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Characterizations of Operator
Birkhoff-James Orthogonality

Mohammad Sal Moslehian and Ali Zamani

Abstract. In this paper, we obtain some characterizations of the (strong) Birkhoff-James orthogo-
nality for elements of Hilbert C*-modules and certain elements of B(.#"). Moreover, we obtain a
kind of Pythagorean relation for bounded linear operators. In addition, for T € B(.%’) we prove
that if the norm attaining set Mlt is a unit sphere of some finite dimensional subspace .74 of .%#” and
[T| 5. < |T|, then for every S € B(5), T is the strong Birkhoff-James orthogonal to S if and
only if there exists a unit vector & € .7 such that | T| & = |T|€ and $* T¢ = 0. Finally, we introduce
a new type of approximate orthogonality and investigate this notion in the setting of inner product
C*-modules.

1 Introduction and Preliminaries

LetB(57, %) denote the linear space of all bounded linear operators between Hilbert
spaces (7, [+, -])and (£, [, - ]). By I we denote the identity operator. When 5% =
A, we write B(J2) for B(JZ, %). By K(J#) we denote the algebra of all compact
operators on .7, and by C;(.7) the algebra of all trace-class operators on 7. Let
Sy = {& € A : ||&|| =1} be the unit sphere of 7. For T € B(5), let M1 denote the
set of all vectors in S 5 at which T attains norm, i.e, My = {£ € S, ¢ | TE| = | T}
For T € B(.2Z, "), the symbol m(T) := inf{| T&| : £ € S} denotes the minimum
modulus of T

Inner product C*-modules generalize inner product spaces by allowing inner
products to take values in an arbitrary C*-algebra instead of the C*-algebra of com-
plex numbers.

In an inner product C*-module (V, (-, -)) over a C*-algebra .7 the following
Cauchy-Schwarz inequality holds (see also [1]):

(£, ) (% 0) < x) (s y) (x,p€eV).

Consequently, x| = | (x,x)|? defines a norm on V. If V' is complete with respect to
this norm, then it is called a Hilbert <7 -module, or a Hilbert C*-module over o/. Any
C*-algebra &7 can be regarded as a Hilbert C*-module over itself via {(a, b) := a*b.
For every x € V the positive square root of (x, x) is denoted by |x|. In the case of a
C*-algebra, we get the usual notation |a| = (a*a). By $(.7) we denote the set of all
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states of &7, that is, the set of all positive linear functionals of .o/ whose norm is equal
to one.

Furthermore, if ¢ € 8(7), then (x, y) — ¢({x, y)) givesrise to a usual semi-inner
product on V, so we have the following useful Cauchy-Schwarz inequality:

lo((x NP <o((x.x)e((3, 7))  (x,yeV).

We refer the reader to [11, 17, 20] for more information on the basic theory of
C*-algebras and Hilbert C*-modules.

A concept of orthogonality in a Hilbert C*-module can be defined with respect
to the C*- valued inner product in a natural way: two elements x and y of a Hilbert
C*-module V over a C*-algebra & are called orthogonal, denoted x 1 y, if (x, y) = 0.

In a normed linear space there are several notions of orthogonality, all of which
are generalizations of orthogonality in a Hilbert space. One of the most important
concepts is that of the Birkhoff-James orthogonality: if x, y are elements of a complex
normed linear space (X, ||| ), then x is orthogonal to y in the Birkhoff-James sense
[6,16], in short, x L y, if

[x+ Ayl > ]x]  (AeC).

The central role of Birkhoff-James orthogonality in approximation theory is typified
by the fact that T € B(¢) is a best approximation of § € B(.7) from a linear sub-
space M of B(.5) if and only if T is a Birkhoff-James orthogonal projection of S
onto M. By the Hahn-Banach theorem, if x, y are two elements of a normed linear
space X, then x Lp y if and only if there is a norm one linear functional f of X such
that f(x) = ||x| and f(y) = 0. If we have additional structures on a normed linear
space X, then we obtain other characterizations of Birkhoff-James orthogonality; see
[3,5,13,22,25] and the references therein.

