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1. Introduction

Finding the distribution of stress in earth dams containing cracks is an
outstanding problem of soil mechanics. Even the simplest mathematical
model, viz., that of a wedge containing a plane crack which is symmetrically
situated along the bisector plane of the angle of the wedge, with the plane
strain assumption of the infinitesimal theory of elasticity, presents a difficult
problem of solving the bi-harmonic equation subject to mixed boundary
conditions. While elasticity problems related to wedge-shaped bodies have
been investigated, it appears little attention has been paid to the mixed
boundary-value problems. As a first step towards the solution of the mixed
boundary value problem for the biharmonic equation, we discuss in this
paper the solution of Laplace’s equation

2 2 2
o> pop p*06° 92’

for wedge-shaped regions subject to mixed type of conditions on the boundary.
If we assume that ¢ does not depend on z, the equation (1.1) is reduced to

the equation
2
¢ 104 1379 _ (1.2)

op*> pdp p*a0®
We consider the solution of the equation (1.2) for the region 0<p<co,
0 <0<a, subject to two types of boundary conditions on the face 0 = «. (a)In
the first instance we suppose that for 8 = «, ¢(p, 0) = ¢(p). (b) Secondly
we assume that for § = a, the normal derivative of ¢(p, 0) has the prescribed
value ¢,(p). Corresponding to each of these two conditions, there can be
two kinds of boundary conditions on the face § = O:

I ¢(p’0)=f1(p)’ 0<p<1’
a¢
il = , p>1.
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The functions f,(p) and f,(p) are known functions.

R. P. SRIVASTAV
(?2
00 le=o

¢(p’ 0= fz(P)s p>1.

= filp), 0<p<l,

Using Mellin-transforms we easily find that a solution of (1.2) satisfying
the condition (a) for an arbitrary choice of ¢ is

é(p,
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®=if
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&(s) sec as cos (a—6)sp~3ds,

Y(s) sec as sin (a—B)sp™*ds

(1.3)

where @(s) is the Mellin-transform of ¢(p), and that a solution of (1.2) which
satisfies the condition (b) is

é(p,

1 c+iw
0= —
) 2mi \[:—iuo

1 c”+imn
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where ¢,(s) is the Mellin-transform of ¢,(p).

The choice of ¢, ¢’ and ¢” is governed by the integrability of p°~*¢(p, 6),
p° 7 1¢(p), p " 1¢,(p) and Y(c+it) and the property of their being of bounded
variation but ¢(p, ) and Y are unknown so that a sort of semi-inverse approach
has to be made. We keep c¢ arbitrary and choose it to facilitate calculation.
The boundary conditions on 6 = 0 give us the following types of integral
equations for determining the function y(s) in each case:

1
2ni
1
2ni
1
2ni
1
2ni
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(a)

(az)

(by)

(fc+ico

¥(s) tan asp™*ds = f1(p),

2ni

" s = 40
_+: S Sp="ds = —f1(0),
”“”."°° Y(s) tan asp~*ds = [,(p),
: Hp"ds = 1.0)

”°+.‘°° sY(s) tan asp™*ds = f5(p),
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s~ 1$,(s) sec as sin (a~ B)sp~°ds,

Y(s) sec as cos (a— Psp~*ds

(1.4

O<p<l,

p>1.

O<p<1,

p>1.

O<p<l,

p>1.
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c+ico
(b,) z‘l{i T sy tanasp™ds = fi(p),  0<p<1,
1 ct+iw i
i y(s)p™%ds = f1(p), p>1.
Tl Je—io

For the sake of convenience in presentation, we assume in each of the
above problems in the first instance that f,(p) = 0 and secondly that f,(p) = 0.
Obviously the solution to the general problem can be constructed by adding
the two solutions.

We reduce in each case the dual integral equations to a single equation of
the second kind of Fredholm type. The technique is essentially the same as
employed by Sneddon and Srivastav (1) for dual series equations. The analysis
is formal throughout this paper and no attempt is made to justify the change
of order of integration or differentiation within the integral sign.

