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Abstract

We consider the weak convergence of the set of strongly additive functions f(q) with rational argument
q. It is assumed that / ( p ) and / (1 /p) € {0, 1} for all primes. We obtain necessary and sufficient
conditions of the convergence to the limit distribution. The proof is based on the method of factorial
moments. Sieve results, and HalSsz's and Ruzsa's inequalities are used. We present a few examples of
application of the given results to some sets of fractions.
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1. Introduction

Let [fx : N -»• R, x > 2} be a set of additive functions, A be some subset of natural
numbers, and

vx(A) := —- #{n < x, n € A]
[x]

be a frequency of natural numbers n € A. The set A is allowed to depend on x and
other parameters.

The central problem of probabilistic number theory is to find conditions under which
the frequencies vx(fx(n) — a(x) < u), with a suitably chosen centering function a(x),
converge to the limit law as x —> oo. Starting with Turan's proof of the Hardy-
Ramanujan theorem on the normal order of prime factors in 1934, many works have
been devoted to this problem. This problem is the main object of the monographs of
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Kubilius [5] and Elliott [1,2]. There are three different cases in the investigation of a set
of additive functions (see, for example, [1,2,5]). The first case is when fx (n) does not
depend on JC. The Erdos-Wintner theorem (see, for example, [2, page 187]) is the most
celebrated result of this case. The second case arises when fx(n) = f(n)/b(x), where
b(x) is some normalizing unbounded function satisfying some additional conditions.
The well-known Levin-Timofeev theorem (see, for example, [2, pages 122-123]) is
one such result about the weak convergence of distributions vx(f(n)/b(x)—a(x) < u)
to the limit law.

The third, most general case, we obtain when the additive function fx depends on x
in an arbitrary way. The first result in this direction was obtained by Rusza. He found
necessary and sufficient conditions for the weak convergence of vx (fx (n) — a(x) < u)
to the improper law (see [6]). Siaulys continued the investigation of the set of such
functions. He derived necessary and sufficient conditions for the convergence of
the distributions vx(fx(n) < u) to the Poisson law in the case when fx are strongly
additive and fx(p) e {0, 1} (see [8]).

In the present paper we consider the additive function defined on the set of pos-
itive rational numbers Q+. We suppose throughout that the natural numbers in the
representation of the rational number q = tn/n, are coprime, that is, (m, n) = 1. Any
rational number q has a unique representation as a product q = p"1 • • • p"s, where
Pi, ..., ps are distinct prime numbers, and a i , . . . , as are integers. The power of
prime p in such a product for the rational q is denoted by ap{q). We say that the
rational number qx = mi/ri\ divides q2 = m2/n2 (qi\q2) if mi\m2 and n\\n2, and that
they are coprime if (mi, m2) = (mu n2) — (m2, nO = (nu n2) = 1.

For any additive function / : Q+ ->• C the equality f(q) = J2P f(pa^q)) holds.
If, in addition, f(pa) = f(pssna) for all integers a and primes p, the function /
is called strongly additive. Thus for any strongly additive function / with rational
argument f{q) = J2p>\q f(P

S)> where 8 e {-1, 1}.
For x > 2, for an interval / := (f, ?j], and for some condition A, where £, r] and A

are allowed to depend on x, we write:

£'x(p
a) := {q € Q'x : ap(q) = a] ,

v[(A) := (#Q')~' # {q e Q^ : q € A}, P'x := {psgna : l'x(p
a) # 0 } .

In the expression for vx(A) we suppose #Q^ > 0. We call the elements from P'x the
prime ones. The quantity v'x (A) denotes the frequency of the rational numbers which
satisfy the condition A. In the particular case / = (0, 1] we omit the symbol / and
instead of Q^, l'x(p

a), P'x, v'x(A) we simply write Q,, E,(pa), Wx, vx(A). We observe
that Qx = [m/n : n < x, m/n < 1} is the classical set of Farey fractions.