In Section 2, we present some characterizations of Birkhoff-James orthogonality
for elements of a Hilbert K(.7”)-module and elements of B(.7#). Next, we will give
some applications. In particular, for T, S € B(#) with m(S) > 0, we prove that there
exists a unique y € C such that

| (T+yS)+AS|* > | T+ys|* +|APm>(S)  (AeC).

As anatural generalization of the notion of Birkhoff-James orthogonality, the concept
of strong Birkhoft-James orthogonality, which involves modular structure of a Hilbert
C*-module was introduced in [2]. When x and y are elements of a Hilbert .27 -module
V, x is orthogonal to y in the strong Birkhoff-James sense, in short, x 13 y if

[x+yal > |x|  (aes);

i.e., the distance from x to y.27, the .7 -submodule of V generated by y, is exactly |x|.
This orthogonality is “between” L and 1, i.e.,

X1ly=xlpy=—x13pY, (x,y€eV),

while the converses do not hold in general (see [2]). It was shown in [2] that the
following relation between the strong and the classical Birkhoff-James orthogonality
is valid:

X 13y < x1py(y,x) (x,yeV).
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In particular, by [3, Proposition 3.1], if (x, y) > 0, then
(L1) X1lpyy<xlpy (x,yeV).

If V is a full Hilbert .«/-module, then the only case where the orthogonalities 13 and
1p coincide is when .27 is isomorphic to C (see [3, Theorem 3.5]), while orthogonal-
ities 13 and 1 coincide only when o or K(V) is isomorphic to C (see [3, Theorems
4.7, 4.8]). Further, by [3, Lemma 4.2], we have

(1.2) 215 (IxlPy - ylx.x))  (xyeV),
(1.3) x Ly ([x]x = x(x, x)) (xeV).

In Section 2, we obtain a characterization of strong Birkhoft-James orthogonality for
elements of a C*-algebra. We also present some characterizations of strong Birkhoft-
James orthogonality for certain elements of B(.%7). In particular, for T € B(57)
we prove that if S, = My, where 7] is a finite dimensional subspace of ¢ and
IT| s+ < |T|, then for every S € B(5¢), T L3 S if and only if there exists a unit
vector & € 4 such that | T||€ = |T|& and S*TE = 0.

For given ¢ > 0, elements x, y in an inner product .2/-module V are said to be
approximately orthogonal or e-orthogonal, in short, x L® y if [{x, y}| < €] x||y|. For
€ > 1, it is clear that every pair of vectors is e-orthogonal, so the interesting case is
when ¢ € [0, 1).

In an arbitrary normed space X, Chmielinski [7, 8] introduced the approximate
Birkhoff-James orthogonality x L y by

e+ Apl® 2 x]* - 2elAll <[ ]y] - (AeC).
Inspired by the above approximate Birkhoft-James orthogonality, we propose a new
type of approximate orthogonality in inner product C*-modules.

Definition 1.1  For given ¢ € [0,1), elements x, y of an inner product <7 -module V
are said to be approximate strongly Birkhoff-James orthogonal, denoted by x 15. y, if
lx+ yal® 2 |x]* - 2¢lal |x ]|y (ae).

In Section 3, we investigate this notion of approximate orthogonality in inner prod-
uct C*-modules. In particular, we show that
XL y=x1lpy=—x13, (x,yeV),

while the converses do not hold in general.
As aresult, we show that if T: V' — W is a linear mapping between inner product
o/ -modules such that x 1z y = Tx L3 Ty forallx, y € V, then

(1-168)| T |x] < |Tx| <[T[]x]  (xeV).
Some other related topics can be found in [14,15,23,24].

