~ logn and |k—logn| — oo;
see Section 3 for more details.

1.5. Binary search trees

Binary search trees (BSTs) are rooted, labeled binary trees with the search property: all
labels in the left or right subtree of any node x are respectively smaller or larger than the label
of x. Given a sequence of numbers, we can construct a BST by placing the first element at
the root, and then by successively directing all smaller or larger numbers to the left or the
right branch, respectively. Both subtrees, if nonempty, are recursively constructed by the same
procedure and are themselves BSTs; see Figure 4.

BSTs were first introduced in the early 1960s by Windley (1960), Booth and Colin (1960),
and Hibbard (1962), and are one of the simplest prototypical data structures; see Knuth (1997)
and Mahmoud (1992).
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FIGURE 4: The binary search tree constructed from the sequence {4, 3, 1, 6, 5, 2}. Internal nodes are
marked by circles and external nodes by squares.

1.6. Random binary search trees

Assume that all n! permutations of n elements are equally likely. Given a random permuta-
tion, we call the BST constructed from the permutation a random BST. We distinguish between
two types of node: internal nodes are nodes holding labels and external nodes are virtual nodes
added so that all internal nodes are of outdegree 2; see Figure 4.

We denote by X, x and I, x the numbers of external and internal nodes at level k in a random
BST of n internal nodes, respectively, the root being at level 0. The distributional properties
of both types of profile (X, x and I, x) are similar to those of Y, x; see Fuchs et al. (2005) for
details.

Here, an interesting property for the covariance of two level sizes is that, while the limiting
correlation coefficients of I, x and I, , exhibit a sharp sign-change at « = 2, the limiting
correlation coefficients of X, x and X, ; exhibit two sharp sign-changes, one at « = 1 and the
other at « = 2. An intuitive interpretation of this will be given in Section 4.

1.7. Organization of the paper

In the next section, we prove Theorem 1.1, on the asymptotic estimates of the correlation
coefficients of two level sizes in random recursive trees. The width and related quantities are
addressed in Section 3. Results for random BSTs are given in Section 4, without proof. We
then conclude the paper with a brief comparative discussion of the methods of proof used to
derive asymptotic estimates for the variances.

2. Correlation of two level sizes

We prove Theorem 1.1 in this section. Note that the Ly-convergence of Y, r/un ik (see
Fuchs er al. (2005)), where , ; := E(X, 1), can also be applied to prove (1.4) in the case
when «, B ¢ {0, 2}; here we give a direct and uniform approach applicable to all cases.

2.1. Recurrence of Y, ; and E(Y,, 1)
All our results are based on the recurrence relation satisfied by Y, x:
Yok = Yuniform{1n—1]k—1 + o—uniform[1.n—1].k n>2,k>1). 2.1

The initial values are Y, o = &,,1, where we use the Kronecker symbol, the random variable
uniform[1, n — 1] takes each of the values {1, ..., n — 1} with equal probability, and Y,f ¢ 1S an
independent copy of Y, x; see Fuchs et al. (2005) or van der Hofstad et al. (2002).
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From (2.1), it follows that the mean satisfies

-1
fink = [uk]<” T )
n—1

(logn)*

=__~2°77 —1
= M@+ T olegm ). 2.2)

where [u*]F (1) denotes the coefficient of u” in the Taylor expansion of F and the O-term
holds uniformly for 1 < k = O(logn); see Hwang (1995).

Proof of (1.5). We now prove (1.5). By (2.1), we have the recurrence

1
BoiYon) = — 3 Eju1¥in1) +BOTYS)))

1<j<n

SRR ol + )
n—1 Mjk—1Mn—jh T KjkMn—jh—1)-

1<j<n
Let Fy(u, v) == Y E(Xpp 1k X p)u*v". Then Fy(u, v) = 1 and
1+ uv

' u—+v jrtu—1\/n—j+v—-1
o1 2 vt T ) ( j—1 )( n—j—1 ) @3

1<j<n 1<j<n

F,(u,v) =

for n > 2. The final sum is equal to

u+v_ ., 5 u—p—ny UtFV/F+ut+v-—1
- 1— = .
n_l[z]z( 2)

n—1 n—2

The recurrence equation (2.3) is then either solved by considering nF, 1 — (n — 1)F,, and
iterating the resulting first-order difference equation, or by considering the differential equation
satisfied by ), Fy,+12". This proves (1.5).

