
JFP 35, e13, 48 pages, 2025. c© The Author(s), 2025. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796825000085

T H E O R E T I C A L P E A R L

Point-free calculational proofs and program
derivation in linear algebra using a graphical

syntax

JÚLIA DE ARAÚJO M O T A
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

JOÃO A. PAIXÃO
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

(e-mail: jpaixao@dcc.ufrj.br)

L U C A S R U F I N O M A R T E L O T T E
Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brazil

Abstract

This theoretical pearl shows how a graphical, relational, point-free, and calculational approach to
linear algebra, known as graphical linear algebra, can be used to reason not only about matrices (and
matrix algebra, as can be found in the literature) but also vector spaces and more generally linear
relations. Linear algebra is usually seen as the study of vector spaces and linear transformations.
However, to reason effectively with subspaces in a point-free and calculational manner, both can be
generalized to an unifying concept: linear relations, much like relational algebra. While the semantics
is relational, the syntax is graphical and uses string diagrams, 2-dimensional formal diagrams, which
represent the linear relations. Most importantly, in a number of cases, the relational semantics allows
algorithms and properties to be derived calculationally instead of just verified. Our approach is to
proceed primarily by examples which involve finding inverses, switching from an implicit basis to
an explicit basis (solving a homogeneous linear system), exploring both the exchange lemma and the
Zassenhaus’ algorithm.

1 Introduction

Besides calculus, linear algebra has always been present as a valuable mathematical tool
for engineering and physics. Seemingly unrelated technologies are inherently linear alge-
braic: e.g., the Google PageRank concept is an eigenvector, and numerical linear algebra
algorithms are at the core of convex optimization. Further afield, linear algebra is the back-
bone of much of modern mathematical physics; e.g., non-linear differential equations are

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796825000085
https://orcid.org/0000-0002-9547-9629
https://orcid.org/0000-0002-1610-9022
mailto:jpaixao@dcc.ufrj.br
https://orcid.org/0009-0009-2402-7949
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796825000085&domain=pdf
https://doi.org/10.1017/S0956796825000085

2 J. de Araújo Mota et al.

solved by iterating linear systems. It is difficult to overstate the sheer practicality of linear
algebra theory and its influence in shaping modern science.

On the other hand, in computer science, the main mathematical tools have been more
discrete rather than quantitative with logic, functions, relations, graphs, and combinatorics.
Lately there is evidence of a shift towards integrating linear algebra into computing, with
examples in machine learning, process semantics, quantum programming, natural lan-
guage semantics, and data mining. This trend suggests a growing interest in applying
linear algebra techniques to computing, driven by diverse research areas. For instance,
many techniques in natural language processing, such as word2vec, aim to represent data
as vectors in a suitable vector space; semantic relationship between words is thus cap-
tured by the usual euclidean distance formula. Other techniques can be cited, such as
co-occurrence matrices which quantify how often words appear together in a body of
text and works by Baroni & Zamparelli (2010) on adjective-noun composition, where
nouns are represented by vectors and adjectives by matrices. Matrix multiplication lies
at the heart of neural networks. The trendy attention mechanism of the Transformer
Architecture (Vaswani et al., 2023), which enabled much of modern generative models
such as ChatGPT and Stable Diffusion, is computed using dot products. Quantum comput-
ing and non-deterministic programming in general are also making use of linear algebra
techniques, as for example in the paper by Sernadas et al. (2008) a method for deciding
correctness of probabilistic programs is devised.

It is well known among the purist computer scientists that categorical (abstracting the
data type), index-free, calculational reasoning and program derivation are good practices.
Thus, it is natural to inquire whether linear algebra, with its recently popularized status
as a programming tool, can also benefit from such practices. This can be found in the
literature, see e.g. Gonthier (2011), Mac Lane (2013). As our main example, Macedo &
Oliveira (2013) achieve point-free calculational reasoning in linear algebra by presenting
the fundamental laws of matrix algebra as rewriting rules.

Relations and relational reasoning have already proven to be very important in program-
ming (Bird & De Moor, 1996). As a natural extension of the ideas of Macedo and Oliveira,
the aim of this paper is to showcase an approach for linear algebra where, instead of matri-
ces, the main object of study is that of a linear relation (Arens, 1961; Mac Lane, 1961;
Coddington, 1973; Cross, 1998). It generalizes the notion of a linear transformation in the
same sense that ordinary relations generalize the notion of a function. We thereby quote
from algebra of programming: “Our framework is relational because we need a degree of
freedom in specification and proof that a calculus of functions alone would not provide.”
As we shall see in later sections, there is much to gain by also introducing the relational
paradigm into linear algebra.

Our proofs make use of string diagrams. They are popular objects among category
theorists, and are essentially formally defined drawings with certain rules for combining
them (Selinger, 2011; Baez & Erbele, 2015). It is well known that string diagrams are
a good tool for point-free reasoning and type-checking. Also, their graphical 2d-syntax
allows one to omit parentheses around the two ways of composing relations, much like
the usual 1d-syntax dismisses parentheses when functions are composed. Their use in lin-
ear algebra has recently been explored by Zanasi (2015), who developed what is called
graphical linear algebra (GLA).

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 3

In Section 2, differences among the three notations used in this paper are discussed
(which will be called pointwise, classical, and graphical). Tables 3 and 4, referred to as
the Dictionary of Notations, show how to translate one into another. Additionally, this
section exposes the main axioms and theorems that will be employed throughout this text,
presenting their respective representations in the three notations.

In Sections 3 and 4, our approach is to proceed primarily by example. In Section 3, we
construct proofs through verification. Two algorithms are explored: an algorithm for find-
ing fundamental bases for the subspaces of a matrix (Beezer, 2014) and the Zassenhaus
algorithm (Fischer, 2012). Section 4 shows two examples of program derivation and one
last example where a property is derived instead. Two additional examples will be pre-
sented: calculating the right inverse of a wide triangular matrix and switching from implicit
to explicit basis (solving a homogeneous linear system). The pseudocode for each algo-
rithm (which will be a systematic translation of the proof steps) will be provided. Lastly,
a proof of a result concerning the duality between Gaussian elimination and the exchange
lemma will also be presented (Barańczuk & Szydło, 2021).

1.1 The category of linear relations

Point-free, calculational approaches for program derivation in linear algebra have already
been explored in a previous work by Macedo & Oliveira (2013). The authors present
the fundamental laws of matrix algebra and show how blocked matrix notation permits
point-free equational reasoning and algorithm derivation in matrix algebra. Their approach
makes use of the rich biproduct structure of FinVectk (where k stands for a field), a cat-
egory whose arrows are linear transformations. Below is the full definition. In this paper,
for simplicity, we will always consider k=R.

Definition 1 (FinVectR). The category FinVectR is such that

• the objects are finite-dimensional vector spaces over R,
• the arrows are linear transformations between them,
• composition stands for composition of functions,
• the identity arrow is the identity map.

Despite its efficacy, subspaces appear only at the object level in FinVectR, whereas
arrows exclusively represent linear transformations. This setup poses challenges for point-
free reasoning (without referencing objects) about subspaces. It is well known that when
one wants point-free reasoning about relations, such as in relational algebra, it is a good
idea to use the category of relations (Rel), instead of the category of functions (Set)
(Bird & De Moor, 1996). In a similar vein, one may naturally inquire about the analogy of
Rel in regards to FinVectR. One possible solution is the category LinRelR (Zanasi, 2015;
Baez & Erbele, 2015), in which the arrows represent linear relations (a generalization of
both linear transformations and subspaces).

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

4 J. de Araújo Mota et al.

Definition 2 (LinRelR). Given vector spaces X and Y over R, a linear relation R between
them is a subspace of the product space X × Y. There are two main ways of composing
these objects, called relational composition and cartesian product.

• Relational composition: Let R⊆ X × Z and S ⊆ Z × Y be two linear relations.
Define their composition SR⊆ X × Y as

SR := {(x, y) | ∃z such that (x, z) ∈ R, (z, y) ∈ S}.
.
• Cartesian product: Let R⊆ A× B and S ⊆ X × Y be two linear relations. Define

their cartesian product R× S ⊆ (A× X)× (B× Y) as

R× S := {((a, x), (b, y)) | (a, b) ∈ R, (x, y) ∈ S}.

The category LinRelR is such that

• the objects are finite-dimensional vector spaces over R,
• the arrows are linear relations between them,
• composition stands for relational composition,
• the identity arrow of an object X is the identity relation {(x, x) | x ∈ X } ⊆ X × X .

Definition 3 (Opposite). Given a relation R⊆ X × Y, we define its opposite Ro ⊆ Y × X
as

Ro := {(y, x) | (x, y) ∈ R}.