2 Operator (Strong) Birkhoff-James Orthogonality

The characterization of the (strong) Birkhoff-James orthogonality for elements of a
Hilbert C*-module by means of the states of the underlying C*-algebra is known. For
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elements x, y of a Hilbert .«/-module V, the following results were obtained in [2,5]:
21) x 15 y == (39 € 8() : p((x,x)) = |x[* and p({x, y)) = 0)

(22)x 15 y = (39 € S() : p({x,x)) = | x]> and g ({x, y)a) = 0 Va ¢ 7).

In the following result we establish a characterization of Birkhoff-James orthogonality
for elements of a Hilbert K(.##”)-module.

Theorem 2.1 Let V be a Hilbert K(¢)-module and x, y € V. Then the following
statements are equivalent:

(i) x1lpy.
(ii) There exists a positive operator P € C1( ) of trace one such that

e+ Ayl? > [x]* + APer(PlyP) (A eC).

Proof Letx 1p y. By (2.1), there exists a state ¢ over K(.57) such that ¢({x,x)) =

|x]? and ¢({x, y)) = 0. For every A € C, we therefore have
o+ Ay ] > 9({x + Ay, x +2y))
= 9((x,x)) + 1p((x, y)) + 2o({x, y)) + A9 ({1, »))
= [x|* + AP (IyP).
Thus,

o+ Ax[% > x]? + [APo(lyl*) (1 €C).
Now, by [20, Theorem 4.2.1], there exists a positive operator P € C; () of trace one
such that ¢(T) = tr(PT), T € K(.). Thus, we have

I+ Ay[2 =[x + APo(yP) = [x]* + APe(Pyf) (A eC).
Conversely, if (ii) holds, then, since [A|*tr(P|y|*) > 0 for all A € C, we get
I+ Ay[ 2 V/lx[? + APe(PlyP) 2 x| (A€C).
Hence, x 1p y. [ |

Remark 2.2 Let V be a Hilbert K(.#)-module and x,y € V. Using the same
argument as in the proof of Theorem 2.1 and (2.2) we obtain x 1} y if and only if there
exists a positive operator P € C;(.7) of trace one such that

lc+ yal* > [x]* + tr(Plyal*)  (aeo).

In the following result we establish a characterization of strong Birkhoff-James
orthogonality for elements of a C*-algebra.

Theorem 2.3 Let o/ be a C*-algebra, and a,b € of . Then the following statements
are equivalent:

(i) aljbd.
(ii) There exist a Hilbert space 5, a representation m: &/ — B(I), and a unit vector
& € I such that

la+be|* > |af* + |2 (be)§]*  (ce o).
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Proof Suppose that a L3 b. By (2.2) applied to V = ./ and using the same argument
as in the proof of Theorem 2.1, there exists a state ¢ of ./ such that |a + bd|* >
la|? + ¢(|bd|?) for all d € o7. Now, by [11, Proposition 2.4.4] there exist a Hilbert
space .77, a representation m: &/ — B(5¢), and a unit vector & € JZ such that for any
c € o/ we have ¢(c) = [n(c)é, &]. Hence,

la+be|*>al* + (|bc) = [a]* + [n(|be[*)E, €]
= llal* + [n(be)& n(be)§] = |al* + |n(be) ],

forallce «/.
The converse is obvious. |

Corollary 2.4 Let o/ be a unital C*-algebra with the unit e. For every self-adjoint
noninvertible a € <f, there exist a Hilbert space 7€, a representation m: o/ — B()
and a unit vector & € 7 such that

le+ab||*> > 1+ |n(ab)&|? (bed).