2.2. An asymptotic expansion for the covariance

We now derive an asymptotic expansion for cov(Y;, k, Y, ).
First, by singularity analysis (see Flajolet and Odlyzko (1990)), we have

"<n e 1) =n[z"](1—2)7" = n” (1+ 0(w*n™1y),
n I'(w)

the O-term holding uniformly for finite complex w. Thus, by (1.5) and (2.2),

(log)*
k! )

cov(Yu i Yun) = Cen(m)(1+ 0™ ") + 0<5k,h 2.4

uniformly for 1 < k, h < K logn, where
Crn(n) := [ V"1 f (u, v)n"

with f defined as in (1.1).
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If «+ B # 0then we apply the saddle-point method used in Hwang (1995) by first expanding
f as
Fav)y =" for—an)'@—Bun).

L,r>0
where f¢ , := fu(f:r,r)(an,k, Bn.n)/(€!r!), and then integrating term by term to obtain the formal
expansion
Cinm) ~ Y forBe(n, K)E (n, ), (2.5)

L,r>0

where

Be(n, k) := [tF](u — 1) n"

(logn)* ¢ k=41
=" 2 (')(_an’k)l g 20

0=j=t

The first few values of E, are as follows:

Bo(n, k) =1, Bi(n, k) =0, Ea(n, k) =

~ (logn)?’
2k 3k(k —2)
B3, k) = —— Ea(n, k) = 2
3(n, k) (ogn)? 4(n, k) (Togn)?

Since E,(n, k) equals (logn)™" times a polynomial in k of degree L%rj, the double sum
on the right-hand side of (2.5) can be regrouped and gives an asymptotic expansion when
k = O(logn). The error analysis is similar to those in Hwang (1995), (1997), and we find that
(2.5) holds uniformly for 1 < k, h < 2logn — w, (logn)'/?, where w, is any sequence tending
to infinity. The error term [u*v"]Cy j, (n) O (n~!) appearing in (2.4) is handled similarly, and is
asymptotically negligible.
From the explicit forms of the E,, we obtain the expansion
(10g n)k+h

Crn(n) = T

1
{fo,o ~loan (f2,00.k + f0,2Bu,1)
ogn

1
+ (logn)? (3(f4y00‘1%,k + f0,4l33,h) + 22000 kBu.n

+ 2(f3,0Qn.k + f0,38n,1)) + 0((logn)3)}, (2.6)

which is sufficient for our purposes.

2.2.1. Special cases. Assume that 0 < «, B < 2. If o, B & {0, 1} then

Jo.o = f@nks Bnn) = fla, B) #0,

and we obtain
(10g n)k+h

cov(¥uk, Yun) ~ f(a, B) K
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uniformly for 1 < k, h < 21logn — w, (log n)'/?. This proves Theorem 1.4 in the case in which
a, B ¢ {0, 1}. It also implies that

(logn)*

2 (1 <k <2logn — wy+/logn).

var(X, 1) ~ f(a, a)

If « = B = 1 then, by (2.6) and the approximations

, S22 ~ co,
n
where k = logn + sk, h = logn + 1, 5, and the c; are defined as in (1.3), we obtain

P(Snks tan) (logn)k+h

COV(Yn,k» Yn,h) ~ (logn)2 k' h' ’

where p is as given in (1.2). This also implies that var(X, x) ~ p(su.k, sn.x)(logn)?*=2/(k!)2.
Ife =0and B € (0, 1) then, as above, we have

cov(Yu i, Yun)
(1Ogn)k+h—l
S Gk—DINTB+ 1)
(logn)k+h—2
(k—DIRT(B+1)