The following elementary integrals occur frequently in our work:

£ s 2_ 24, rg—14sr@ -,

Lp (1> —p*) " *dp 2T —39) ™% R(s)<l. (1.5)
® =522 __42y—% — r(%s)r(%) -5

,[ p (p*—1t*)"%dp 2———1_(%_‘_%8) =%, R(s)>0. (1.6)

We have also used the inversion theorem for Mellin-transform for which
reference may be made to (2).

2. We begin our discussion of the dual integral equations given in § ],
by considering the pair of equations

Pc+ioo
| T W@ anaspds = £ 0<p<1, 2.1
uz Je—iw
1 (*c+ico
5 sY(s)p%ds =0, p>1; —1<c<l. (2.2)
i Je—iw

If we assume that for 0<p <1,

1 fc+ico — d 1 dt
— sY()p ds = —p — __91;,
2ni Je—iw ap P \/(tz—pz)
where g(?) is an auxiliary function, as yet unspecified, then it follows from the
inversion theorem for Mellin-transform and (1.5) that

sP(s) = ';%;—%I_}g ' g.(D*"1dt, R(s)> —1. (2.3)
V]

We rewrite the equation (2.1) as

c+ico
21; J W(s) tan 3msp~*ds = Fy(p), 0<p<l, (2.4)
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where '
Fi(p) =fi(p)+ ;;J ' Y(s)(tan 3ns—tan as)p = ds. 2.5)

Substituting for Y(s) from (2.3) in the equation (2.4), we obtain, on changing
the order of integration, the equation

1 c+im s
9:() 1 ! wtan dnsdsdt = Fy(p), O<p<l. (2.6)
/] t 2mi c—iw \P 21—(%S+%)
By considering the integral
L j (—t ) ll{fﬂlj(i) tan {nsds
2ni Jo \p/ 2I(3s+%) ’

where C consists of the sides of the rectangle with vertices ¢+iT and N+iT,
N being an even integer, positive if z <p and negative if > p, it can be easily

shown that
c+im s _ 2__2\—4%
21t Jomi \p) 20Gs+3) 0, 1>p.
The equation (2.6) is therefore equivalent to the equation
4 tydt
—g—l(_):— = F,(p), (2.8)
o J(p*—1?)

an integral equation of Abel-type whose solution is given by the relation
_2d (" phi(p)dp
mdt Jo \J(*~p?)

Carrying out the simplification with the help of (1.5), we get the Fredholm
equation of the second kind

91(‘)=—%i tm _I

g1() = 2.9

1
g—(u)Kl(u, Ndu, O0<t<l, (2.10)

7 dt 0 \/(tZ_pz) 0 U
where
. 1 c+ico u s
K,(u, t) = 5 p (tan 47s—tan as) cot imsds, (2.11)
T Je—iw

which may be alternatively written as

Ky(u, 1) = I—_IHM (3>SM“—)S ds. (2.12)

2ri t/ cosassin i7us

In particular if « = 47, K;(u, £) = 0 and the pair of equations (2.1) and (2.2)
admits a closed form solution. In every other case, it seems, recourse has
to be made to numerical methods for the solution of Fredholm integral equation
of the second kind. In fact, for « = 1= all the equations discussed here can be
solved analytically and /(s) can be determined in a closed form.

c—iw
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Let us next consider the dual equations

fc+io
21—. Y(s)tanasp~ds =0, O0<p<l1 (2.13)
Tl Je—io
1 ("¢ +ioco
byt sY(s)p~%ds = —f,(p), p>1; O<ec<]. (2.19)

In this case we begin by assuming that
fc+ico p
17 (o) tan asp=ods = f _ga(0dt oy, 2.15)
2mi Je—io 1 \/(pz—'tz)
In view of the inversion theorem for the Mellin-transform and the equation
(1.6), this is equivalent to the assumption that

-4 (© s—1
s)tanos = =22~ 227 DE~ Mdt. 2.16
v(s) gy | 90 2.16)
The equation (2.14) can be written in the alternative form
o 1 c+ i s
P—— lﬁ(s)p dS = _f2(p)’ P> 1’ (2‘17)
dp 2mi c—iw .

and if we substitute the value of /(s) from the equation (2.16) in (2.17), we get
the equation