Proof Since a is noninvertible, a? is noninvertible as well. Therefore there is a state
¢ of &/ such that ¢(a?) = 0. We have ¢(ee*) = |e|? =1and

p(eab)| < /g(eaa”e ) g(b°b) = /o(a)p(bB) =0 (beos),
Thus, by (2.2) we get e L} a. Hence, by Theorem 2.3, there exist a Hilbert space 7,
a representation 7:.%7 — B(.7), and a unit vector £ € J# such that |[e + ab|? >
1+ |n(ab)é||* forall b e o. ]

Now, we are going to obtain some characterizations of (strong) Birkhoff-James
orthogonality in the Hilbert C*-module B(5¢). Let T, S € B(¢). It was proved in
(4, Theorem 1.1 and Remark 3.1] and [2, Proposition 2.8] that T 15 S (resp. T L5 S) if
and only if there is a sequence of unit vectors (£,) c 7 such that

(23)  lim |T&,| =|T| and lim [T&,,S&,]=0 (resp. lim S*TE, =0).

When 7 is finite dimensional, it holds that T 1 S (resp. T 1% S) if and only if there
is a unit vector & € 5 such that

(24) |TE) =T and [TESE]=0 (resp.S"TE=0).

The following results are immediate consequences of the above characterizations.

Corollary 2.5 Let T € B() be an isometry and S € B() be an invertible positive
operator. Then T g T'S.

Corollary 2.6  Let S € B(A). Then the following statements are equivalent:

(i) S is non-invertible.
(ii) T L1p S for every unitary operator T € B(J).

Proof By [10, Proposition 3.3], S € B(.%7) is not invertible if and only if
0e{AeC:3(&) c A, & =1, lim [T*SE,, &,] = A},

for every unitary operator T. Hence, by using (2.3), the statements are equivalent. M
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Corollary 2.7 Let T,S € B(S€). Then the following statements hold:

(i) IfdimJZ < oo, then T Ly S if and only if there is a unit vector & € S such that
IT|§ = |T|§ and [TE, SE] = 0.

(i) Ifdim .2 = oo, then T Lg S if and only if there is a sequence of unit vectors
(&x) € A such that lim, e (| T|Ex = |T|Ex) = 0 and lim,, e[ TE,, SE,] = 0.

(ili) Ifdim 7 < oo, then T L3 S if and only if there is a unit vector & € S such that
T = |T|€ and $7T¢ = 0.

(iv) Ifdim s = oo, then T L3 S if and only if there is a sequence of unit vectors
(&,) © S such that lim,,_, o, ( [TIIE, - |T|En) =0andlim,_ S*TE, = 0.

Proof (i) Let T 1p S. Take the same vector & as in (2.4). So, we have

| T&|* = [TE TE) = [|TIPE & < IITIIPNEN° < | T)° N €)° = | TE).

This forces |T|*& = | T|?€ and thus |T|€ = | T| ¢, as asserted.
The converse is trivial.
Using (2.3) and (2.4), we can similarly prove statements (ii)-(iv). [ |

Theorem 2.8 Let S € B(7). Let 5 # {0} be a closed subspace of #° and let P be
the orthogonal projection onto 7¢;. Then the following statements hold:

(i) IfdimJZ < oo, then P Ly S if and only if there is a unit vector & € ¢ such that
[S& &) =0.

(i) Ifdim.Z = oo, then P Lg S if and only if there is a sequence of unit vectors
(&,) c 4 such that lim,,_, o [S&,, &,] = 0.

Proof (i) Let P 15 S. By (2.4), there is a unit vector { € % such that |P{| = |P| =1
and [P{,S{] = 0. We have { = & + 1, where £ € J% and 4 € J%". Since |&| =
[P(§+n)| = [PC] = 1and [€]* + [y]* = 1, so we get # = 0. Hence, [S§,£]
[S(E+n),&] = [S(E+n), P(§+ )] =[P, SC] =0.

The converse is trivial.