W@B+D—-1+y) it g #1,

~

(1= ixDspn +2—y —¢B3) — gn? + Ltnly) ifp =1,

so that p (Y, k, Y,,,n) — 0O in both cases.
The case in which 8 = 1 and @ # 1 is treated similarly.
A change of variable u +— wv is useful for the remaining case of when « = B = 0; then, a
similar analysis gives
(IOg n)k+h—1
k=D'h =D k+h—-1)

cov(Yp ik, Yu,n) ~ 2.7

Alternatively, we can use the exact expression (see van der Hofstad et al. (2002))
2j+h—k ; n—14+w
E(Y, .Y, — Jj+h+1 i
(Y kY1) Z(Hh_k)[w |
0<j=<k

obtained from expanding the right-hand side of (1.5), and then proceed as we did above (the
two terms with indices j = k — 1, k suffice to obtain (2.7)).

Proof of Corollary 1.3. Whena, 8 € (0,2), a # 1, we have, by (1.4),

i J@B g Ye@rDoaty
p=1 VT @ ) [ B, ) Jala e+

thus, the sign-change follows. The case in which ¢ = 1 can be checked similarly.

The proofs of the other corollaries to Theorem 1.1 are straightforward and are therefore
omitted.
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3. Profile and width

Profiles of trees are closely related to many other shape parameters. In this section, we
briefly discuss the connection between profile and width, starting from the derivation of an
asymptotic estimate for the expected width, i.e. from the proof of (1.7). Then we consider the
level polynomial M, (z) := ) ; Yy, kzk, which will be seen to be a convenient tool for proving
(1.6) and for relating the limit properties of the profile to those of the total path length (and
other weighted path lengths).

3.1. The expected width
Since the width is defined by W,, = maxy Y, x, we have, by the estimate (2.2),

E(W,) = m,?XE(Yn,k) = (1+ 0((10gn)—1/2)).

n
/2 logn
However, itis less clear how to obtain a tight upper bound. The arguments introduced in Chauvin
et al. (2001) can be used to prove the almost-sure convergence result (1.6) (see below for a
sketch of the proof), but do not lead to an effective upper bound for the expected width. Instead,
we introduce a new argument, reducing the determination of an upper bound to estimating the
mean and the variance of some differences between level sizes, and show that the above lower
bound is indeed tight.

We start with a probabilistic lemma.

Lemma 3.1. Let Z(t) be a stochastic process on the space of continuous functions on [0, 1].
Assume that there exist constants A > 0 and 0 > 1 such that

P(1Z(t)) — Z()| = 8) = O(It; — 12|67 3.1
uniformly for all t1, t» € [0, 1]. Then we have
P( max |Z(s) — Z(t)| > 5) = 0 157). (3.2)
|s—t|<e

Proof. We modify the proof of Theorem 12.3 of Billingsley (1968). First, our assumption
(3.1) is exactly Billingsley (1968, Equation (12.50)) with F(z) = ¢. It follows that, for ¢ > 0
(with 1/¢ an integer; cf. Billingsley (1968, Equation (12.57))),

Sop( sup 1ZGs) - Z(je)l = 5) — 0P 157).
j<lje Jess=(jtDe

Similarly, we obtain

Z p sup | Z(s) — Z((j + De)| > 3) = 0157,

j<l/e jes<s=(j+De

Now, suppose that there exist s, r € [0, 1] with |s — ¢| < e and |Z(s) — Z(¢)| > 4. Then there
existsa j < 1/e withmax(|s — jel, |t — je|) < e and max(|Z(s) — Z(je)|, | Z(t) — Z(je)|) =
%8. Consequently,

P(max 1) =zl z8) = Y P( sup 1Z(s) = Z(jo)l = 5)

[s—t]< j<l/e jess<(j+De

+ 3 P( swp 1269 = Z(( + De)l = 1)

j<l/e je<s=<(j+De

=017,
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This proves (3.2) for all ¢ such that 1/¢ is an integer. However, the general case also follows
from the O-estimate.