The probabilistic model for solving problems on the value distribution of additive
functions with rational arguments can be developed in analogy with the Kubilius
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model (see [4, 11, 13, 12]). In this work, we consider the distribution of the set of
strongly additive functions vx(fx(q) < u) using the factorial moments method.

Throughout the paper we use the following notations. The function e(x) is always
vanishing as x tends to infinity. The absolute constants are denoted by c\, C2, The
expression a «; b is equivalent to \a\ < cb, with some positive constant c. If the
vanishing function or bounding quantities depend on d, we write sd(x), Od, <&d-

Let ¥x :— [ps e¥x : fx(p
s) = l } . For the sake of brevity, we use a star and a t

above the summation sign ]T*' to denote a summation expanded over all collections
of p \ l , p&2 ,. • •, p\' € Px (with some fixed t) such that pt ^ pj, 1 < i < j < t. The
most frequent case is when t — I. In this case we will omit / and write ]T*.

The main result of this paper is the following statement.

THEOREM 1.1. Let [fx, x > 2} be a set of strongly additive Junctions with rational
argument. Let fx(p

s) € {0, 1} for every prime number p and exponent S € { — 1, 1}.
Then the frequency vx(fx(q) < u) converges weakly to some distribution function if
and only if the limit

(1.1) lim ) v"' rL ^ =g,
•*~>o° —' (Pi + 1)(P2 + 1) - - - \Pl + 1)

exists for every fixed natural number I. Here

_ f 1 if it exists q{ € Qx : q\qu

[ 0 if that qx does not exist.

Moreover, if the limit distribution exists, then its characteristic function is equal to

2. Examples

Using Theorem 1.1 we can calculate the asymptotic densities of some arithmetically
interesting sets of fractions. Let us give a few examples.

EXAMPLE 1. Define the strongly additive function / by

(l Up = 2,3, fl ifp = 3,5,L and ^ ( 1 / ^ L[0 otherwise, 10 otherwise.

It follows from (1.1) that gi = 1, g2 = 11/18, g3 = 1/6, g, = 0, / > 4. Hence the
limit law of vx(f(q) < u) has the characteristic function
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From the well-known asymptotics #{q € Q^} ~ (3/n2)x2, x -> oo, and the structure
of characteristic function (2.1), we have that

5 ,
#{q tQx '• prime elements 2, 3, 1/3, 1/5 do not divide q] ~ —- x ,

on2

2
# {q e Q* : exactly two elements from {2, 3, 1/3, 1/5} divide q) ~ —- x2,

571
ttj^eQ,: exactly three elements from {2, 3, 1/3, 1/5} divide q] ~ ——- x2,

as x -> oo.

EXAMPLE 2. Define the strongly additive function / , by

I 1 i
lo otherwise.

In this case g, = 2 log 2, g2 = (2 log 2)2, g, = (2 log 2)', / > 3. Thus the limit law of
vx{fx{q) < u) is the Poisson law with parameter A. = 2log2, and we have

#{q e Q, : p f ?. d /p ) 19 for p e (log*, log2x]} ~ — x2,

31og2__2
2 x#{q € Qx : q has exactly one prime divisor ps for p e (logx, log2x]}

#{g e Qj : ̂  has exactly two prime divisors ps for p e (logx, log2 x]} 2 x .

as x —>• o o .

EXAMPLE 3. Let the strongly additive function fx be defined by

I I if •^fx < p < x,

0 otherwise.

Put 0 = log3 log2 + Li2(l/3) - Li2(2/3), where Li2(«) is the polylogarithm of
second order, that is,

* = I *

We have that gl = 2 log 3, g2 = 2((log3)2 + 6), g3 = 6^1og3, g4 = 6d2, g, = 0,
I > 5 .