Linear transformations and vector spaces can be thought of as special cases of linear
relations. The representation of a linear transformation T : X→ Y as a linear relation is
its graph {(x, Tx) | x ∈ X }. A subspace X ⊆ Y can be thought of as the relation {∗} × X ⊆
{∗} × Y where {∗} is the zero-dimensional space. When restricted to linear transformations,
relational composition, and cartesian product yield the usual composition and cartesian
product of linear transformations. Composing a linear subspace with a linear transforma-
tion corresponds to applying the transformation to the subspace. For simplicity, we will
make no distinction between these objects and their representation as linear relations.

Example 1 (Image). Given a linear transformation A : X→ Y, we can represent the image
of A as the composition

AX = {(∗, x) | ∃z such that (∗, z) ∈ X , (z, x) ∈ A}
= {(∗, x) | ∃z ∈ X such that Az= x}
= {(∗, x) | x ∈ Im(A)}
= Im(A).

We may extend the notion of blocked matrices to linear relations.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 5

Definition 4 (Blocked relations).[
R S

]
:= {((x, y), z+w) | (x, z) ∈ R, (y, w) ∈ S}

[
R
S

]
:= {(x, (y, z)) | (x, y) ∈ R, (x, z) ∈ S},

R+ S := {(x, y+ z) | (x, y) ∈ R, (x, z) ∈ S}.

Note that when U and V are subspaces, the operation (U , V) �→U + V corresponds to the
usual sum of linear subspaces, i.e. U + V = {v+w | v ∈U , w ∈ V}. In this case, we also
have the identities [

U V
]=U + V ,

[
U
V

]
=U × V .

1.2 Relational algebra unifies matrix and subspace laws

All matrix algebra rules from Macedo & Oliveira (2013) still hold when the variables
are regarded as linear relations. These rules are summarized in Figure 1 from Santos &
Oliveira (2020). As an example, consider the three rules below:

Associativity: A(BC)= (AB)C; (1.1)

Absorption:
[
A B

]
(C×D)= [

AC BD
]

; (1.2)

Divide and conquer:
[
A B

] [C
D

]
= AC+ BD. (1.3)

Suppose that A, B, and C now stand for linear relations. These equations are true given
the definitions of relational composition and cartesian product. The benefit from this
change of perspective comes from the fact that many laws concerning matrices and sub-
spaces become special cases of these relational laws. First, the original rules can be readily
recovered by restricting A, B, and C to matrices. Now, if we let C be the subspace corre-
sponding to the domain of B, then composing with C in (1.1) is simply taking the image.
So, as it turns out, the following rule is just a special case of the associativity of relational
composition:

A(Im(B))= Im(AB). (1.4)

As another example, letting C and D in (1.3) be the domains of A and B respectively, we
get the following common rule about the image of blocked matrices:

Im(
[
A B

]
)= Im(A)+ Im(B). (1.5)

Other common rules involving matrices and subspaces can also be attained via sim-
ple instantiation. This flexibility allows for calculational proofs in which both concepts
are mixed together. A good example is the Zassenhaus algorithm, a method to find both
the intersection and sum of two subspaces given their bases. As a proof of concept, this
algorithm is verified in Section 3.2 in a point-free calculational manner.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

6 J. de Araújo Mota et al.

C
[
A B

]= [
CA CB

] [
A B

]
C= [

AC BC
]

A

B

C =
A

B

C

C

A

B

=
C

C

A

B

C

Table 1: Type checking in GLA. The wires of the diagram on the right do not connect.

The benefits are not restricted to verification proofs. It is well known that relational
algebra is effective for point-free program derivation (Bird & De Moor, 1996). Thus, it is
natural to expect that linear relations will play a similar role in regard to linear algebra. We
give two examples of program derivation using relational algebra in Section 4.

1.3 Problems with syntax

As noted before, blocked matrix notation is one of the key ingredients that allows an equa-
tional presentation of the laws of matrix algebra. However, the downside of such a choice
is the loss of type information. For instance, many linear algebra students would probably
need to think about the dimensions of A, B, and C to decide which of the following two
equations is correct.

C
[
A B

]= [
CA CB

]
or

[
A B

]
C= [

AC BC
]
? (1.6)

One way to solve this problem is through the use of string diagrams. As noted by
Hinze & Marsden (2023), these are well-known objects in the category theory commu-
nity able to allow equational reasoning without loss of type information. In a recent work,
Paixão et al. (2022) make use of a graphical syntax for linear algebra, which uses string
diagrams, known as GLA to present the laws of linear relations in an equational manner.
As shown in Table 1 (the reader is not expected to fully understand the diagrams yet), type
checking (1.6) in GLA amounts to checking whether the wires connect.

In our case, string diagrams also implicitly handle some non-trivial rules in the usual
syntax, just as is commonly done with associativity by ignoring parentheses. As a simple
example, below is the associativity law in graphical syntax, with the dotted lines simulating
parenthesization. Table 2 exemplifies how other 6 rules are also handled implicitly by the
graphical language.

Usual syntax Graphical syntax

A(BC)= (AB)C C B A = C B A

In Section 3, we employ GLA to construct proofs through verification. Two algo-
rithms are explored: an algorithm for finding fundamental bases for the subspaces of a
matrix (Beezer, 2014) and the Zassenhaus algorithm (Fischer, 2012).

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 7

Usual syntax Graphical syntax

A(Im(B))= Im(AB) =AB AB

Ao(Ker(B))=Ker(BA) =AB AB

Im(A)+ Im(B)= Im(
[
A B

]
)

A

B

=
A

B

Ker(A)∩Ker(B)=Ker(

[
A
B

]
)

A

B

=
A

B

(C×D)(A× B)= (CA)× (DB) =
CA

DB

CA

DB

[
A B

] [C
D

]
= AC+ BD

C

D

A

B

=
C

D

A

B

Table 2: Implicit rules. The dotted lines represent parenthesization.

In Section 4, we utilize GLA for program derivation. Two additional examples will be
presented: calculating the right inverse of a wide triangular matrix and switching from
implicit to explicit basis (solving a homogeneous linear system). The pseudocode for each
algorithm (which will be a systematic translation of the proof steps) will be provided.
Lastly, a proof of a result concerning the duality between Gaussian elimination and the
exchange lemma will also be presented (Barańczuk & Szydło, 2021).

2 Graphical linear algebra

Three notations are used in this paper. The pointwise notation concerns fundamental
mathematical explanations with notation of sets. The classical notation refers to terms
commonly used in linear algebra such as image, kernel and block matrices. The graphical
notation refers to the 2-dimensional diagrammatical notation used in GLA and will be the
main focus of this section. We will briefly introduce it to the reader and show (Tables 3
and 4) how it can be translated into the other two.

Proofs in this context will make use of the diagrammatic language, in which the main
ingredients are mathematical objects called string diagrams. This section explains how
diagrams are constructed and outlines the structures of how to manipulate and reason with
them. These diagrams are an instance of a particular class of string diagrams, which are
well known to characterize the arrows of free strict monoidal categories (Selinger, 2010).
They are, therefore, rigorous mathematical objects.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

8 J. de Araújo Mota et al.

2.1 Graphical syntax

This section will present the equational theory of interacting Hopf algebras (Zanasi, 2015)
from which graphical linear algebra is based upon (Baez & Erbele, 2015; Bonchi et al.,
2017). It has been applied (and adapted) in a series of papers (Bonchi et al., 2014, 2015,
2017, 2019) to model signal flow graphs, Petri nets and non-passive electrical circuits. In
this paper, however, the aim is to elucidate its status as a notation for linear algebra.

c, d ::= | | | | | | |
| | | | c; d | c× d (2.1)

The graphical syntax is built from a series of initial diagrams (or symbols) called gen-
erators, shown in (2.1); diagrams can be combined according to two rules (; and ×) to
form bigger diagrams. Semantically, each diagram canonically represents a linear rela-
tion (this will be better explained in Section 2.2), and the rules ; and × in diagrammatic
notation correspond, respectively, to relational composition and cartesian product, as in
Definition 2.

We use R
nm to denote a generic diagram with m wires on the left and n wires on

the right (the chamfered edge on the right is necessary because eventually we will need to
start “flipping diagrams horizontally”, so it is important to retain directional information).

Definition 5 (Composing diagrams). The operations ; and × correspond to, respectively,
attaching diagrams horizontally and vertically.

R
km

S
nk; R

km
S

n= , R
nm

S
rk×

R
m

=
n

S
k r

.

Notice that, similar to relational composition, to compute R ; S , R and S
have to be compatible: the number of right-wires of R must be the same as the number of
left-wires of S.

Example 2. The composition ; is ill-typed because the diagrams are incompat-
ible (the first has one right-wire, whereas the second has two left-wires). The composition
below, however, is valid.

; = .

Example 3. The operation × corresponds to stacking diagrams vertically. It can always
be performed regardless of compatibility conditions.

× = , × = .

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 9

Example 4. Here is a more complicated example of composition.

=; =:
2 .