Lemma 3.2. Let A := h — k and 7,1’/( = Yuk — E(Yni). Then, uniformly for k,h =
logn 4 o(logn),

E((Ynk — Yni)?) = O(m*>A%(logn) ™). (3.3)

Proof. In some ranges, we may apply the results of the previous section for the covariance
of Y, x and Y}, 5, but they do not lead to a uniform estimate, in terms of |k — h|2, in the whole
range when « = 8 = 1. Here, we instead give a self-contained proof of (3.3).

Assume, without loss of generality, that # > k. By (2.4), we have

E((Yux — Yur)?) = ([ vF] = 2[ub o™ + o) f @, v)n" 71 + 0(n™"))
+ O(Skan(logn)~'?).

It suffices to find upper bounds for the dominant term
J = (Fok] = 2[u*0"] + [ V™) £, v)n Y

1 : : A : : iy ix y oiy
= _(27-[)2 //.:D e*lkX*lky(l _ 2671A} +671A(x+y))f(elx, ely)ne +eV dx dy,

where O = [—m, 71]2. Now,
1— ZefiAy 4 efiA(JC‘}*y) — (1 _ e*]’Ay)Z + efiAy(efiAx — 14+ le)
—e AT _ 1 4 iAy) + eV (AY — iAX)
=01+ 02— 03+ Q4.
Let

I, = (271)2 / Qme—lkx 1kyf(elx 1y)n el ely dx dy m=1,...,4).

By the elementary inequalities le™ — 1| < |w| forreal w and 1 — cos w > csw? for |w| < 7,
where ¢5 := 2/712, we have

] < 2 f/ V2 F(e, €)= dx dy.

This, together with the uniform bound

|f (™, e)] = O(lxyl)

(2m)?

for x, y € D, yields
11| = <n2A2/ x|y es @) dx dy>
D
= 0> A*(logn)™).
Similarly, by the inequality | — 1 — iw| < %|w|2 for real w, we have

[J| = O (% A%(logn) ™) (m=2,3).
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For the integral J4, we use the expansion
f(&™,e™) = cai*xy + O(lxyllx + y))

and obtain J4 = Js + Jg, where

A ix iy
(‘; o // 3(y — x)xy exp{—ikx — iky — iAy}n® " dx dy,
T

fo= 0(”2'A' /f eyl (x] + )2 gy dy)
D

= 0(n?|A|(logn) ™).

5 =

For Js5, we use the expansion
e =1+ 0(Aly)

and the relation
f (y _ X))Cy e—ik(x+y)ne”‘+e'y d.x dy — O
D

(which follows by symmetry), so that

Js= 0<n2A2 [ s+ s 4 dy)
= 0(n*A%*(logn)™?)
uniformly for k, h = logn + o(logn). This completes the proof of (3.3).
Lemma 3.3. Uniformly for k, h = logn + o(logn),

[E(Ynk — Yun)l = O(n|Al(logn)™) (3.4)

and, uniformly for k = logn 4+ O (1) and h = logn + o((log n)/3),

n (k — h)?
IE(¥0) — EFpp)] ~ W(l - eXp{—mD. (35)

Proof. Assume that |k — logn| < |h — logn|. By Cauchy’s integral formula,

T elX

E(Y, 1) — _L —ikx 1 _ .—iAx n -1
n.k) E(Yn,h)—zn_ e (l—e )—F(1+eiX)(l+0(n )) dx.