Since the limit law of vx(fx(q) < u) has the characteristic function

(1 - log 3)(1 - log 3 + 6) + 82/4 + (2 log 3(1 - log 3) + (3 log 3 - 2 - 0)9) e"

+ (log2 3 + (1 - 3 log 3 + 39/2)9) e2" +(log 3-0)9 e3" +92 e4" /4,
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the following asymptotic expressions (for x -*• oo) are true:

#{q € Q, : prime elements from [p, l/p, p € {J/~x, x]} do not divide q]

-((1 -Iog3)(l - l o g 3 + i9)+6>2/4)jc2%0.00072x2,

#{q € Qj : exactly 3 elements hom{p, l/p, p e (Jfx, x]} divide q]

(log 3 - 9)6x2 % 0.07197JC2,

#{q e Qx : exactly 4 elements from{p, l/p, p e (Jfx, x]} divide q}

~ —Q1x1 % 0.00659A;2.
4n2

3. Auxiliary lemmas

The proof of Theorem 1.1 is based on the factorial moments method, but some
sieve results (Lemma 3.1), and the inequalities of Halasz (see [3]) and Ruzsa (see [7])
are of key importance as well. In this section we present the analogues, sufficient for
our needs, of these inequalities for functions of rational argument (Lemma 3.2 and
Lemma 3.3).

LEMMA 3.1 (see [12]). Let I = (£, r\], 0 < £ < r], be an interval of real numbers.
Let No, Nit N2 be natural numbers, which do not have any common prime divisor. All
quantities £, t], No, Nlt N2 may depend on x > 2. Then

# [ ^ € Q^ : (m, AfoWi) = (n, N0N2) =

P\NO
 N r • / plNjN.

,

x(ri^) ) -

where u){m) is the number of distinct primes dividing m.

LEMMA 3.2 (see [10]). Let I — (£, rj] be an interval of real numbers, where £ and
r) may depend on x > 2 and satisfy the limit conditions:

(3.1) limsup <cu lim = 0.
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Let f : Q -
L e N U {0},
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N U {0} be an integer-valued additive function. Then, for every

( 3 . 2 ) v'x{f{q) = L)< max E E
-1/2

where c2 depends on C\ and on the convergence rate in (3.1).

LEMMA 3.3 (see [9]). Let I = (£, 17] be an interval satisfying the conditions
£ < c3x(r) — £), x(r] — £) > c4. Then, for an arbitrary strongly additive function
f : Q —>• C and for every natural number I,

E Y- f(Ps)

the constant implied in the symbol <K may depend on c3> c4 and I.

4. Boundedness of factorial moments

PROPOSITION 4.1. Let I = (£, rj] be an interval of real numbers, where % and rj
may depend on x > 2 and satisfy the limit conditions:

limsup < oo, lim = 0.

Let fx be a set of strongly additive functions with rational argument. Let fx(p
s)

{0, 1} for every prime number p and exponent S e { — 1, 1}. Let

(4.1)

/or every natural number I.
If the distributions v'x(fx{q) < u) have a weak limit as x -> oo, then

limsup<p(l, x) <§C 1.

//ere f/ze constant in <JC depends on I and on the structure of the limit law.

PROOF. Suppose X is a random variable for which

v'x(Mq)<u)=*P(X<u).
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The random variable X is integer valued, hence there exists L € {0} U N for which
P(X = L) > 0. From the limit

(4.2) lim v[(fx{q) = L) = P(X = L),

we have that v'x{fx(q) = L) > \P(X = L) for x > c5, where c5 depends on
P(X = L) and on the rate of convergence in (4.2).

It follows from Lemma 3.2 that

max £ E = L)

Hence

(4.3) lim sup 1/p < c6.

The constant c6 depends on the structure of the limit random variable. According
to Lemma 3.1, #Q' » x2(r) — £) for x sufficiently large. Therefore from (4.3) and
Lemma 3.3 we obtain

MP')

Since

±2' E - E MP*)

we conclude finally from (4.3) that

limsup<p(/, x) < lim sup ——
JC->OO jr-»oo *r*<j

Proposition 4.1 is proved.

( 4 / 2 , l ) .