The last example above showcases a method of combining two diagrams into

a bigger one which we named 2 . This process can be continued inductively for any

number of steps, forming what we call a generalized generator, written n , for any
n ∈N. There are analogous constructions for each generator, as defined below.

Definition 6 (Generalized generators).

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

= 0

n

n

n
n − 1

− 1

− 1

0

n

>

n

(2.2)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= 0

− 1 0n >

n
n

n
(2.3)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= 0

= 0

= 1, = 1

− 1

− 1 = 1

− 1

− 1
0n >1,>m

m n >1,

nm

m

n

n

m

m

n

n

n

n

n

n

m

m (2.4)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

= 0

− 1 0n >

n
n

n
(2.5)

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

10 J. de Araújo Mota et al.

The constructions for , , , , and are what one might

expect. For example, n is the same as n , but swapping the colors from black to white
in the inductive definition. Similarly, n is the same as n but flipping the diagrams
horizontally. This sort of double-symmetry (color-swapping and horizontal-flipping) is

recurrent in GLA. For instance, the Theorem below is stated only for and ,

but the corresponding properties for the other generators can be readily guessed correctly.

Theorem 1. The types defined in Definition 6 are closed by the following operations.

=
+

m

n
m n

(2.6)

=
+

+

m

n

k m

n

k

k

km n

m n

(2.7)

=
+m n

m

n

(2.8)

=
+n m

m

n
(2.9)

These higher-order structures help simplify notation, especially when defining certain
types of diagrams inductively, like matrices (see Definition 9).

Example 5. Here’s an example of how generalized generators compose with other
diagrams.

R
=

R

km

n k
;

R

R

k

m

n
k ,

R
=

R

mk

k n
;

R

R

m

n
kk .

By abuse of notation, we often omit the numbering on the wires when they are irrelevant
or can be inferred from the given data.

2.1.1 Symmetric strict monoidal categories

Raw terms are quotiented with respect to the laws of symmetric strict monoidal (SSM)
categories, summarized in Figure 1. We omit the (well-known) details (Selinger, 2010)
here and mention only that this amounts to eschewing the need for “dotted line boxes” and
ensuring that diagrams with the same topological connectivity are equated.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 11

c1 c2 c3 = c1 c2 c3

c1 c2

c4c3

=
c1 c2

c4c3

c1

c2

c3

=
c1

c2

c3

c = c = c

c

= c =
c

c
= c =

Fig. 1: Laws of symmetric strict monoidal (SSM) categories. The numbering on the wires
is omitted for readability.

2.2 Translating graphical notation to pointwise notation

In the graphical notation, each diagram semantically corresponds to a linear relation. The
translation of diagrams to pointwise notation is compositional and translates their semantic
meaning – the meaning of a compound diagram is calculated from the meanings of its sub-
diagrams. Here there is a connection with relational algebra, the two operations of diagram
composition are mapped to the standard ways of composing relations: relational composi-
tion and cartesian product. In fact, the translation of diagrams to pointwise notation can be
viewed as a functor from the category of diagrams to the category of linear relations over
R. Given that all diagrams are built from composing smaller diagrams, it suffices to show
how to translate the generators.

�−→
{(

x,

[
y1

y2

])
| x, y1, y2 ∈R and y1 = y2 = x

}

�−→ {(x, ∗) | x ∈R}

�−→
{([

x1

x2

]
, y

)
| x1, x2, y ∈R and y= x1 + x2

}

�−→ {(∗, y) | y ∈R and y= 0}
The generators , , and are, respectively, the opposite of the rela-

tions above, as hinted by the symmetric graphical syntax. Its interpretation in pointwise
notation is therefore trivial.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

12 J. de Araújo Mota et al.

Intuitively, the black ball in diagrams refers to copying and discarding – indeed

is copy and is discard. Meanwhile, the white ball refers to addition in R – indeed

is add and is zero.

Example 6. Here’s an example of how to translate a more complicated diagram. The
intuitive way to think about diagrams is like a series of logical gates, where the input
starts on the left and flows to the right via the wires. In the image below we include some
variable names x1, x2, x3, y1, y2 (which are not wire numberings) to aid comprehension.

x1

x2

x3

y1

y2

By visualizing the xi’s flowing to the right, we can see x2 is discarded and x3 is copied.
One of the copies is passed to y1 while the other is added with x1 to form y2. So y1 = x3 and
y2 = x1 + x3. Thus, written in pointwise notation this diagram corresponds to the relation⎧⎨

⎩
⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦ ,

[
y1

y2

]⎞⎠ ∈R3 ×R2 | y1 = x3 and y2 = x1 + x3

⎫⎬
⎭ .

For the purpose of simplifying the notation, sometimes in this paper, the inclusion “∈
R3 ×R2” will be omitted and diagrams such as the one presented above will be written in
pointwise notation as follows.⎧⎨

⎩
⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦ ,

[
y1

y2

]⎞⎠ | y1 = x3 and y2 = x1 + x3

⎫⎬
⎭ .

2.3 Scalars, matrices and other constructions

We’ve seen that linear transformation (or linear maps) can be thought of as special cases
of linear relations. This section explains some basic types of maps which will be used
throughout the paper. The most basic linear map is scalar multiplication: given a ∈R, one
can define the map [a] : R→R given by x �→ ax. In diagrammatic notation, we write it as
the 1× 1 curved diagram a , always with a lowercase letter. Semantically

a �→ {(x, ax) | x ∈R}.
If we restrict ourselves to scalars in Q, any scalar multiplication can be built inductively
from the generators. Below we define diagrammatically the maps [q] for 0≤ q ∈Q.

Definition 7 (Scalars in Q). For a, b ∈N, b �= 0,

a/b := a b , a :=
⎧⎨
⎩

a− 1
a > 0,

a= 0.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 13

The maps corresponding to negative numbers can also be built, but defining [−1] is
somewhat confusing so we won’t delve further into this discussion. For more information,
see Sobociński (2015). As a last note on scalars, if we work under an uncountable field
such as R, there is no way to build all scalars from the generators for cardinality reasons.
Hence, formally, one needs an uncountable amount of new generators a with a ∈R.

Aside from scalars, another important construction is that of a matrix. In the graph-
ical language, a matrix is considered a linear transformation built inductively from the
generators in a way that resembles the column-by-column construction of classical block
matrices. More concretely, here’s an inductive definition of a matrix in the usual sense.

Definition 8 (Matrix, column-by-column).

An×m =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[a] m= 1, n= 1,[
Ar1

1×1

Ar2
n−1×1

]
m= 1, n > 1,[

Ac1
n×1 Ac2

n×m−1

]
m > 1, n > 1.

We can mimic this definition in diagrammatic notation.

Definition 9 (Matrix in GLA).

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= 0

= 0
1 1 = 1, = 1

1

2

1

− 1
1 = 1, 1

1

2

1

− 1 1, 0

n

m

m n
A Ar

Ar

Ac

c
m

a

n

n

m

m

m

n

n >

n >

>m

n

A

Except for the two first cases, which account for diagrams with zero left/right wires,
the different cases in the graphical definition are exactly the different cases in the usual,

column-by-column definition. Notice that we write a matrix A
m n

as a curved diagram,
in order to distinguish them from ordinary relations. We write a matrix with lowercase
letters if and only if it is a 1× 1 matrix, i.e. a scalar.

Example 7. The triangular matrix

[
2 3
0 1

]
can be written in graphical syntax as

2

3 .

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

14 J. de Araújo Mota et al.

However, this diagram presents an inefficient coding for the given matrix and can be
simplified based on the Axioms and Theorems that will be exposed below.

We also mentioned in the Introduction that subspaces are special cases of linear
relations. They can be thought of as relations R⊆ V ×W where V = {∗} is the zero-
dimensional space. In diagrammatic notation, these correspond to the diagrams with 0
wires on the left. We write them as W . Given a matrix An×m, some familiar subspaces
are A (the image of A) and A (the kernel of A). With these, we can define
surjectivity and injectivity graphically.

An×m is injective ⇐⇒ Ker(A)= {0} ⇐⇒ A = ,

An×m is surjective ⇐⇒ Img(A)=Rn ⇐⇒ A = .

In fact, as a side note, linear transformations can be defined as linear relations satisfying
R = and R = . If these equations hold, we say the relation R is,

respectively, single-valued and total (see Definition 11). It is not difficult to prove, under
this definition, that matrices are linear transformations.

Tables 3 and 4 showcase some other constructions that will appear throughout the paper.
Some new symbols are introduced: R, S denote mathematical relations; A, B, C, D represent
matrices (linear transformations); a, b, c, d are real numbers; and V , W are subspaces. For
simplicity, sometimes we write the expression (x, y) ∈ R as xRy. It is worth noting that
the dagger symbol R† used below is not the dagger that appears in the context of dagger
categories. A proper inductive definition of the dagger is given in Definition 10, and it
corresponds to the intuitive notion of color-swapping, i.e. transforming white nodes into
black nodes and vice-versa.