(ii) Let P1gS. Take the vector sequence ({, ) of 77 asin (2.3). We have {,, = p,+1,,
where y, € 7 and n,, € 7", Since

lim g, = lim [P(up + 1) = lim [P, =1 and  [u|® + 1a]* =1,

we get lim, oo |77,] = 0. We can assume that |y, | > 5 for every n € N. Let us put
&, = ﬁ We have

|88m, E]] = —— | [Sttns ]|

lean |2
= W| [SCn,P(n] + [S.una,”n] = [SCH,P(n”
1 1
< W| [S(n;P(n” + W| [S‘Mn, ,un] - [S(‘un + ;7”))‘“”:”
1 1
< e 186 Peall + | 187 1]

https://doi.org/10.4153/CMB-2017-004-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-004-5

822 M. S. Moslehian and A. Zamani

1 1
< [SCus PCu]| + 7
H#nl\2| | [l

< 4{[SCu, PCu]| +20S (114,

NIA

whence
|[S&w, Ea]| < 4| [SCns PLa]| +2]S] 7]

Since limy o0 [ Py, S{x ] = 0 and lim,_,« ||| = 0, from the above equality we get

lim,o[S¢,, 0] = 0.
The converse is trivial. [ |

Theorem 2.9 Let T, S € B(J¢). Then the following statements are equivalent:

(i) T1gS;
(i) [T +AS|? 2 |T|* + |A|*m>*(S) (A € C), where m(S) is the minimum modulus
of S.

Proof (i)=(ii) Let T 15 S and dim .7Z = oo. By (2.3), there exists a sequence of unit
vectors (&,) c 5 such that lim,_ |TE,| = |T| and limy—oo[TE,, SE,] = 0. We
have

IT+AS|* 2 (T +AS)Eu|* = | TE|? + ALTEw, SEu] + A[SEw, TEL] + AP SEA]?
forall X € C and »n € N. Thus,
IT+AS|? > | T)? + AP lim sup [SE, [ > | T|* + [APm*(S)  (AeC).

When dim JZ < oo, by using (2.4), we can similarly prove the statement (ii).
(ii)=(i) This implication is trivial. |

Remark 2.10 Notice that for S € B(J) it is straightforward to show that m(S) > 0
if and only if S is bounded below, or equivalently, S is left invertible. So in the impli-
cation (i)=>(ii) of Theorem 2.9, if S is left invertible, then m(S) > 0.

It is well known that Pythagoras’ equality does not hold in B(.7#). The following
result is a kind of Pythagorean inequality for bounded linear operators.

Corollary 2.11 Let T,S € B(J#) with m(S) > 0. Then there exists a unique y € C,
such that

| (T+yS)+AS|* > | T+ys|” +|APm?(S)  (AeC).

Proof The function A — | T + AS| attains its minimum at, say, y (there may be of
course many such points) and hence T + yS L5 S. So, by Theorem 2.9, we have

||(T+yS)+AS||22HT+yS||2+\/\|2m2(S) (LeC).
Now, suppose that £ is another point satisfying the inequality

| (T+&S)+AS|* > || T+E8|* +APm*(S)  (AeC).
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Choose A =y — & to get
| T+ys|” = [ (T+E)+ (-S| > | T+&S|" + 1y - &Pm*(S)
> T ys| + Iy - EPmE(S).

Hence 0 > |y — &> m?*(S). Since m*(S) > 0, we get |y — &> = 0, or equivalently, y = &.
This shows that y is unique. u

Let T € B(). For every S € B(7), it is easy to see that if there exists a unit
vector & € 7 such that | T|| € = |T|& and $*T& = 0; then T 13 S. The question is under
which conditions the converse is true. When the Hilbert space is finite dimensional, it
follows from Corollary 2.7(iii) that there exists a unit vector £ € 5# such that | T| ¢ =
|T|&and S*TE = 0.

The following example shows that the finite dimensionality in statement (iii) of
Corollary 2.7 is essential.

Example 2.12  Consider operators T, S: £2 — £* defined by

T(£1’£2’€3""):(%fl’%&Z)ZE.’n“-) and S(£l>£2’£3>--~):(EDO’O"--)-

One can easily observe that T 15 S and T*S(§,8&,,&5,...) = %512 > 0. So, by (1.1),
we get T 15 S. But there does not exist £ € £* such that | T € = | T|¢.

