TRIANGULAR DISSECTIONS OF N-GONS

J. W. Moon and L. Moser

Let f(n) denote the number of dissections of a regular
n-gon into n-2 triangles by n-3 non-intersecting diagonals.
It is known that

2(n-2)
n-2

f(n) = ;1% {

and that
(1) f(n) = £(2){(n-1) + £(3){(n-2) + ... + f(n-1)f(2)

for n=3, 4, ..., where {(2) =1 by definition. (For pertinent
references on this and related problems see, e.g., Motzkin [2].)
The object of this note is to obtain a simple expression for g(n) ,
the number of such dissections remaining when those which differ
only by a rotation, reflection, or both are not considered as
being different. For convenience we shall let g(2) =1 and

f(k) =0 when k 1is not an integer. We shall prove the following:

THEOREM.

g(n) f(n)/2n + f(n/3 + 1)/3 + 3f(n/2 + 1)/4, if n =0(2);

g(n) = f(n)/2n + £(n/3 + 1)/3 + f(—;-(n+~1))/z, if n=1(2).

Our proof makes use of the following combinatorial lemma,
a proof of which may be found in Burnside [1].

LEMMA. If G is a finite group of transformations
operating on a finite set of objects and if two objects are equiv-

alent when one is transformed into the other by a transformation
of G, then the number of inequivalent objects is
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2 N(t) ,

e

(2) F =

where h is the order of G, N(t) the number of objects left
invariant by transformation t of G, and the sum is over all
elements of G .

In the present problem the objects are the triangular
dissections of a regular n-gon and the transformation group
is the dihedral group of order 2n whose elements,

2 n-1 n-1
I, R, R, ..., R , T, TR, ..., TR , are generated by
the rotation R =(1 2 ... n) and the reflection
T =(1)(2,n)(3,n-1) ... ([n+2)/2], [(n+3)/2]) , where the square

brackets denote the greatest integer function.

Before applying the lemma we make two preliminary
observations. In the first place, if a triangular dissection
of a regular n-gon remains invariant when subjected to a
rotation of 2wd/n radians, where 0<d < n/2, then d=n/2
or n/3 . For if the centre of the n-gon lies on a diagonal of
the dissection then this diagonal joins diametrically opposite
vertices of the n-gon and the only value of d in the above
range which would permit the dissection to remain invariant
‘would be d=n/2. The other alternative is that the centre
lies in the interior of some triangle of the dissection.
Labelling the vertices of the n-gon in counterclockwise order,
let the vertices of this triangle be Pi, P, and Pk, where

1<j<k<n+ 1. For the dissection to remain invariant
in this case it must be that j- 1=k -j=n+1- k=4 which
imvolies that d =n/3 .

Appealing to the definition of a triangular dissection it
is not difficult to verify the following observation also. The
only axis of symmetry a triangular dissection of a regular
n-gon can have when n 1is even is one through diametrically
opposite vertices. In this case if the axis of symmetry does
not coincide with a diagonal of the dissection then there is
precisely one diagonal which crosses the axis; this diagonal
is perpendicular to the axis and both of the vertices which it
joins are connected by diagonals to the two vertices through
which the axis passes. If n 1is odd and the axis of symmetry

passes through Pi’ then diagonals join P‘i to P(n+’l)/2 and
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to Pli3ye

We now complete the proof of the theorem for the case
that n=0(6) . Clearly N(I) =f(n). From the first observation

n/3 R2n/3

above it follows that N(R ) = N( ) = 2 f(n/3 + 1), since

3

having chosen the vertices there labelled P, ,, P , and
1 n/3+1

PZn/3+1 in one of n/3 ways the remaining diagonals may be

selected in one of f(n/3+1) ways so that the resulting dissection

remains invariant under a rotation of ¥ 2m/3 radians. Similarly
2

we find that N(Rn/ ) =_r23 f(n/2 + 1). For m =0, 1, ..., n/2-1,

it may be seen that

N(TRzm)=f(n/2+'1)+f(2)f(n/2)+ f(3)f(n/2-1)+... + f(n/2){(2)
=2f(n/2+1) ,

upon classifying the various possibilities consistent with the
second observation above according to the length of the diagonal
that is perpendicular to the axis of symmetry and using (1).

The earlier remarks imply that the remaining values of N(t)
are zero. Substituting these values into (2) completes the proof
of the theorem for this case. The remaining cases may be
treated in a similar manner.

Motzkin [2] has listed the values of g(n) upto n =13.
His numbers agree with those given by our theorem, except
that it gives g(12) =733 instead of 783, as given by him.

In closing we remark that with slight changes in formula-
tion the hypothesis that the n-gons are regular can be dropped,
a fact that tacitly has been used.
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