•

5. The factorial moments method

PROPOSITION 5.1. Let I = (£, rj) be an interval of real numbers and fx be a set of
strongly additive functions satisfying the condition of Proposition 4.1. Let X be an
integer-valued random variable and

= *)
k=l
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for every natural I. Ifgi+2 < oo for some I and

(5.1) v'x(fx(q)<u)=*P(X <u),
x->oo

then
(5.2) lim <p(l,x)=gh

J T > O O

Furthermore, if (5.2) is satisfied for every fixed natural I and £~i(2'g///!) < oo,
then (5.1) holds for a random variable X that has the characteristic function

rvi

o* f it i \l

PROOF (necessity). Let condition (5.1) be satisfied. Since the random variable X
is integer-valued, it follows from (5.1) that

(5.3) v'x(Mq) = k) = P(X = k) + fitOt)

for each fixed k = 0, 1, 2 , . . . .
Let us split the factorial moment <p(l, x) (see (4.1)) into two parts:

(5.4) V ( l , x ) = p 1 ( l , x , y ) + fa(!,x,y), y > l + 3,

where fi\ {I, x, y) is that part of sum (4.1) for which fx (q) < [y] and /32 (/, x, y) is the
part for which fx(q) > [y].

From (5.3) we have

£,(/, *, y) = E ^(/: ~ 1}' • •(k ~l + Uv'x<>Mv') = V
k=l

[y]- l

= J2 k(k - 1) • • • ( * - / + 1)(P(Z = k) + sk(x))
k=l

oo

= g, + sy(x) -J2k(k-l)---(k-l + l)P(X = k).

Since
00

J2 k - 1) • • • (Jfc - / + l)P(X = jfc)
OO

£ ( * - 1 ) •••(*-/ +1)

- - / + D O - 0 0 - - f - ! ) „ , „
P{X-

f
U JU -D-U -l + VU -D(J -l-i)
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fcflfc- ! ) • • • ( * - / +
* ( * - ! ) • • • ( * - / + 1)(* - /)(jfc - / - 1)

j=l+2

< gl+2
( * - / -

= ^.
ft+2

we find that

(5.5) . x, y) = ft + sy(x) + O

Applying the estimate of Proposition 4.1 we obtain, for x sufficiently large,

The last estimate and equalities (5.4) and (5.5) imply that

Consequently equality (5.2) holds. •
PROOF (sufficiency). Let equation (5.2) be satisfied for every fixed natural /. Let

VxK ' ami

be the characteristic function of the distribution v'x(fx{q) < u).
For every r € {0} U N and L € N

e —1 —

Consequently
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for every natural number L.
According to equality (5.2) we have

lim *,(,) = 1 + £ | ( e " -1)' + O

/=1

where ; e K .
Letting L go to infinity, we can assert that

for every t e K.
Since the limit function is continuous, (5.1) holds for some random variable X,

which has the above characteristic function. Proposition 5.1 is proved. •

6. Main term of the factorial moment

PROPOSITION 6.1. Let fx be a set of strongly additive functions with rational argu-
ment. Assume fx (ps) e {0, 1} for each prime number p and exponent 8 e {—1, 1}.
Then

^'*)= E 7Tl+sM-
fAp")=l

If

(6.1) V - « 1 ,
^ Pp'elP,

IAps)=l

then for every natural I

^ n ^ y ^ * ^{p\P2---Pi) , ,
(6.2) <p(l, x) = > -———f—-— / + s,(x).

t—1 iP\ + 1)(P2 + 1) • • • (Pi + 1)
PROOF. First we consider the case I = 1. It is evident that

£/-<«>=
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Assume p € Px and x is sufficiently large (x > c7). Using Lemma 3.1, we obtain