We now settle the problem for any infinite dimensional Hilbert space. The proof
of Theorem 2.13 is a modification of one given by Paul et al. [21, Theorem 3.1].

Theorem 2.13 Let dim.%# = co and T € B(J€). If Sz, = My, where 4, is a finite
dimensional subspace of 7 and | T sz = sup{|T&|| : & € 54", |&] =1} < | T|, then
for every S € B(S7), the following statements are equivalent:

i) TL%S.

(ii) There exists a unit vector & € 53 such that |T&| = | T| and S*T& = 0.

(iii) There exists a unit vector & € 74 such that | T| & = |T|& and S*TE = 0.

Proof (i)=(ii) Suppose (i) holds. By (2.3), there exists a sequence of unit vectors
{{,} in A such that

(2.5) lim |T¢,| =||T| and lim S*T{, =0.

For each n € N, we have {,, = &, + 17,,, where &, € 5% and 11, € J4*.

Since % is a finite dimensional subspace and |&,|| < 1, {£,} has a convergent
subsequence converging to some element of .7%. Without loss of generality we assume
that lim, o &, = & Since S5 = My,

(2.6) lim [T, [ = [T = T[[<]
and
(2.7) Jlim [7a]1? = Jim ([, 12 = 1&0%) =11 €)%.
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Now for each non-zero element &, € 5%, by hypothesis ”g—“u € S, = My, and so
I TSl = IT1En]. Thus,

| T THEal? = I TINEal* = [ TE]1* = [T T, &a] < | T"TEu[[ €]l < | 77T

Hence, [T*T¢,,&,] = |T*T&,|||€x]. By the equality case of Cauchy-Schwarz in-
equality T*T¢&, = A, &, for some A, € C, and therefore

(2.8) [T*T&uw, 1n] = [T"Thn, §u] = 0.
By (2.5), (2.6), and (2.8) we have
”TH2 = nlgtolo H e H2 = ’}Lngo[T* Ty, cn]

nh—lg)lo ( (T T, &n] + [T T8, n] + [T Ty §a ] + [T Tt ’1n])

1%

= lim | T&, [ + lim |Tn,|* = [T|*|&]* + lim |T7,,
whence by (2.7) we reach
(2.9) Lim | Toa|* = | TI* (1= |€]*) = | T[> lim {7, .

By the hypothesis | T s+ < | T|, and so by (2.9) there does not exist any non-zero
subsequence of {]#7,]}. So we conclude that #,, = 0 for all n € N. Hence, (2.5) and
(2.7) imply

181=1 Tl =]T], and S$*TE=o0.

(ii)=(iii) This implication follows from the proof of Corollary 2.7.
(iii)=>(i) This implication is trivial. [ |

Corollary 2.14 Let dim .5 = co and T € B(5). If S s, = Mt, where 7, is a finite
dimensional subspace of 7 and | T| s < | T|, then there exists a unit vector & € 7
such that | T|& = |T|éand | T|?T*TE = (T*T)%E.

Proof By (1.3), T15(| T|*T-TT*T). So, by Theorem 2.13, there exists a unit vector
& € A such that |T|€ = |T|E and (| T|*T - TT*T)*TE = 0. Thus, |T|*T*TE =
(T*T)%E ]

Corollary 2.15 Letdim .5 = oo andlet T € B(J¢) be a nonzero positive operator. If
S = My, where 7, is a finite dimensional subspace of 7€ and | T| s < | T|, then
for every S € B(S) the following statements are equivalent:

(i) TLi38.

(ii) There exists a unit vector & € 5 such that TE = | T| & and S*& = 0.

Proof Obviously, (ii)=(i).

Suppose (i) holds. By Theorem 2.13, there exists a unit vector £ € .7 such that
|TE| = ||T| and S*TE = 0. Since T > 0, |TE|| = |T| < TE& = ||T|¢. Therefore,
S*TE=0<«<S§*¢=0,as T #0. [ |
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3 An Approximate Strong Birkhoff-James Orthogonality

Recall that in an inner product .27 -module V and for ¢ € [0,1), we say x, y are ap-
proximate strongly Birkhoff-James orthogonal, in short x 15%. y, if

lx+ yal® 2 |x]* - 2¢lal |x]|y]  (ae).

