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ON AN INTERPOLATION THEOREM OF
ZYGMUND AND KOIZUMI

BY
H. P. HEINIG

1. Introduction. Let (X, .#, ) and (Y, A", v) be two o-finite measure spaces.
An operator T, defined by 4 =Tf, which maps functions on X into functions on Y
is called quasilinear if 7(f+g) is uniquely defined whenever Tf and Tg are defined,
and if

(L.1) T(f+g) < A (|Tf]+|Tg)),

where A > 1 is independent of fand g. If /£ =1 the operator T is called sublinear.
We recall that a (complex valued) function f belongs to L, ,(X) 1<p<oo, if fis
p-measurable and its norm

low = ([ 1P de)” 1<p <

(1.2)
[fllw,u = esssup |f]

is finite. The operator T is said to be of strong type (r, s) 1 <r, s< oo if there exists
a constant 4 independent of f, such that

(1.3) 177 Moo < A fll70e

Observe that if T is initially defined for simple functions only, and if 1 <r < co then
there is a unique extension of T to all fin L, ,, preserving (1.3).

Let f be defined on X and E;(t)={x: |f(x)| >}, then D%= D,, the distribution
unction of f, is defined by

#(2) = W(ELD)).

A quasilinear operator T which satisfies
S
Di,(t) < (%) 1<rs<o00,s<®

is said to be of weak type (r, ).
The following theorem is an extension of a result of A. Zygmund [3, Ch. XII,

Theorem 4.22] to the case of totally o-finite measure spaces:

THeOREM 1 (S. Koizumi, [11, [2]). Suppose u(X) and v(Y) are both infinite and T
is a quasilinear operator of weak type (a, a) and (b, b), 1 <a<b<oo. Let ¢ be a
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continuous increasing function deflned on the nonnegative real line and vanishing at
the origin. If

(1.4 $Qu) = O(p(w)) u—>c0,u—>0
(1.5) waf%}dz=o(‘é£’:—)) U 00
(1.6) f: f(f)l dt =0 (%(i)) U-> o
(18) [Ha-0(2). u—o

then h=Tf is uniquely defined for all f for which ¢(|f|) is n integrable and

[ e < a | sa1r) d

where A is independent of f.

Suppose ¢(¢) is “close” to ¢%, a=1. Then it may happen that (1.6) fails to hold.
For example ¢(f)=t*logt,a>1, does not satisfy (1.6). In [4, Theorem 2], A.
Zygmund gave a modification of [3, Ch. XII, Theorem 4.22] for finite measure
spaces which rectifies this deficiency. (See also [3, Ch. XII, Theorem 4.34] where the
case a=1 is treated.)

In this note we extend the result of Zygmund [4, Theorem 2] to o-finite measure
spaces. The proof proceeds along the lines established by Zygmund and Koizumi.

The final section contains some applications.

Throughout, 4 denotes a constant independent of f not necessarily the same at
each occurrence. As usual, R and R* denote the real, respectively, positive real
line. Furthermore, we introduce the notation ¢4(i)=¢(29)2%, s#£0, and ¢o(i) =4(i),
i=0, +1, +2,..., similarly for .

2. Interpolation theorem.

THEOREM 2. Let h=Tf be a quasilinear operator defined for all simple functions
on (X, M, p) with values on (Y, A", v). Suppose T is of weak type (a, a) and (b, b),
1<a<b< oo, and i is a nonnegative, continuous, nondecreasing function on R*
vanishing in a right-hand neighbourhood of zero. If ¢ satisfies

2.1 P2u) = O@(w), (u— )
and if
2.2) ) = u f: £--1(e) dt
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satisfies (1.5) and (1.7), then

@3) [ waamnd < 4 [ 4171

In particular, T can be uniquely extended to the space of all ¢(|f|)—p integrable
functions preserving (2.3).

Proof. Observe that (2.1) implies $(2u)= O(¢(1)), for by (2.2)

sy > [ e dez wep) [ oo de = w2

u/
so that

P(u) = O($(u)), u— co.

Moreover, by (2.2), ¢(u)/u is bounded away from zero as u— oo, so that |f] is

integrable whenever ¢(|f]) is.
Let f be a simple function and # =1. For & >1 the argument of the proof

follows in the same way.
By hypotheses

[sima = [ oxowasn =3 [ oy dben

< 4(3, DiG-2W0O)+ 3 DIG-2W)) = A(S:+S5.