In the first case, when k, i = logn + o(log n), we apply the inequality |1 —e™'2*| < |Ax| and
the same arguments as above, yielding

[E(Yy4) — E(Yy0)|l = O(|Aln(logn) ™)

uniformly in k, &. This proves (3.4).
The approximation (3.5) follows from a straightforward application of the usual saddle-point
method.
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3.2. An upper bound for the expected width

Let ko = [logn], A == [(logn)!/**% |, and L := [(logn)!/*], where &, € (0, ) will be
specified below. We use the following upper bound:

Wu <= max Yy go4ja + \kmaiA [Yni — Yunl

0<Ij1<L i
+ max Bk = Yol + > Yok

lk—ko|>(log n)!/2+én
— WO+ WO L WO LW,

We show that, when taking expectations, the term Y, , in W,gl) is dominant and all other terms
are asymptotically of smaller order than E(Y}, x,).

We start with W.?. By (2.2),
k
@y _ (logn)
B(W) = 0( 3 4
|k—ko|>(log n)/2+&n
= O(nexp{—1(logn)*}(logn)~*);

see Hwang (1997). If we choose
__logloglogn

n --—

loglogn

then
E(W™®) = o(n(logn)™).

For W,\> we have, by (3.4) with k, h = logn + O(LA) and by (2.2) with k and & outside
this range,

_ _ —1
‘hr_nka‘lé[\ [E(Ynn — Yo i) = O(nA(logn)™")
= O(n(logn)3/4+8n).

We then apply Lemmas 3.1 and 3.2 to prove that

1/2
= 0(@ (<logn>3/2—fn> ) (0

To do so, we first define Y, (), —1 <t < 1, by

— (logn)! =5
Y,(t) = Yn,koth(]ogn)]/z"'fn S

when 7(logn)'/2*4 is an integer, and by linear interpolation otherwise. By Lemma 3.2, we
have
E((Ya(s) = Y,(1)*) = O((s = 1))

uniformly for s, t € [—1, 1]. By Chebyshev’s inequality,

P(|Y,(5) — Yu ()] = w) = O((s — 1)*w™?).
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Let 5, := A(logn)~'/2=% It follows, by Lemma 3.1, that

P max 1%u(9) = Ya(0)] 2 w) = 0w~

|5 —t ‘ =M
and, consequently, that

E( max |Y,,(s)—Y,,(t)|> =fOOOP(| max Y, (s) — Y, (1) Zw) dw

[s—t]<n, s—t|<n,

2
= o).
This and the definition of Y;,(¢) imply (3.6), which can be written as
E(W®) = O(n(logn)~2/8+%n),

Thus, it remains to find an upper bound for W,gl). By the Cauchy-Schwarz inequality, we
obtain

ljlsL

< Y EXirin) P PWkeria = W2
[jI=L
n

< -
~ J2rlogn

n
+0 > Pakgrjn = W2 ).
< logn L (n,k0+/A n )

+ O(n(logn)™)

Here we have used the estimates

E(Y,; )" = + O(n(logn)™)

n
/2 logn

and E(Y?)'/2 = O(n/(logn)'/?); see Drmota and Hwang (2005).
Now set D := Yy iy — Y xo+ja for 1 <|j| < L. Then we have

P(Yy kotja = W) < P(D; < 0)
<P(D; —E(D;)| = E(Dj))
- Var(Dj)’
~ E(D))?
by Chebyshev’s inequality.
By Lemma 3.2, we have

(D)—o( " '2A2>
vanbi) = (logn)3j )

This and (3.5) imply that

A .2A2 —1
P(D; <0)/2=0 WA () expl =
' logn 2logn
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for 1 < |j| < L, and it follows that

. 2 A L xZAZ -1
> P <0)?=0 x(1—exp{— dx
logn Ji 2logn

1<|jI=L

= 0(A " (logn)*m).

Thus,

Ew) < + O(n(logn) /4,

n
27 logn

Collecting these estimates gives

E(W,) =<

n —
=< W(l + 0((10gn) 174 IOgIOgl’l)),

which proves (1.7).