The following proposition states some basic properties of the relation L}..

Proposition 3.1 Let ¢ € [0,1) and let V be an inner product </ -module. Then the
following statements hold for every x, y € V:

(i) xlzpx<eox=0.

(i) x L3 y=ax Ly Byforalla,feC.

(i) x L*y=x 1% y.

(iv) x1l3y=>x15y.

(V) xlp.y<exlyyaforalacg.

Proof (i) Let x L}. x. Also, suppose that (e;);es is an approximate unit for .o7. We
have

o = xei|* > lx]* - 2¢] - esf x| (i)

Since lim; | x — xe;| = 0 and |e;| = 1, we get (1 - 2¢)x|* < 0. Thus, x = 0.
The converse is obvious.

(ii) Let x 1% y and let «, 8 € C. Excluding the obvious case a = 0, we have

B I? B
Jax + Byal® = o x+ y=a| > a*( [x] - 2¢al ]| Z5] )
o o
= llox|* - 2¢]af x| By
Hence, ax 13. By.
(iii) Let x L® y. For any a € .27, we have

[+ yal* = [{x + ya,x + ya)| = [(x, x) + (ya, ya) + (x, ya) + (ya, x)|
[{x, x) + (ya, ya)| - [(x, ya) + (ya, x}|
(. ) = [{x, ya) + (ya, %)

[x1” = 1 ya) | = [{ya, x)] 2 [x[* = 2] all[{x, y)]
> x|* - 2¢]all ] [ y]-

v

v

|
|
2 |
|
|

Thus, |[x + ya|* > |x|* - 2¢|a|||x| | y], or equivalently, x L1} y.
(iv) Let x L3, y. Hence, for any A € C and an approximate unit (e;);er for o7, we
have

2
(lx + Ay +Allye: = y1) " > [x + Ayeil® > [x]* = 2¢[Aes <] |y
> [lx]* - 2elAl]x [ ]

Sincelim || ye; — y|| = 0, whence we get |x+Ay||* > | x]*—2¢|A|| x| | y||, or equivalently,

x L8 y.
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(v) Let x 1. y and let (e;) ;s be an approximate unit for &7. We have

2
(lx+Ayal +[Ayae; = Ayal)” > |x + Ayae:|* > [x|* - 2¢[ Aaes| [ x] ]y
> |x|* - 2elAlal ] |y

forall a € o and all A € C. Since lim | yae; — ya| = 0, we obtain from the above
inequality
o + Ayal® > |lx[* - 2¢[Al  a|x] ]y

foralla € &7 and all A € C. Thus, x 1§ yaforall a € o/.
The converse is trivial. ]

Proposition 3.1 shows that in an arbitrary inner product C*-module the relation
L1¢ is weaker than the relation L. and this relation is weaker than the relation L}, but
the converses are not true in general (see the example below).

Example 3.2 Suppose that ¢ € [0, 1). Consider M} (C), regarded as an inner prod-
uct M(C)-module. Let I=[ § 9], A=[ 3 9] and B=[§ §]. Then

, =2 o
=[50

>1>1-2¢[A| = [I|* - 2¢[A||I] | A]

= (max{[1 - A, J1+A]})

forall A € C. Hence I L5 A, butnot I 13 A, since
IT+A(-A)[? =0 <1-2¢ = |1|* - 2¢| - A |1]]| A].

Cc] €2

On the other hand, for any C = [ oo ] , we have

2 _|[[1+ca e

1 1
- [£(|1+c1|2 tleff+1) + 5¢(|1+c1|2 FleP 1) -4+ c1|2]

NIE

2121-2¢[C[[B] = | 1]* - 2¢[ C[[| 1] B].
Therefore, I 13 B. But not I L* B since

[{1,B)|| = |B] = 1> ¢ = e[ 1]|||B].