2.4 Diagrammatic reasoning

Now we present the axioms and theorems that will be used for the remainder of the paper.
It is worth noting that here there are just three of the axioms of GLA. The complete presen-
tation of the axioms can be found at Paixão et al. (2022). Most proofs in this section will
be omitted as they are not the focus of this work, but can be found in the same reference.
The axioms and theorems are inspired by the notion of an Abelian bicategory as defined
by Carboni & Walters (1987). Here, two combinations of diagrams that play an important
role are bialgebras and special Frobenius algebras (respectively, Theorems 2 and 3). As
explained by Lack (2004), these are two canonical ways in which monoids and comonoids
can interact.

Axiom 1 (Commutative comonoid). The copy diagram satisfies the equations of commu-
tative comonoids, that is, associativity, commutativity and unitality, as given below:

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 15

Graphical notation Pointwise notation Name/Notation

1 R {(x, y) | xRy} Relation
R

2 R {(x, y) | yRx} Opposite
Ro

3 R

{
(x∗, y∗) | x∗Ry∗ and x∗�x− y∗�y= 0

} Orthogonal complement
(Stein & Samuelson, 2024)

R†

4 R S
{(x, y) | ∃z; xRz and zSy} ≡
{(x, y) | x(R ◦ S)y}

Composition
SR

5
R

S

{([
x1
x2

]
,

[
y1
y2

])
| x1Ry1 and x2Sy2

}
≡

{(x1, y1) | x1Ry1} × {(x2, y2) | x2Sy2}
Cartesian product

R× S

6 {(x, y) | x= y} Identity
I

7 A {(x, y) | Ax= y} Matrix
A

8 BA {(x, y) | B(Ax)= y} Matrix composition
BA

9 BA {(x, y) | Ax= By} Relational division
(Oliveira, 2018)

10 A {(∗, y) | ∃x; y= Ax} Image
Im(A)

11 A {(x, ∗) | Ax= 0} Kernel
Ker(A)

12
A

B

{(
x,

[
y1
y2

])
|
[

A
B

] [
x
]= [

y1
y2

]} Two-by-one block matrix[
A
B

]

13
A

B

{([
x1
x2

]
, y

)
| [A B

] [x1
x2

]
= [

y
]} One-by-two block matrix[

A B
]

Table 3: Dictionary of notations (Part 1).

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

16 J. de Araújo Mota et al.

13

a

b

c

d

{([
x1
x2

]
,

[
y1
y2

])
|
[

a b
c d

] [
x1
x2

]
=
[

y1
y2

]} Two-by-two matrix[
a b
c d

]

14

A

B

C

D

{([
x1
x2

]
,

[
y1
y2

])
|
[

A B
C D

] [
x1
x2

]
=
[

y1
y2

]} Two-by-two block matrix[
A B
C D

]

15
V

W

{y | y ∈ V and y ∈W } Intersection
V ∩W

16
V

W

{y|∃v ∈ V , w ∈W ; y= v +w} Sum
V +W

Table 4: Dictionary of notations (Part 2).

= :

⎧⎨
⎩
⎛
⎝x,

⎡
⎣ y1

y2

y3

⎤
⎦
⎞
⎠ | y1 = x and y2 = y3 = x

⎫⎬
⎭=⎧⎨

⎩
⎛
⎝x,

⎡
⎣ y1

y2

y3

⎤
⎦
⎞
⎠ | y1 = y2 = x and y3 = x

⎫⎬
⎭

= :

{(
x,

[
y1

y2

])
| y1 = y2 = x

}
=
{(

x,

[
y1

y2

])
| y2 = y1 = x

}

= = :
{(x, y) | ∃z; x= z= y} =
{(x, y) | x= y} =
{(x, y) | ∃z; x= y= z}

In graphical notation, the diagrams are closed under two symmetries: the “Mirror-
Image” and the “Color-Swap”.

Definition 10 (Mirror-Image and Color-Swap). Mirror-Image (denoted by (−)o) and
Color-Swap (denoted by (−)†) are defined on the generators in the obvious way and
extended recursively as follows:

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 17

Mirror-Image

()o =
(

R S

)o = S R

()o =
⎛
⎝ R

S

⎞
⎠

o

= R

S

Color-Swap

()† =
(

R S

)† = R S

()† =
⎛
⎝ R

S

⎞
⎠

†

= R

S

Axiom 2 (Symmetries). We have the equivalences Ro ⊆ S ⇐⇒ R⊆ So, i.e. in diagrams

⊆ SR ⇐⇒ R ⊆ S ,

and R† ⊆ S ⇐⇒ R⊇ S†, or in diagrams

⊆ S ⇐⇒ R ⊇R S .

In Axiom 2, R represents the diagram with inverted colors, where black circles turn
white, and vice versa. Axiom 2 denotes a particularly relevant advantage of graphical
notation. As an example, consider the axiom below.

Axiom 3 (Discard).

⊆R : {(x, ∗) | ∃y; xRy} ⊆ {(x, ∗) | x ∈R} .

Applying Axiom 2 to Axiom 3, we can assert that:

⊇R : {(∗, y) | 0Ry} ⊇ {(∗, y) | y ∈R and y= 0},

⊆R : {(∗, y) | ∃x; xRy} ⊆ {(∗, y) | y ∈R},

⊇R : {(x, ∗) | xR0} ⊇ {(x, ∗) | x ∈R and x= 0}.
For equalities, this becomes even simpler. It can be assumed that each diagram has three
other versions: the ‘mirror image,’ the ‘color swap,’ and both together. If an equation is
valid, its other three versions are also valid. For example, from Axiom 1, it is known that

the equality = is true. Therefore, by Axiom 2:

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

18 J. de Araújo Mota et al.

(−)o : = ,

(−)† : = and

[(−)o]† : =

are also true. When a result is proven, it will be assumed that the other three versions are
also true, just referencing the original result. For example, all of the above statements will
be denoted simply by Axiom 1.

Example 8. The triangular matrix diagram in Example 7 can be simplified using Axioms
1 and 2:

2

3

2

3 =
.

White and black diagrams act as bialgebras when they interact. This can be summarized
by the following equations.

Theorem 2 (Bialgebra).

= :

{([
x1

x2

]
,

[
y1

y2

])
| y1 = y2 = x1 + x2

}
={([

x1

x2

]
,

[
y1

y2

])
| y1 = x1 + x2 and y2 = x1 + x2

}

= :

{(
∗,
[

y1

y2

])
| y1 = y2 = 0

}
=
{(
∗,
[

y1

y2

])
| y1 = 0 and y2 = 0

}

= :

{([
x1

x2

]
, ∗
)
| ∃y; x1 + x2 = y

}
=
{([

x1

x2

]
, ∗
)
| ∃

[
y1

y2

]
;

[
x1

x2

]
=
[

y1

y2

]}

= : {(∗, ∗) | ∃y; y= 0} = {(∗, ∗)}

The white and black diagrams interact according to the rules of bialgebras. On the
other hand, individually the white and black structures interact as (extraspecial) Frobenius
algebras.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 19

Theorem 3 (Frobenius Algebra). The following equations hold:

= = :

{([
x1

x2

]
,

[
y1

y2

])
| y1 = x1 = y2 = x2

}
={([

x1

x2

]
,

[
y1

y2

])
| x1 = x2 = y1 = y2

}
={([

x1

x2

]
,

[
y1

y2

])
| x1 = y1 = x2 = y2

}

= : {(x, y) | ∃z1, z2; x= z1 = z2 = y} = {(x, y) | x= y}

= : {(∗, ∗) | ∃z; z ∈R} = {(∗, ∗)}

We now define the following important properties about linear relations.

Definition 11 (Types of relations). The R relation is called:

Total (tot) if ⊇R : {(x, ∗) | ∃y; xRy} ⊇ {(x, ∗) | x ∈R}

Single-Valued (sv) if ⊆R : {(∗, y) | 0Ry} ⊆ {(∗, y) | y ∈R and y= 0}

Surjective (sur) if ⊇R : {(∗, y) | ∃x; xRy} ⊇ {(∗, y) | y ∈R}

Injective (inj) if ⊆R : {(x, ∗) | xR0} ⊆ {(x, ∗) | x ∈R and x= 0}

Definition 11 has equivalent statements, summarised in the Theorem below:

Theorem 4. For every relation R, the following statements are equivalent:

R⊆ ⇐⇒ R R⊆⇐⇒ R

R
R ⊆

(Total)

⊆
R

R
R ⇐⇒ R R ⊆⇐⇒R ⊆

(Single Valued)

⊆
R

R
R ⇐⇒ R R⊆⇐⇒R⊆

(Surjective)

R ⊆ ⇐⇒ R R ⊆⇐⇒ R

R
R⊆

(Injective)

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

20 J. de Araújo Mota et al.

Remark. A diagram is a map if it is total and single-valued. Also, a diagram is a Co-map
if it is injective and surjective. In particular, a matrix A is a Map.