P 9 [Iw g2(1) {i- Jﬁiw (f)s cot 3ns TG—391(H) ds} dt] = Fy)(p), p>1,

opl)e 1 2niJemin \p 20(1—4s)
(2.18)
where
®ga(t) 1 [T TG—34ra)( ¢y
Fyp)=— + RN cot ims—cot as) =222 227 _ ) dsdt.
)= =fipr+ [ 72O L™ stotims—cota T AV
(2.19)
Since
c+ioo s _ 2_ ,2y—%
1 1 cot gns FATI@ 4o [12=pD)74 125, (550
2ni c—im \P 21_‘(1—%5) 0, t<p’
the equation (2.18) is reduced to the equation
9 |® 904t _ ), p>1. 2.21)
op Jo J(*—p?)
The solution of the equation (2.21) is
2t [* F,(p)d
()= -2 | 2% 2:22)

)i JP—1)

F,(p) involves g,(7) but if we carry out the elementary integrations in (2.22)
we easily find it to be equivalent to the Fredholm integral equation of the
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second kind

g2(0) = féf)dfz) - r g llf“) K,(u, Odu, (2.23)
t \/ - 1

where

1 [etie n n
Ky(u, t) = Py (cot 3 s—cot as) tan 5 5 ( ) ds (2.244)

tJe—iw
or

. [z
| [etio , sin (E —a) sds
Ko(u, £) = — (‘i) A S (2.24b)

2mi Jomi sin s cos = s
2
3. Solution of the dual equations

1 c+iw

-~ sY(s)p™ds = ~f1(p), 0<p<l, (3.1
2mi c—io
1 c+io
3 Y(s)tanasp™ds =0, p>1; —li<c<l], (3.2)
Tl Je-iwo

can be accomplished in a similar manner. The starting point in this case is
the assumption that

c+ion 1
—1-—_ Y(s) tan asp~ds = p f ;"_1(‘25_‘_, O<p<l, (3.3)
2 Jemio p J(2—p?)
which amounts to assuming that
5 1
sy(s) = cot as M f RO IR G4
I'(3s) 0

However, since

“1—.J.c+im <£>s LG5 +3) oo nsds= | 3 56;7 @I P>t (3.5)
27i Jooio \2/ T (3s) 0, p<t,

on substituting the value of s¥/(s) from the equatlon (3.4) in the equation (3.1)
we get the equation
_ 9 [* t’g,(t)as
o J(p*—1%)
1 c+in
= —~fi(p)+ | g 1 (cot kns—cot as) w p *dsdu. (3.6)
0 27 Jo—io r(3s)
If we regard the right hand side of (3.6) as known for the time being, (3.6)
is an integral equation of Abel—type whose solution is given by the relation
* filp)p

19, (t)
\/(tz __pz

f " 41K, du. 3.7
[v]
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To solve the equations

c+ico
i; sYy(s)p~%ds =0, O<p<l, 3.9)
2ni c—io
1

c+im
—j- Y(s) tan asp %ds = fo(p), p>1, —1l<c<l, 3.9

2mi c—iw

we proceed by supposing that

1 c+iwo _ a 1 c+in -
L™ spoprds = —p —j Wo)p™*ds

27 Jomiwo 6—;27ﬁ c—iw
——p 2], | a0t } 1. (3.10
pap{pL T , P> ( ._)
In this case, we find that
_TAr(-%s |*
Y(s) = a3 ), g.(Oede. . (3.11)

Substituting the above value of ¥(s) in the equation (3.9), we are led to the
equation

o 1 (% tan nsTG(—4s) { 1Y
L g2(f) o L-iw 2T (3—1%s) > dsdt

_ ®© 1 [e*i® (tan dns—tan as)T(HI(—3s) (u '
= fo(p)+ L g,(w) i L—m TG-19) (F-’) dsdu. (3.12)
Since
1 (et (N TAI(=3s), 75, [p(2—=pH~%, 1>p, .
— Lm (;) iy b= {0’ @13

the equation (3.12) is reduced to '

® _ga(dt

e J(E—p?)

_ © 1 [+ (tan dns—tan a)[(—3)TQ) (u , .

=S f O i L-m G—19) (,,) dodts G19

which is equivalent to
tgz(t)=—g£i _fz_(ﬁ)fl_P___'_J‘
n dt J, Jo*-1?)