By combining Proposition 3.1(iv) and [19, Theorem 3.5], we obtain the following
result (see also [9,12,18]).

Corollary 3.3 Let V, W be inner product o/ -modules, ¢ € [0,3) and let T:V — W
be a linear mapping satisfying x Ly y = Tx L%. Ty. Then

(=16e)| T[] < [Tx| < [T[[x]  (xeV).

Proposition 3.4 Let ¢ € [0,1). Let x, y be elements in an inner product </ -module
V such that (x,x) L3, (x, y); then x 13, .
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Proof We assume that x # 0. Since (x, x) 13. (x, y), therefore for every a € o7, we
have

[, 2) + (x, yal* > [ {x, x)1* = 2¢[ al [ {x, %) [ | {x, )]
or equivalently,
[, + ya)|* > [lx[* - 2l al ][ {x, y)]-
Hence, we get
lx 2+ yal* > [x]* - 2¢[al |x [yl (aca).
Since |x|? # 0, we obtain from the above inequality
|+ yal® 2 |x]* - 2¢al ||y (ae).
Thus, x 15 y. |
Proposition 3.5 Let x, y be two elements in an inner product </ -module V and let

€ € [0,1). If there exists a state ¢ on </ such that ¢((x,x)) = ||x|* and |p({x, y)a)| <
elalllx| |yl for all a € o, then x L3, .

Proof We assume that x # 0. Let a € o/. By the Cauchy-Schwarz inequality, we
have

Ix* = 9((x, x)) = [p({x, x + ya)) — ¢({x, ya))|
<lp({x, x + ya))| + |o((x, ya))|

<Vo((x,x)p({x + ya, x + ya)) + | al | x| y|
< [xllx + yal +elallx]ly].

Thus, [[x[? < x| |x + ya| + eal|x[ 7], ie [x + ya] > |x] - e[a]]y[. We consider
two cases.

Case I If | x| — €| al|| y| = 0, then we get
2
I+ yal? > (] ~elally])” = IxI* - 2¢[al | |y] + [ al*] 7]
> |x[* - 2¢fal |x [ y1-
Case 2: If || x| — €[ a| | y| < O, then we reach

|+ yal® > 0> |« ([ - elallly]) > [x[( =] - elally1) - elallxlly]
= |xI* - 2¢[al <] Iy

Hence, x 15. y. |

Proposition 3.6 Let x, y be two elements in an inner product o7 -module V and let
e€[0,1). Ifx L} y then there exists a state ¢ on </ such that

lp({x. y)a) < V2elal|x]y]  (ae).
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Proof Suppose that x 13. y. Because of the homogeneity of relation L3., we can
assume, without loss of generality, that |x| = ||| = 1. Then for arbitrary a € <7, we
have

lc+ ya|* >1-2¢]af | y]l.
Since || = (y, %) < [yl x] =1, for a = —(y, x) € & we get
o = y{yx)[* 21~ 2e.
On the other hand, by [20, Theorem 3.3.6], there is ¢ € S(.&7) such that
o((x =y x)x = y(y,x))) = 2= y(p. )

Also, we have

o({x = y(r.x)x - y(1,x)))
= 9((x,x)) =29 ((x, y) (¥, x)) + @({x, y(¥, YN
< %[ = 20((x, y)(3, %)) + o ({x: ) Iy 7 (y. %))
=1-9({x, Y}y, x)),

»,x))

so, we get
1= 9((x: y)(yx)) 2 @({x = y{y ), x = y(p,x)) ) = = p{p, x)[* 21 - 2e.
Therefore, p({x, y){y,x)) < 2e. Now, by the Cauchy-Schwarz inequality, we reach
lp({x ya))l < Vo (. y)(1: x))g(a*a) < V2e|a|  (ae o). -
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