The other theorems relevant to this paper are summarized in Table 5. It is worth men-
tioning that the translations in pointwise notation presented are well-known theorems in
linear algebra, which can be easily verified in a classical textbook, for example (Axler,
1997; Strang, 2009).

In Table 5, the dotted lines in some of the rows have no syntactic meaning and are
included solely to visually illustrate the two ways in which the diagram in question can be
semantically interpreted as it was done in introduction. For instance, the equation in row
18, which is a theorem in classical notation, implicitly holds true in the graphical syntax.

Lastly, we state three additional Lemmas which will be useful in the next sections.
Lemmas 1 and 2 will be used in the proof of the Zassenhaus’ algorithm (Theorem 9),
while Lemma 3 will appear later, in the proof of the Exchange Lemma (Theorem 16). The
reason for providing specific proofs of these three lemmas is to use them as examples of
how Tables 3 and 5 can help in translating proofs from graphical notation into two other
notations.

Lemma 1. =
B

A B

A .

Proof

B

A
=

Tbl.5(13)

B

A

B

B
=

Ax.1

A BB =
Ax.1

A B =
Tbl.5(13) B

A .

�

Lemma 2.
A

=
A

.

Proof
A

AA

A=
Tbl. 5(13)

=
Tbl. 5(3)

. �

Lemma 3.

A

B = A .

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 21

Graphical notation Pointwise notation Classical notation

1 =A
{(x, ∗) | ∃y; Ax= y} =
{(x, ∗) | x ∈R} −

2 Asur =
A is surjective iff
{(∗, y) | ∃x; Ax= y}
= {(∗, y) | y ∈R}

A is surjective iff
Im(A)=Rn

3 A = {(∗, y) | A0= y} = {(∗, y) | y= 0} −

4 Ainj = A is injective iff
{(x, ∗) | Ax= 0} = {(x, ∗) | x= 0}

A is injective iff
Ker(A)= {0}

5 A = B {(x, y) | y= Ax} = {(x, y) | By= x} A= B−1

6 A ⊆ B {(x, y) | y= Ax} ⊆ {(x, y) | By= x} AB= I

7 A

A

A

=

{(
x,

[
y1
y2

])
| y2 = y1 = I(Ax)

}
={(

x,

[
y1
y2

])
| y2 = y1 = (IA)x

} [
I
I

]
A=

[
A
A

]

8
A

A

A =

{([
x1
x2

]
, y

)
| y= A(x1 + x2)

}
={([

x1
x2

]
, y

)
| y= Ax1 + Ax2

} A
[
I I

]= [
A A

]

9 = {(x, y) | ∃z; y= z+ x} =
{(x, y) | x, y ∈R} −

10 = {(x, y) | x= y= 0} =
{(x, y) | x= 0 and y= 0} −

11 R⊆ {(x, y) | x= 0 and y= 0}
⊆ {(x, y) | xRy} Bottom linear relation

12 ⊆R
{(x, y) | xRy} ⊆

{(x, y) | ∃z1, z2; x= z1 and z2 = y} Top linear relation

Table 5: Theorems, presented in the three different notations (Part 1).

Proof

A

B =
Ax. 1 A

B
=

Tbl. 5(1) A
A=

Ax. 1
=

Tbl. 5(9)
A

B .

�

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

22 J. de Araújo Mota et al.

13
A

=
A

A

{([
x1
x2

]
, y

)
| ∃z; Az= x1 and z+ x2 = y

}

=
{([

x1
x2

]
, y

)
| x1 + Ax2 = Ay

} −

14
A

B

=
A

B

{(∗, y) | ∃x1, x2; Ax1 + Bx2 = y} ={
(∗, y) | ∃x1, x2;

[
A B

] [x1
x2

]
= y

} Im(A)+ Im(B)=
Im(

[
A B

]
)

15
A

B

=
A

B

{(∗, y) | Ay= 0 and By= 0}
=
{

(∗, y) |
[

A
B

]
y= 0

} Ker(A)∩Ker(B)=
Ker

([
A
B

])

16 A = −A

{([
x1
x2

]
,

[
y1
y2

])
|
[

I A
0 I

] [
x1
x2

]
=
[

y1
y2

]}
={([

x1
x2

]
,

[
y1
y2

])
|
[

x1
x2

]
=
[

I −A
0 I

] [
y1
y2

]}
[

I A
0 I

]−1

=[
I −A
0 I

]

17 =
A -A

{([
x1
x2

]
, ∗
)
| x1 + Ax2 = 0

}
={([

x1
x2

]
, ∗
)
| x1 =−Ax2

} −

18 =AB AB
{(∗, y) | ∃x, A(Bx)= y} =
{(∗, y) | ∃x, (AB)x= y}

A(Im(B))=
Im(AB)

19 =AB AB
{(∗, y) | B(Ay)= 0} =
{(∗, y) | (BA)y= 0}

Ao(Ker(B))=
Ker(BA)

Table 6: Theorems, presented in the three different notations (Part 2).

We can almost immediately obtain the same proofs (Lemmas 1, 2 and 3) in pointwise
notation by systematically translating each step according to the Tables 3 and 5.

Lemma 4 (Lemma 1 in pointwise version).

{(∗, y) | ∃x1, x2; Ax1 = y and Bx2 = y} = {(∗, y) | ∃x1, x2; Ax1 = y and Ax1 = Bx2}

Proof

{(∗, y) | ∃x1, x2; Ax1 = y and Bx2 = y}
= { Table 5(13) }
{(∗, y) | ∃x1, x2, ∃z; Ax1 = Bz and Bx2 = y}

= { Axiom 1 }
{(∗, y) | ∃x1, ∃z; Ax1 = Bz and Bz= y}

= { Axiom 1 }

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 23

{(∗, y) | ∃x1, x2, ∃z; Ax1 = Bz and Bz= y and z= x2}
= { Table 5(13) }
{(∗, y) | ∃x1, x2; Ax1 = y and Ax1 = Bx2}

�

Lemma 5 (Lemma 2 in pointwise version). Let A be a matrix, then{([
x1

x2

]
, ∗
)
| ∃z; Az= x1 and z+ x2 = 0

}
=
{([

x1

x2

]
, ∗
)
| x1 + Ax2 = 0

}

Proof {([
x1

x2

]
, ∗
)
| ∃z; Az= x1 and z+ x2 = 0

}
= { Table 5(13) }{([

x1

x2

]
, ∗
)
| x1 + Ax2 = A0

}
= { Table 5(3) }{([

x1

x2

]
, ∗
)
| x1 + Ax2 = 0

}

�

Lemma 6 (Lemma 3 in pointwise notation). Given two matrices An1×m and Bn2×m, then

Im

([
A 0
B I

])
= Im(A)×Rn2

Proof

Im

([
A 0
B I

])
= { Definition of image - Table 3(9) }{(

∗,
[

y1

y2

])
| ∃

[
x1

x2

]
;

[
y1

y2

]
=
[

A 0
B I

] [
x1

x2

]}
= { Arithmetic }{(

∗,
[

y1

y2

])
| ∃x1, x2; Ax1 + 0= y1 and Bx1 + x2 = y2

}
= { Axiom 1 }{(

∗,
[

y1

y2

])
| ∃x1, x2; Ax1 = y1 and Bx1 + x2 = y2

}
= { Table 5(9) }

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

24 J. de Araújo Mota et al.

{(
∗,
[

y1

y2

])
| ∃x1, z1, z2; Ax1 = y1, Bx1 = z1 and z2 = y2

}
= { Table 5(1) }{(

∗,
[

y1

y2

])
| ∃x1, z1, z2; Ax1 = y1, x1 = z1 and z2 = y2

}
= { Axiom 1 }{(

∗,
[

y1

y2

])
| ∃x1, z2; Ax1 = y1 and z2 = y2

}
= { Table 3(4) }
{(∗, y1) | ∃x1; Ax1 = y1} × {(∗, y2) | y2 ∈Rn2}

= { Definition of image - Table 3(9) }
Im(A)×Rn2

�

Note that in the proof of Lemma 6, some steps (gray letters) are needed in addition to
those used in the graphical version (Lemma 3). In fact, this is quite common. Informally
speaking, proofs in GLA often have fewer steps than their classical counterparts. There are
two main reasons for this. The first is that, as seen in rows 14, 15, and 18 of Table 5, some
non-trivial rules in the usual notation become implicitly true in GLA. The second is that
the definitions of kernel and image do not require specific terminology; instead, they can
be built from the pre-established fundamental symbols (zero, discard, and matrices).

3 Verification proofs in GLA

This section presents two distinct verification proofs in GLA about linear subspaces. The
first one is an introductory example from which the reader can draw intuition. Thus, in this
case, the same proof will be written in all three types of notation. The second example will
be compared to the widely available Wikipedia proof.