3.2.1. A possible refinement of the error term in (1.7). If we had the estimates

E((Yux — Yui)™™) = O™ A*™(logn)™™)  (m=2,3,...),

for k,h ~ logn, then the error term O((logn)~'/*loglogn) in the approximation to the
expected width would be improved to O ((logn)~'/>*¢) for some ¢ > 0. To prove these
moment estimates, we could apply induction and the approach used in Fuchs et al. (2005), but

the details would be very messy.

3.3. Asymptotics of the level polynomials

The proof of the almost-sure convergence (1.6) follows from the martingale arguments
introduced in Chauvin et al. (2001). Thus, we only sketch a few steps of the proof here.

We first observe that the normalized random function M, (z) := M, (z)/E(M, (z)) (where,
recall, M, (z) := Zk Yy, wzk )is amartingale. Roughly, this reflects the fact that, by construction,
the new label has the same probability of being attached to any of the existing nodes. Also, by

22),
—1
E(M, (2)) = (" ) _TZ)

By the martingale convergence theorem (see Hall and Heyde (1980)), M, () converges
almost surely to a limit M («) for any finite, positive o. Then, by the recursive definition (2.1)
of Y, k, and similarly to the contraction method (see Fuchs et al. (2005)), we deduce that

M(a) = aU*M(a) + (1 — U)*M(a)*,

where M (x)* = M(a), U is a uniform[0, 1] random variable, and M (), M («)*, and U are
independent. This implies that M («) 2y () for every o > 0.
Interestingly, this limit relation also extends to complex values of «.

Lemma 3.4. For any compact set in {z € C : |z — 1| < 1}, the martingale M (z) converges
almost surely, uniformly, and in L», to its limit M (z) (which is also an analytic function).

The key step of the proof is to use an explicit expression for E(M,,(z1) M, (z2)) (see (1.5)),
and to use Kolmogorov’s criterion in combination with vector martingale theorems. Finally,
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we recover Y, ; almost surely (and uniformly for 1 — ¢ < k/logn < 1 + ¢, for some ¢ > 0)
via Cauchy’s integral formula:

1
Yok = =— M,(2)z %1 dz
271 J 7=,

1
~ M) E(M,(2))z ¥ 1dz
27[1 |Z‘:an,k

~ M(ozn,;aziﬂi 75 E(M,(2))z """ dz

|zl=an k

~ M () E(Y,1)-

We omit all technical details. Note that the radius «, x := k/logn in the contour integration is
a natural choice because it is the saddle point of the integrand E(M,, (z))z %1, Since M(z) is
almost surely an analytic function and M (1) = 1, it follows that

n

27 logn

W, = m]le Yor ~ m]fle(Y,,,k) ~

almost surely. This completes the proof of (1.6).

3.4. Total path length
Corollary 3.1. Let T, denote the total path length in a random recursive tree of n nodes. Then

M, (1) is a martingale, and

/ I —E(T) o,
M,(1) = ——— =T (1)
n

almost surely and in L.

Proof. Since T, = Y, kY, x, we have M), (1) = (T,, —E(T}))/n by the definition of M, (2).
From Lemma 3.4, it follows that

1
My (1) = =— My (2) dz
271 Jjz—1j=s<1
1 -2
- — 77 "M(z)dz
271 Ji - 1j=s<1

=M'(1)=Y'(1)
almost surely.

This result is already known; see Mahmoud (1991) and Dobrow and Fill (1999). However,
our approach also gives
M (1) — M (1) (= 1)

almost surely and in L;. In particular, when m = 2, we have

1 2
. Zk(k — DMk — tnk) — ;E(Tn)(Tn —E(T)) — M"(1).
k

Note that M,Sm) (1) is also a martingale for m > 1.
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4. Profile of random binary search trees

In this section, we give the corresponding results for the profiles of random BSTs. The
proofs are similar to those for random recursive trees and are thus omitted. Recall that X, ;
and [, x denote the numbers of external nodes and internal nodes, respectively, at level k in a
random BST of n elements.