For fixed positive j, write f=f; +f;+/fs, where
if1 < <2
= {f i<z,

0 otherwise

_(f iV < |f]
fz—{o :

otherwise

otherwise

_[rifosifl<1
fa—{o ’

and h,=Tf,, p=1, 2, 3. Since E,(3-2) <\ ;-1 E,,(2%), one obtains
3
2.9 Dy(3-2) < 3 Dy, (2).
p=1
Also, since T is of weak type (a, a) and (b, b)

D,,@) < A(2" [ 11, de). p =13
D¢

D,@) < 427 [ 1£ildu),
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so that by (2.5)
5.2 4 340 {20 [ AP dur2zos [ 10 der2on [ 1P duf

= A(Si+ ST+S9),

respectively. If n,={xe X:2!"*<|f|<2,i=0, +1, +2, +£3,...} and &=p(n)
then by (2.4) and (1.5)

Si

IA

jgo o) D 2% =A 3 2% 2

sisy iz0 j2i
2 4()
tb+l dt

IA

A D 2%, z () < 4 Z 2" Z f
120 =1 20 <1

of

ZAS o2 f ) jﬁ(ﬁ dt= A3 e

2

IA

AS [ o des [ s1r)dn

where X;={xe X: |f(x)|=1}.
By (2.2)

gi+1
St<AS WO [ VAl de <43 0) 3 2 e
jiz0 izjJ2 jiz0 izj

2i+1
— AT 2V S ()< A3 20, 5[ e
0sjisi iz0 0<j=<iJ2

i20

It

A5 2a(‘+1)£‘+1f2 oY) dt < Ai;o i+ 1e 4, < Ai;ﬁ’ o(|f]) du

i20 1
=4[ 407D da.
X
To estimate S$ we observe that
ST< A3 () [ 17Pde,
jiz0 X

where X, = {x: |f(x)| <1, x € X}. Hence by (1.5) and (1.7)

S 2 (1)
S?SAJ‘ |f[bd.“z¢u+1(1)f dtSAf |flbdl’~ Z f b+1dt
Xz i=0 of Xo iz0Jo! 1

2

<A [ Urde [ 5= 4 s dn
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Next, for fixed negative j, let /=1, + /5 +/s, where
if2/ < <1
. {f 1/l }

0 otherwise

/o {f if0 < |f] < 21}

0 otherwise

P ___{]; if1 < [fl}’

otherwise

and h,=Tf,, p=4, 5, 6. Then as before
D32 = 3 D@ = {2 [ A dur 2o [ 1P dus2n [ 17 d}
and
So< 4 3902 [ Al der 2o [ 1 der2s [ 17 e}

= A(S3+S3+5S9),

respectively. The estimations of S}, S%, and S§ are similar to those obtained for
1, S% and S? and are therefore omitted.
The extension of T to #(|f]|)—p integrable functions follows now from [2,
Lemmas A; and A;].

3. Applications. Let X= Y=R, p the ordinary Lebesgue measure and v defined
by

%B=fy”@,y¢QECR
E
Define T by (Tf)(y)=y f(3), where f is the Fourier transform of £, It is well known

that T is of weak type (1, 1) and Plancherel’s theorem shows that T is of type
(2, 2). Thus with a=1 and b=2, Theorem 2 yields:

THEOREM 3. If f is measurable and $(|f) integrable, then f the Fourier transform
of f is defined and

3.D) [ ¢<|yf”(y)l>‘;—2 < 4 [ $(1f@I) ax.

COROLLARY 1. If y(t)=t, t> 1 and zero otherwise, then

[ g0l dy < 4 [ 101 n* 1) a

where X, ={xR: |yf(»)| >1}, and In* |f|=In |f| if | f| > 1 and zero otherwise.
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COROLLARY 2. If () =t(In*¢)%, >0 then (3.1) yields

[ 1p=f0) @t 10Ny dy < 4 [ 1] 11y d

Another example involving the Hilbert transform is the following:

Let f'be a complex valued measurable function over R. f the Hilbert transform of
f'is defined by

[x-tlze

provided the limit exists. Let 1 and v be defined by

dx

WE) = ME) = STT

0<a<l,EcSR
then [2, Theorems 3 and 4] show that Tf=f"is of type (p, p), p > 1, and of weak type
(1, 1). Applying Theorem 2 with a=1 and b=p>1 we obtain:

THEOREM 4. If f is measurable ¢(|f|)—p integrable, then f exists and

[ w170 de < 4 [ 9(111) do.

In particular with J(t)=t(In* £)%, s> 0 this yields

dx

[ 1@t ety i < 4 [ 1Al Ity 1

1+ |x|®

s 0<a<l.
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