3.1 Introductory example: finding the fundamental subspaces

Definition 12 (Fundamental Subspaces). For any matrix A, there are four fundamental
subspaces: Im(A), Im(A�), Ker(A) and Ker(A�).

The algorithm presented by Beezer (2014) determines bases for these four subspaces
in a single calculation using Reduced Row Echelon Form (RREF) obtained through row
operations. This algorithm can be stated as follows.

Theorem 5 (Bases for Fundamental Subspaces). For every matrix Am×n, if there are
surjective matrices C and L, a matrix K, and an invertible matrix X such that

[
A I

]= X

[
C K
0 L

]

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 25

the following equalities hold.

1. Im(A�)= Im(C�),
2. Ker(A)=Ker(C),
3. Im(A)=Ker(L),
4. Ker(A�)= Im(L�).

Example 9. Let A=
⎡
⎣1 1

1 2
1 3

⎤
⎦. Then

[
A I

]=
⎡
⎣ 1 1 1 0 0

1 2 0 1 0
1 3 0 0 1

⎤
⎦ RREF−−−→ X

⎡
⎣ 1 0 0 3 -2

0 1 0 -1 1
0 0 1 -2 1

⎤
⎦= X

[
C K
0 L

]
.

See that the equations 1, 2, 3 and 4 of Theorem 5 hold:

1. Im(A�)=
{[

1
1

]
,

[
1
2

]}
=R2 and Im(C�)=

{[
1
0

]
,

[
0
1

]}
=R2;

2. Ker(A)=Ker(C)= 0;

3. Ker(L)=
⎧⎨
⎩
⎡
⎣2

1
0

⎤
⎦ ,

⎡
⎣−1

0
1

⎤
⎦
⎫⎬
⎭=R3 and Im(A)=

⎧⎨
⎩
⎡
⎣1

1
1

⎤
⎦ ,

⎡
⎣1

2
3

⎤
⎦
⎫⎬
⎭=R3;

4. Ker(A�)= Im(L�)=
⎧⎨
⎩
⎡
⎣ 1
−2
1

⎤
⎦
⎫⎬
⎭.

In graphical syntax, Theorem 5 takes the following form:

Theorem 6 (Bases for Fundamental Subspaces – Graphical version). For every matrix
Am×n, if there are surjective matrices C and L, a matrix K, and an invertible matrix X
such that

A
Csur

K

Lsur

Xinv=

then

=AT CT
sur

(1)
=A Csur

(2)

=A Lsur

(3)
=AT LT

sur

(4)

We begin by exploring the proof of items 1 and 2.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

26 J. de Araújo Mota et al.

Proof of (2)

A =
Ax. 1 A

=
Hyp. Csur

K

Lsur

Xinv =
Tbl. 5(4)

=
Thm. 2

Csur

K

Lsur

=
Tbl. 5(3)

Csur

K

Lsur

Csur

K =
Thm. 3 Csur

K
=

Tbl. 5(3) Csur =
Ax. 1

Csur

.

�

Proof of (1) It is proved by the Proof (2) and the Theorem 2. �

As seen in Section 2, each diagram has a semantic translation to pointwise notation.
Therefore, based on the graphical proof above, we immediately obtain the following proof
by translating each step systematically.

Proof of (2) [Pointwise version]

Ker(A)

= { Definition of kernel - Table 3(10) }
{(x, ∗) | Ax= 0}

= { Axiom 1 }
{(x, ∗) | Ax+ 0= 0}

= { Matrix notation }{
(x, ∗) | [A | I] [x

0

]
= 0

}
= { Hypothesis }{

(x, ∗) | X
[

C K
0 L

] [
x
0

]
= 0

}
= { Arithmetic }{

(x, ∗) | X
[

Cx+K0
L0

]
= 0

}
= { X invertible - Table 5(4) }{

(x, ∗) |
[

Cx+K0
L0

]
= 0

}
= { Theorem 2 }
{(x, ∗) |Cx+K0= 0 and L0= 0}

= { Table 5(3) }
{(x, ∗) |Cx+K0= 0 and 0= 0}

= { Theorem 3 }

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 27

{(x, ∗) |Cx+K0= 0}
= { Table 5(3) }
{(x, ∗) |Cx+ 0= 0}

= { Axiom 1 }
{(x, ∗) |Cx= 0}

= { Definition of kernel - Table 3(10) }
Ker(C)

�

In a similar way, using Table 5 the same proof can be written in classical notation.

Proof of (2) [Classical version]

Ker(A)

= { Breakdown of A }
Ker

([
A | I] [I

0

])
= { Hypothesis }

Ker

(
X

[
C K
0 L

] [
I
0

])
= { X invertible – Table 5(4) }

Ker

([
C K
0 L

] [
I
0

])
= { Arithmetic }

Ker

([
C
0

])
= { Kernel intersection – Table 5(15) }

Ker(C)∩Ker(0)

= { Ker(0)=Rn }
Ker(C)∩Rn

= { ∀A, A∩Rn = A }
Ker(C)

�

Now we prove items 3 and 4.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

28 J. de Araújo Mota et al.

Proof of (3) [Graphical version]

A =
Thm. 2

A =
Tbl. 5(9)

A

=
Lem. 2 A

=
Hyp.

Csur

K

Lsur

Xinv

=
Tbl. 5(4)

Csur

K

Lsur

=
Tbl. 5(2)

K

Lsur

=
Tbl. 5(9)

K

Lsur

=
Thm. 2 K

Lsur
=

Tbl. 5(1)

Lsur=
Ax. 1

Lsur

�

Proof of (4) [Graphical version] It is proved by the Proof (3) and the Theorem 2. �

Again, translating each step systematically, we obtain the proof in pointwise notation:

Proof of (3) [Pointwise version]

Im(A)

= { Definition of image - Table 3(9) }
{(∗, y) | ∃x; Ax= y}

= { Theorem 2 }
{(∗, y) | ∃x, z; z= 0 and Ax= y}

= { Table 5(9) }
{(∗, y) | ∃x̃; x+ x̃= 0; and Ax= y}

= { Lemma 2 }
{(∗, y) | ∃x̃; Ax̃+ y= 0}

= { Matrix notation }{
(∗, y) | ∃x̃;

[
A | I

] [x̃
y

]
= 0

}
= { Hypothesis }{

(∗, y) | ∃x̃; X

[
C K
0 L

] [
x̃
y

]
= 0

}
= { Arithmetic }{

(∗, y) | ∃x̃; X

[
Cx̃+Ky

Ly

]
=
[

0
0

]}
= { X invertible – Table 5(4) }
{(∗, y) | ∃x̃; Cx̃+Ky= 0 and Ly= 0}

= { C surjective – Table 5(2) }

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 29

{(∗, y) | ∃x̃; x̃+Ky= 0 and Ly= 0}
= { Table 5(9) }
{(∗, y) | ∃x̃1, x̃2; Ky= x̃1, x̃2 = 0 and Ly= 0}

= { Theorem 2 }
{(∗, y) | ∃x̃1; Ky= x̃1 and Ly= 0}

= { Table 5(1) }
{(∗, y) | ∃x̃1; y= x̃1 and Ly= 0}

= { Axiom 1 }
{(∗, y) | Ly= 0}

= { Definition of kernel – Table 3(10) }
Ker(L)

�

In this case, as shown in Table 5, some steps have no direct translations into classical nota-
tion. Hence, the following translation of the graphical proof relies on pointwise notation
to fill in the gaps. Informally speaking, this often happens when multiple matrices inter-
act with each other in a non-trivial way. The graphical language is expressive enough to
handle these complex interactions without the need to introduce new symbols.

3.2 The Zassenhaus’ algorithm

The Zassenhaus algorithm is a well-known method that calculates a basis for the inter-
section and another for the sum of two subspaces of a vector space. According to Fischer
(2012), despite being attributed to Hans Zassenhaus (1912–1991), there is no publication
of this algorithm in the mathematician’s works. However, there is a historical association
regarding its application in Zassenhaus’ classic coffee grinder manufacturing company.
This algorithm serves as a compelling example of how graphical syntax can be used to
reason about linear subspaces.

Although there is published research exploring the Zassenhaus algorithm, the most
widely available source is presented in Wikipedia contributors (2023), which describes
the algorithm verbatim as presented in Appendix A.

The pointwise Wikipedia proof is using much subspace notation, has to define π1, π1|H ,
has the word “obviously”, is full of indices to connect the matrices and subspaces, and uses
dimension.