^ : *£ < l, „ < x . (mp.n) =
n n

If l/p e Px and x > c-i, we have similarly from Lemma 3.1

1 ^ . 1 /

If pa € P, and p > JC := x1'1'^^, then

«<JT m<n
pJ|(m/n)

forx > c7. Hence

7 + ° (+1 v

Finally <p(l,x) = E p ^ ( P + D"1 + e(x).
Now let / > 2. It is easily seen that

.') = E*#i- E
Pi—Pi \Q

We split (6.3) into four parts and denote them by [<p(l, x)}j, i = 1, 2, 3, 4. Into the
first and second sums we include all summands for which 8i, 82,..., Si = 1 or — 1,
respectively. The third sum
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The fourth sum [<p(J, x)}4 is constructed in the same manner as {<p(l, x)}3 with the
condition pk+i • • • pi < x replaced by its opposite pk+i • •• pt > x.

I f A x ( p t ' • • • p f ) = l f o r p \ ' ••• pf, w e d e f i n e

1 = 1

Let pi, p2, . . . , Pi be distinct prime numbers. It follows from Lemma 3.1 that, for x
sufficiently large (x > c7),

(6.4)

Si S, ,

P\-Pl\i

= (#Q,)-1# { - e Q?-*"V, (m, P2) = (n, P,) = l)

}PLP + l \ V

On the other hand, for each pf1 • • • pf = P\/Pi we have

E

for x > c-j.
Using condition (6.1), expression (6.4) and Landau's inequality (see, for example,

[14]),

(6.6)

where j is a fixed natural number, we obtain

(6.7)

P\—Pi<x Pi—Pi<*
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because the first remainder term is 0/(-x~1logJc(X\'€PJ, 1/p) ) = Oi(x~llogx), and
the second is O ^ j r ^ f m <x : &)(m) = / } ) = ^ ( ' ' ' )

Similarly from (6.1) and (6.4)-(6.6), we have

(6.8)

\ Pv-PiSx

* Ax(l/(Pl---p,))
e,(x)

*,..t*=-l P1"P'
pi—pf>x

where

x<pv-pi<x

Using (6.1) and (6.4)-(6.6) again, we obtain

(6.9)

•»* Ax ((pi • • • pk)/(pk+i • • • pi))

0
/ - I

k=\

\ Pk+f-Pl<x

logx 1
p k + l - - - p i / \ p t - - - p k p k + \ - - - p i

/ - I / , x

Finally, inequality (6.1) and estimate (6.5) imply that

(6.10)
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Substituting (6.7)-(6.10) into (6.3), we can assert that

[14]

We have that

~ P

Define i ; = x1 <logj:) 'A'+1) for natural number /. Applying (6.1) for each fixed k > 2,
we obtain

Wk(x)

* £>(*-!) 1

= 0*

i S*-i=—1

(*-D 1

tr=-.

log(i2/(Pi

\

+ o
*(k-2)

Pl"-Pk-2

= Ot

k(*-2) 1

= • • • = ok ,
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Equality (6.2) follows from (6.11). This completes the proof of Proposition 6.1. •

7. Proof of Theorem 1.1

PROOF (Necessity). Let vx(fx{q) < u) =» P(X < u) for some integer-valued
random variable X. It follows from Proposition 4.1 that

Hence, according to Proposition 6.1, J2P>ePx V p 5 C8, where c8 depends on the
structure of the limit law of X.

Using (6.5), we have for x sufficiently large

. . . . , x 1

*! *- #Q, ^ k\ <- p x - p k - k\ \ £ g p

Since lim^_00 vx{fx{q) = k) = P(X = k) for every k = 0, 1, 2 , . . . , we obtain that
P(X = k)<& c\/k\, keH. H e n c e

00 OO

k=l k=l v ''

for each fixed natural /.
The necessity of the condition in Theorem 1.1 now follows from Propositions 5.1

and 6.1. •

PROOF (Sufficiency). Let all the limits in the statement of Theorem 1.1 exist. Since

1

•7 + 1

we have that

Therefore the series £~i(2'ft//!) converges.
On the other hand, Proposition 6.1 implies that limJ_oo^)(/,x) = gt for each

natural /.
The statement of Theorem 1.1 now follows from Proposition 5.1. •
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