4. Let us now consider the solution of the equations

1

N g,(W)K(u, t)du. (3.15)

1 c+iwm -

i J‘ ) Y(s)p~%ds = fi(p), O0<p<l, 4.1
1 c+ico

Ini J sy(Htanasp™°ds=0, p>1. (4.2)
Tl Je—ioo N
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Our approach is fruitful in this case only if —1<¢<0. In terms of the auxiliary
function we set, for 0<p <1,

1 Vdt
szp(s) tan asp “ds = —p — [ _gu(ndt ] 4.3)
o J(E=p?)

1 c+ico
2ni
This amounts to the assumption that

Substituting this value of l//(s) in the equation (4.1) we get on interchanging
the order of integration the equation

ctio [\ LEs+Hra)
f 90 {zm f (,,) cot *’“m‘“} @

_ 1 [e*** (uY (cot 3ns—cot as)T (35 + HI'(4)
= fi(p)+ L g(u) {2? L—.-w (p TGS 1) ds} du. (4.5)

However, since

| [etio (E)s cot s TESHIT®) 4o {p(ﬂz—’z)—*’ P>L (46

27 Joiw \P 2T(3s+1) 0, p<i,
the left-hand side of the equation is simplified to
[4
_gdr_ @7
o J(p*—1?)

and therefore the equation (4.5) is reduced to the Fredholm equation of the
second kind

_2d* f(pdp 1t -
g(t) = adi ), \/—“——(—tz_——;-z—) + _IJ; (WK (u, 1)du. (4.3)

To complete the solution of the equations (b,), we now turn to the dual

equations
c+ioo
1 Y(s)p~ds = 0, 0<p<1, (4.9)
2mi c~iom
1 c+ico
P sy(s) tan asp™°ds = f,(p), p>1; —1l<c<l. (4.10)
n
If we put
c+iwm (4
——1—' Y()p~3ds=p -ig—(tg—_, p>1, 4.11)
2mi c—io 1 \/(pz—'lz)
we obtain for y(s) the representation
T s)I'
v = S22 | g (4.12)

2 (G—1s)
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which has the property that the equation (4.9) is identically satisfied. Replacing;
¥(s) in the equation (4.10) by its value given by the relation (4.12), we find that.

22" L[ (p\"I(=49Td),, =
Ll w05 L () ST on e

= folp) + Jw g2(u) 2i— jc+iw (’_’>_s %@% <tan g s—tan ocs) dsdu.
Tl Je—ioo \U z2—32S
1 4.13).

In view of the relation (3.13), the above equation is reduced to
o [ gald)dr
o Jo J(-p?)

- © L[t (p\*TAT(—1%s) T o
= f2(p) + L g,(u) Py L_iw s (u) ———21“(%—-}9 (tan 5 s—tan as) dsdu.
(4.14).

-p

If we treat the right-hand side as known, then the equation (4.14) is an Abel-
type of integral equation, whose solution is found to be

g.(t) = ~ 3 w—é_ﬁi_——i + lfw g,(W)K(u, )du. (4.15)
nt)e Ju-1%) thy

5. Finally, let us consider the equations (b,). For the equations

1 c+iwo

Py sy(s) tan asp™ds = fi(p), O<p<]1, 5.1)
Tl Je~io
1 c+ico
5o Y()p ds =0, p>1; —l<ec<], 5.2y
Tl Je-ico

the relevant assumption is that for 0<p <1

1 ctioo s 1 Ndt
— W(s)p~*ds = _“’#—T. (5.3)
2mi c—io p \/(IZ—P )
This corresponds to the assumption that
rgs)ray (! s-1
§)= ——— D~ de. 5.4)
Y(s) Tas+d) ), g91() (54
Since the first equation is equivalent to
o 1 c+ico _s
—P—— = Y(s) tan asp~*ds = f1(p), 0<p<l1, 5.5y
ap 2ni c—ic

on substituting for ¥(s) and interchanging the order of integration we obtain
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the equation

—p 9 flgl—(t) {L J“’““"_l"(;}L(«}) (—t>s tan »}nsds} dt
dpJo t 2miJooin 2T(s+) \p

1 c+ico 3
gi(w) 1 TGs)Ir'@) (u
= + | — .= = -] (t —ta dsdu.
5@ L u 2ni Lw VO s+ (,,) (tan dmsfan as)dd
(5.6)
From the relation (2.7) it therefore follows that
d [*? tg.(dt

9p Jo J(p*—1?)