We begin by reformulating the algorithm as a theorem to make the assumptions clearer
and write the proof in calculational style. In classical notation, the Zassenhaus algorithm,
as presented by Wikipedia contributors (2023), can be summarized with the following
theorem:

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

30 J. de Araújo Mota et al.

Theorem 7. For all subspaces A and B, if there are injective C and D, a matrix E, and
invertible X , such that:

[
A� A�

B� 0

]
= X

⎡
⎣C� E�

0 D�

0 0

⎤
⎦ ,

then,

1. Im(A)∩ Im(B)= Im(D)
2. Im(A)+ Im(B)= Im(C)

Example 10. Let A=
⎡
⎣ 1 0
−1 0
0 1

⎤
⎦ and B=

⎡
⎣ 5 0

0 5
−3 −3

⎤
⎦. Then

[
A� A�

B� 0

]
= X

⎡
⎢⎢⎣

1 −1 0 1 −1 0
0 0 1 0 0 1
5 0 −3 0 0 0
0 5 −3 0 0 0

⎤
⎥⎥⎦ RREF−−−→

X

⎡
⎢⎢⎣

1 0 0 0 0 0.6
0 1 0 0 0 0.6
0 0 1 0 0 1
0 0 0 1 −1 0

⎤
⎥⎥⎦= X

[
C� E�

0 D�

]
.

Therefore

1. Im(A)∩ Im(B)= Im(D)=
⎧⎨
⎩
⎡
⎣ 1
−1
0

⎤
⎦
⎫⎬
⎭

2. Im(A)+ Im(B)= Im(C)=
⎧⎨
⎩
⎡
⎣1

0
0

⎤
⎦ ,

⎡
⎣0

1
0

⎤
⎦ ,

⎡
⎣0

0
1

⎤
⎦
⎫⎬
⎭=R3

Note that the matrices are transposed because Wikipedia contributors (2023) formulate the
matrix in blocks with row vectors. To facilitate notation, we will consider the block matrix
in the following equivalent (transposed) form.

Theorem 8 (Zassenhaus). For all matrices A and B, if there are injective matrices C and
D, a matrix E, and an invertible matrix X such that[

A B
A 0

]
=
[

C 0 0
E D 0

]
X�,

then

1. Im(A)∩ Im(B)= Im(D),
2. Im(A)+ Im(B)= Im(C).

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 31

Similarly, this theorem can be expressed in graphical syntax.

Theorem 9 (Zassenhaus – Graphical version). For all matrices A and B, if there are
injective matrices C and D, a matrix E, and an invertible matrix X such that

A
=

B

A

Cinj

E

Dinj

X�inv

then

A =
B

Dinj

(1)
and

A =
B

Cinj

(2)
.

Let us rephrase the proof of the theorem using graphical syntax.

Proof of (1) [Graphical version]

A
=

B

Lem. 1

A

B
=

Thm. 2
=

Tbl. 5(9)

A

B

A

B

=
SSM A

B A

B =
Tbl. 5(7)

=
Lem. 2

B

A

A
=

Hyp.
Cinj

E

Dinj

X�inv

Cinj

E

Dinj

=
Tbl. 5(2)

=
Thm. 2

Dinj

=
Tbl. 5(4)

=
Tbl. 5(10)

E

Dinj
=

Ax. 1

=
Thm. 2E

Dinj

Cinj

E

Dinj

E

Dinj

Dinj
=

Tbl. 5(3)

�

Proof of (2) [Graphical version]

A
=

B

Ax. 1
=

SSM
=

Tbl. 5(1)A

B
B

A

=
HypB

A

A

Cinj

E

Dinj

X�inv

=
Thm. 2

Cinj

E

Dinj

X�inv

=
Tbl. 5(1)

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

32 J. de Araújo Mota et al.

Cinj

Cinj

X�inv =
Tbl. 5(2)

Cinj

=
Thms. 2-3

Cinj

=
Ax. 1

�

See that we have achieved a completely calculational and point-free proof. Moreover,
the proof in graphical syntax serves as a guide to produce a new proof in pointwise notation
(Appendix B).

4 Programs and properties derivation in GLA

In this section, four main algorithms will be explored: how to find the right inverse of
a wide triangular matrix, how to switch from an implicit basis description to an explicit
basis description of a subspace, how to find a basis for the intersection of two subspaces
and the exchange lemma. The first three algorithms are good examples of how it is possible
to use graphical syntax to perform program derivations concerning linear subspaces. The
last algorithm exemplifies the use of graphical syntax to derive important properties to be
considered for problem-solving.

4.1 Simple example: Right inverse of a wide triangular matrix

As an introductory example, we will discuss the problem of finding the right inverse of a
wide triangular matrix.

Definition 13 (Recursive Wide Triangular Matrix/Classical notation). A wide triangular
matrix Tm×n is recursively defined as

Tm×n =
⎧⎨
⎩

T1×n is a non-zero vector, if m= 1[
T11 T12

0 T22

]
, if m > 1

where T12 is a matrix and T11 and T22 are smaller wide triangular matrices.

This definition is almost like that of a triangular matrix, but it allows for more columns
than rows. Note that it is tricky to define this matrix non-recursively. This definition leads
to matrices that are surjective but not necessarily injective. In fact, every matrix constructed
by the above recursive rule is surjective. Below, we present a proof by verification in
classical notation.

Theorem 10 (Verification/Classical version). Let T be a wide triangular matrix, then T
has a right inverse T+. In other words, there exists an T+ such that TT+ = I and

T+m×n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
0 · · · 1/ti · · · 0

]�
if m= 1

[
T+11 −T+11T12T+22

0 T+22

]
, if m > 1

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 33

Proof The proof will be done by strong induction. First, for the base case, consider a wide
triangular matrix T1×n =

[
t1 t2 ... tn

]
.

TT+

= { Definitions of T and T+ }

[
t1 · · · ti · · · tn

]
⎡
⎢⎢⎢⎢⎢⎢⎣

0
...

1/ti
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

= { T is non-zero so there exists a i such that ti is non-zero }
ti/ti

= { Arithmetic }
1

For the inductive step, consider T in blocks as in the recursive definition.

TT+

= { Definitions of T and T+ }[
T11 T12

0 T22

] [
T+11 −T+11T12T+22

0 T+22

]
= { Matrix multiplication }[

T11T+11 −T11T+11T12T+22 + T12T+22

0 T22T+22

]
= { Induction Hypothesis }[

I −T12T+22 + T12T+22

0 I

]
= { Arithmetic }[

I 0
0 I

]

�

Example 11. The matrix T =
[

3 2 3 4
0 5 2 1

]
is wide triangular. So T+11 =

[
1/3

]
, T+22 =[

1/5 1/2 1
]�

and

T+ =

⎡
⎢⎢⎣

1/3 −59/30
0 1/5
0 1/2
0 1

⎤
⎥⎥⎦ .

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

34 J. de Araújo Mota et al.

Note that TT+ =
[

1 0
0 1

]
. Therefore, T+ is the right inverse of T.

The disadvantage of this method has already been pointed out. One has to provide a
candidate for the right inverse prior to the verification. In order to derive the inverse, we
first reformulate the problem in GLA.

Definition 14 (Recursive Wide Triangular Matrix/Graphical version). A triangular wide
matrix Tm×n is defined recursively by

Tn m =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Tn 1 , m= 1

T12

T11

T22

1

n− 1

m− 1

1

, m > 1

where T11 and T22 are smaller wide triangular matrices.

Theorem 11 (Derivation/Graphical version). Let T be a wide triangular matrix. There
exists a wide triangular matrix T+ such that:

⊇T T+
n mn m .

Proof The proof will be done by induction. For the base case (T1×n) we have

T
n 1 =

a

T̃

1

n− 1

1Def.9
.

If a= 0,

T̃

1

n− 1

1

T̃

=
T̃

⊇
T̃+

⊇= Ax. 1 I.H.Tbl.5(11)Def.7
.

If a �= 0,

1/a

T̃
=

1/a

T̃

1

n− 1
= 1/a

−T̃ ⊇

1/a

−T̃
= 1/a =

1/a

=
Ax. 1 Tbl. 5(16) Tbl. 5(11)

Tbl. 5(3) Ax. 1
=Thm. 2 1/a

−T̃

Tbl. 5(5)

.

For the inductive step, consider Tn m in blocks as in the recursive Definition 14.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 35

Tn m =Def. 14

T12

T11

T22

1

n− 1

m− 1

1

⊇
I.H.

T12

T+11

T+22

=
Tbl. 5(13)

T12

T+11

T+22

T+11 =
Tbl. 5(13)

T12

T+11

T+22

T+11

T+22

T+11T12T+22

T+11

T+22

=
Tbl. 5(5)

=
Tbl. 3(7) −T+11T12T+22

T+11

T+22

:= T+

.

�

This automatically leads to a computer implementation (by simply translating each step of
the proof into the pseudocode).