4.1. External nodes
It has been known, since the work of Lynch (1965), that

3 E(X0ut = (" e 1) (n = 0);
k

n

see also Francon (1977) or Mahmoud (1992).

Lemma 4.1. Forn > 0,

> Bk Xn b " = 2uv
o mE<nh T 2u+2v—2uv—1

n+2u+2v-—2
n

+2u+2v—2uv—l

2u+2v—4uv—1<n+2uv—1)
) )

This simplifies Lemma 4 in Chauvin et al. (2001).
From this lemma we deduce, by singularity analysis (see Flajolet and Odlyzko (1990)), that

(2log n)k>

EXn X)) = 2 [0 p u, ) 2 (1 + 0 7h) + o<8k,h X
n

uniformly for o, 8 € [2 — 212 4 g 2422 ¢], for any ¢ > 0, where

uv 1

- . “.1)
Qu+2v—uv—-2)I'u+v—-1 T@WI'w)

¢(u,v) :=

Theorem 4.1. For o, 8 € (2 — 212 2 4+ 2Y2) the correlation coefficient p(Xp i, Xn,p) is
asymptotic to
¢ (o, B)
Vola, )p (B, B)

O, (. Bty — 3¢ (e, B)
\/¢((X, Of)P(,B’ ,35 tl’l,hﬂ tn,h)

(e, B Sn ks tnn)
V@, o Sy $n i) P(By B tahs tn,)

ifa,p ¢{1,2},

fag{l,2},pe{l.2},

ifa,pell 2},

where
PUL s, 1) = (. Ost — 3Gl (. Ot + 082G, 0s) + LoD, (. 0).

Unlike the profile of recursive trees, the limiting correlation coefficients of p (X, x, Xy.1)
undergo sharp sign-changes at 8 = 1 and 8 = 2; see Figures 5 and 6.
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1.0 -\ 1.0 /\
0.8
0.6 0.5

0.4
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0.0
0.0 110 1.5 210 2.5 3.0

110 1.5 210 2.5 3.0
—0.2

—04 —0.5

-0.6

—0.8

FIGURE 5: The limiting correlation coefficients, plotted against 8. There are two sharp sign-changes in
o, B¢, )p (B, B)1V/2. Here « = 0.7 (lefr) and o = 1.5 (right).

FIGURE 6: Three-dimensional renderings of the limiting correlation coefficients, with o, 8 € (2 — 21/2,
24212\ (1,2} Ueft) and o = 1, B = 2 (right).

4.1.1. Width. The same arguments as above lead to

E(m]?x X,,,k> = " 1+ 0((10gn)_1/4 loglogn)).
gn

V4 lo

This result is new. The corresponding almost-sure convergence was established in Chauvin
et al. (2001).

4.2. Internal nodes

For internal nodes, we have

G BN B )

E(1, = W—2 7
(n,k) [u”] 1 —2u —u

see Brown and Shubert (1984) or Mahmoud (1992).
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Lemma 4.2. Forn > 0,

S Bt = L (o (e (e
kh n,kin,h _(1—21,[)(]—21)) . i

2uv n—+2u—+2v-—2
(1 —2u)(1 —2v)Qu +2v —2uv — 1)

1 n—+2uv—1
2u +2v —2uv — 1 n ’

From this lemma it follows, again by singularity analysis, that

+

n

2logn)*  (2logn)"
Bk Xn i) = 2 b0k o e, vn =21 + 01y + o 18Ny (2logm)
’ ’ k'n h'n
uniformly for o, B € [2 — 212 4,2 +21/2 —¢], for any & > 0, where
oG, v) = o (u, v)
T (1 =w(1—v)
(¢ being as defined in (4.1)).