=fi(p)+ .r 9:() L rﬁw sy(s) m(g)s (tan 7—;s—tan as) dsdu,

o u 27“ c—iw 21_‘(‘}84-‘&) P
N))
an equation from which it is easily deduced that g,(r) satisfies the integral
equation
(3 1
(=2 f S0y 1 f 8 g (u, )du. (58)
o P J(tP—p?) tJo U

We conclude our discussion of dual integral equations by describing the
solution of the equations

c+ 1o
21—_ sy(s) tan asp™°ds =0, O<p<l, 59
Tl Je-iw
1 ctiwm _
= Y(s)pds= f(p), p>1, (5.10)

for 0<c<1. The equation (5.9) is in fact equivalent to the equation

=~ c+ioo
p g —1— Y(s)tanasp *ds =0, O<p<l. (5.11)
0p 27i J.— i

If we assume that

{ ferin 0, O<p«<l,
—_ -5 — p
el Y(s) tan asp™°ds = J g(t)dt . p>1, (5.12)
1 J(p2=1)
it is easily shown that
wis) = LEINWD oo |7 goyre1ar. (5.13)
2r(1—1s) 1
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Substituting the above value of y(s) in the equation (5.10) and interchanging
the order of integration, we get the relation

70 L[ o0 TN

1t 2mi

c—ieo r(1-1s) \p
= £,(0) + f T 1 J “*1® (cot dms—cot as)T(E — )T AN u/p) 4.1,
2 w2 )i 2 (1—1s) )
(5.14)
From the relation (2.20), it follows that
© g(n)dt
o J(E—p?
_ \ “gw) 1 etix (cot dns—cot as)[(3 — 1)L (3)(u/p)
L(p)+ L 0 3m L-im ST=15) dsdu (5.15)

which implies that

__24d[” pfp)dp , [* 9
g(t) = di), Joror + J; ” K(u, t)du. (5.16)

6. Kernels of the integral equations

It is possible to write K,(, #) and K,(u, ?) in terms of the infinite series.
For example, for u <t we obtain by moving the line of integration to R(s) = o

K (u, t) = 2 i <L—:>2" tan 2no— L i <E>zn cot %:-—Df 6.1)
o

MTn=1 An=1\1
and if u> ¢, then shifting the line of integration to R(s) = — oo, we find that
) 2n o0 2n 2
K,(u, )= 2 > (—t) tan 2na— ! Y (—E> cot (2n+_1)n 6.2)
Ta=1\U Zn=1\U 4o '

The calculations leading to the above results are based on the assumption that
for no integral values of m and n is « = (2m+1)rf4n. This ensures that all
the poles are simple poles; otherwise account has to be taken of multiple
poles.

Similarly for u<z,

© 2n+1 ‘ @ n 2
Ky(u, t) = 2y (%) cot 2n+1)ox— 1 "Z:l (I—E) tan % 6.3)

o
and for u>1,
2 ® u —2n—-1 1 ) tn mtz
K,(u, )= - - cot 2n+1ua— - - ) tan —. 6.4
2, 1) nngo(t) (@n+1)a dn;l(u> 2a €4

There is an apparent singularity at # = u in both the kernels because the
power series representations seem to diverge but as is obvious from the integral,
K, and K, are bounded for ail positive real values of #and t. For computational
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purposes, however, it seems to be best to replace the complex integral by a

real line integral and since the integrand involves only elementary functions,

the value of the integral can be easily obtained by numerical integration.
Shifting the line of integration to the imaginary axis, it is readily shown

that
fao Lgpr ~
Ky(u, £) = 1 sinh (37— o)y co.s (y log u/t)dy (6.5)
7 Jo cosh ay sinh iny
and that
Ky(u, 1) = 1 sinh (%7f—a) ycos (y logu/t) dy. (6.6)
nJo sinh ay cosh iny
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