Theorem 4.2. For o, 8 € (2 — 2172 2 4+ 2U2) the correlation coefficient p(Xp i, Xn,p) is
asymptotic to

o(a, B) )
NI R
oL, Dty — 39 (@, 2)
v 2,8=2
N
Q(sn,ka tn,h) ifa=p=2,

\/q (Snk> Sn )G (s tni)

where

4
q(s. 1) = @, (2. 251 — (@22, 2)s + @[3, (2. 20 + 95, (2, 2).

u?

Figure 7 depicts the single sign-change of the limiting correlation coefficient ¢(c«, B)/
(@(ar, a)p(B, B))'/%; cf. Figures 5 and 6.

Note that (1,1) = ¢ =2 — %nz. Thus, p(I, k, In.n) — 1 when (i) k, h ~ «alogn with
a #2,and (ii) k, h ~ 2logn and |k — 2logn|, |h — 2logn| — oo.
4.3. An intuitive interpretation of the sign-change

For internal nodes, the behavior and the corresponding intuitive interpretation of the limiting
correlation coefficients are similar to those of Y}, x (of recursive trees). The double sign-change
of the limit of p (X, x, X,.5) is explained roughly as follows. First observe that
. E(Xn,k)

I —ayu

2k if 1 <k <logn — (logn)*/3~¢,

logn — k
E(l, 1) ~ {2¥®( —=——=) if |k —logn| < (logn)?/3~¢,
I k) <m> | gn| < (logn)

E(Xn.1)

if k > logn + (log n)2/3_5,
apk—1

https://doi.org/10.1239/aap/1118858628 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1118858628

340 M. DRMOTA AND H.-K. HWANG

0.5

0.0

—0.5

FiGURE 7: The asymptotic correlation coefficient plotted against 8 with o = 1.5 (left), and rendered in
three dimensions for o, B € (2 —21/2,2 4 21/2) (right).

for any ¢ > 0, where @ (x) is the standard normal distribution function; see Fuchs et al. (2005).
This says roughly that the levels up to (1 — ¢) logn are full of internal nodes (since, in this
range, E(X,, 1) = 0(2" )), with less room for external nodes; outside this range, the number of
internal nodes at each level is asymptotically of the same order as that of external nodes. Thus,
if X, x with, say, « € (1, 2) has more nodes, then there are also more internal nodes at this and
neighboring levels, which implies that there are fewer nodes available both at levels less than
or equal to (1 — ¢) logn and at levels greater than or equal to (2 + ¢) logn. This is similar to
the interpretation for recursive trees given in the introduction.

5. Conclusions

In this paper, we have discovered a sharp sign-change phenomenon in the correlation
coefficients of two level sizes in random recursive trees and random BSTs. Such sign-changes
are consistent with the bimodality of the variance in the middle range (k ~ logn for recursive
trees and k ~ 2logn for BSTs).

We conclude the paper with a brief comparison of the different approaches we have taken
to the study of the variance (and covariance) of profiles. In Drmota and Hwang (2005), the
authors introduced two such approaches to var(X, ;) and var(Y, ), one based on explicit
integral representations in terms of Bessel functions and the other on explicit expressions in
terms of Stirling numbers of the first kind. However, extending these approaches to var (I, i)
is not easy. In Fuchs et al. (2005), the authors used an approach based on recurrence and
asymptotic transfer, which applies well to all three profiles discussed in this paper, but to obtain
more terms in the asymptotic expansions using this approach requires more effort. The approach
we have presented in this paper is not only more general (being applicable to covariance and
to more profiles) but is also useful in deriving asymptotic expansions, if necessary. Note that,
by the L;-convergence of the normalized profiles (established by, say, the contraction method),
the leading estimates for the variance or covariance can also be derived from the fixed-point
equation of the limit laws. However, this approach fails in the ranges where the limit laws are
degenerate.

The major open question here is: what is the limit distribution (if it exists) of the width? Is
it the same as the limit law of the total path length (in both classes of random tree considered
in this paper)?
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