Algorithm 1. Right Inverse Triangular

procedure TriMatrix INVERSE(TriMatrix Tm×n)
If m > 1:[

T11 T12

0 T22

]
← A

T+11← INVERSE(A11)
T+22← INVERSE(A22)
T+12←−T+11T12T+22

T+←
[

T+11 T+12

0 T+22

]
return T+

If m= 1:[
t1×1 T ′

]← T
If t= 0:

return

[
0

INVERSE(T ′)

]
If t �= 0:

return

[
1/t
0

]

4.2 Switching from implicit to explicit basis

A subspace can always be represented by implicit and explicit bases, as presented by
Zanasi (2015). Let B⊆Rn be a subspace, and let a1, a2, ..., am be vectors orthogonal to
B, as depicted in Figure 2. An implicit basis of this subspace is given by

{x | x⊥ a1, x⊥ a2, . . . , x⊥ am} =
{
x | a�1 x= 0, a�2 x= 0, . . . , a�mx= 0

}= {
x | A�x= 0

}
.

On the other hand, given b1, b2, . . . , br ∈ B, an explicit basis of B is given by

{x | ∃c1, c2, · · · cn ∈R; c1b1 + c2b2 + · · · + crbr = x} = {x | ∃c ∈Rn; Bc= x} .

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

36 J. de Araújo Mota et al.

Fig. 2: Geometric representation of the implicit and explicit bases of the B subspace.

Example 12. The subspace orthogonal to the vector a= [
1 2 3

]�
can also be

generated by the column vectors of the matrix B=
⎡
⎣−2 −3

1 0
0 1

⎤
⎦.

This can be denoted by the following theorem and proved recursively in graphical syntax.

Theorem 12 (Switch from implicit to explicit basis). For every matrix Am×n, there exists
a matrix Bn×r such that

A = Bn m n r .

Proof The proof will be done by induction. For the base case, if m= 1, there are two
cases: Case 1 (n= 1):

A =1 1 a
Vector

If a= 0,

=
Thm. 3

=Def.9
.

If a �= 0,

a−1=
Tbl.5(5)

=
Tbl.5(3)

=
Thm. 3

.

Case 2 (n > 1):

A =n 1
a

A′

1

n− 1

Def.9

If a= 0,

=
A′n− 1

=
A′n− 1

Ax.1
=

I.H.

B′

Def.9
.

If a �= 0,

= =
Tbl.5(16)a−1

A′

a−1

−A′
=

Tbl.5(13) a−1 −A′

−A′ =
Tbl.5(1) a−1 −A′Tbl.5(5)

.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 37

Inductive step:

A =n m
A1

A2

n
1

m− 1

Def.9
=

I.H. B1

A2

n

m− 1
=

Tbl.5(13)

B1

B1 A2
m− 1

=
Ax.1

B1 B1 A2
m− 1 =

Ã2 := A2B1

B1 Ã2
m− 1 =

I.H.
B1 B2 =

B := B1B2

B

�

The inductive step can of course be written in classical linear algebra notation mixed with
relational algebra notation as follows.

Proof [Classical version]

Ker(A)

= { Definition 9 }
Ker

([
A1

A2

])
= { Table 5 (15) }

Ker(A1)∩Ker(A2)

= { Induction hypothesis }
Im(B1)∩Ker(A2)

= { Definition 1 }
B1R

n ∩Ker(A2)

= { Table 5 (13) }
B1(Rn ∩ Bo

1Ker(A2))

= { Table 5 (19) }
B1(Rn ∩Ker(A2B1))

= { ∀X , Rn ∩ X = X }
B1(Ker(A2B1))

= { Ã2 := A2B1 }
B1(Ker(Ã2))

= { Induction hypothesis }
B1(Im(B2))

= { Table 5 (18) }
Im(B1B2)

= { B := B1B2 }
Im(B)

�

Furthermore, this proof provides a nice recursive algorithm presented below:

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

38 J. de Araújo Mota et al.

Algorithm 2. Implicit to Explicit Basis

procedure Matrix IMPLICITEXPLICIT(Matrix Am×n)
If m > 1:[

A1

A2

]
← A

B1← IMPLICITEXPLICIT(A1)
Ã2← A2 · B1

B2← IMPLICITEXPLICIT(Ã2)
B← B1 · B2

return B
If n > 1:[

a1×1 A′
]← A

If a= 0:

return

[
I 0
0 IMPLICITEXPLICIT(A′)

]
If a �= 0:

return

[−a−1A′

I

]
If n= 1:[

a1×1

]← A
If a= 0:

return [1]
If a �= 0:

return [0]

4.2.1 Calculating a basis for the intersection

The example of section (4.2) motivates the next Theorem, in which we want to build a
basis for the intersection of two subspaces.

Example 13. As shown in Example 10, a basis for the intersection of the images of the

subspaces A=
⎡
⎣ 1 0
−1 0
0 1

⎤
⎦ and B=

⎡
⎣ 5 0

0 5
−3 −3

⎤
⎦ is given by

⎡
⎣ 1
−1
0

⎤
⎦, ie,

Im(A)∩ Im(B)=
⎧⎨
⎩
⎡
⎣ 1
−1
0

⎤
⎦
⎫⎬
⎭ .

See the theorem:

Theorem 13 (Base for intersection). For all matrices Ak×m and Bk×n, there is an injective
matrix Z such that

A

B

= Zinj

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 39

Using the Theorem 12, we obtain the derivation.

Proof

A

B

= Z̃

Ã

B̃

Z= =
Thm. 12 Tbl. 5(15) Thm. 12

�

This derivation provides yet another algorithm that returns a basis for the intersection of
two subspaces given as input:

Algorithm 3. Basis for the intersection

procedure Matrix BASISINTERSECTION(Matrix A, Matrix B)
Ã← IMPLICITEXPLICIT(A)
B̃← IMPLICITEXPLICIT(B)

Z̃←
[

Ã
B̃

]
Z← IMPLICITEXPLICIT(Z̃)
return Z

From the symmetries property of the graphical syntax (Axiom 2), it is also possible to
obtain a program derivation and, consequently, an algorithm for the sum of two subspaces.
This is the dual of Theorem 13.

4.3 The exchange lemma

Let V be a finite-dimensional vector space and let A= (a1, ..., ar) and B= (b1, ..., bs) be
two subspaces of V such that A is linearly independent and

Im(A)⊆ Im(B).

The exchange lemma says that r≤ s and that there exists a subspace C formed by the
vectors of A and s− r vectors of B such that Im(C)= Im(B). More details can be found in
(Barańczuk & Szydło, 2021).

Example 14. Let (e1, e2, e3, e4) be the standard basis in R4,

A= [
a1 a2 a3

]=
⎡
⎢⎢⎣
−1 1 1
−1 −1 1
1 −1 −1
0 0 −2

⎤
⎥⎥⎦ and

B= [
b1 b2 b3 b4 b5

]= [
e1 e2 e3 e4 −e4

]
.

The subspace C= [
a1 a2 a3 b3 b4

]
is such that Im(C)= Im(B)=R4.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

40 J. de Araújo Mota et al.

The major issue of the lemma is “selecting” which vectors of B make this true, i.e:

Im(A)+ Im(B [Selector])= Im(B).

Inspired by the solution presented by Barańczuk & Szydło (2021), this problem can be
stated as the following theorem:

Theorem 14 (Exchange lemma – Verification/Classical version). Let V be a finite-
dimensional vector space and let A and B be two subspaces of V such that A is linearly

independent and Im(A)⊆ Im(B). Thus, there exists X = P

[
I

M

]
Z, where P is a permutation

matrix, I is the identity and Z is invertible, such that A= BX and

Im(A)+ Im

(
BP

[
0
I

])
= Im(B).

The expression P

[
0
I

]
is the selector that determines the proper vectors of B. The matrix[

0
I

]
has the function of selecting or discarding vectors, while the permutation matrix P

determines the order in which this happens. For example, considering B with size n× 4, a
possible selector would be

Im

⎛
⎜⎜⎝[(b1) (b2) (b3) (b4)

] ·
⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

0 0
0 0
1 0
0 1

⎤
⎥⎥⎦
⎞
⎟⎟⎠= Im

([
(b4) (b2)

])
.

Theorem 14 can be rewritten in graphical syntax as follows:

Theorem 15 (Exchange lemma – Verification/Graphical version). Let A be an injective
matrix where ⊆A B for some matrix B. Then, there exist invertible matrices
Z, P and a matrix M such that

X B=A and

A

Pinv B

= B
,

where X := Zinv

M

Pinv

.

Proof

A

Pinv B

=Def.A X

Pinv B

B
=Def.X Zinv

M

Pinv

Pinv B

B

=
Tbl. 5(2)

=
Tbl. 5(8)

M

Pinv

Pinv

B =
Tbl. 5(8)

M

Pinv

Pinv B

B

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 41

BPinv

M
=

Tbl. 5(9)
BPinv

M
=Ax. 1

B

BPinvM
=

Tbl. 5(1)

BPinv
=Ax. 1

BPinv =
Tbl. 5(2)

�

To solve this problem, Barańczuk & Szydło (2021) decomposed the matrix X into row-
echelon form. It is possible to do a property derivation to find a way to decompose X by
rewriting Theorem 15 as

Theorem 16 (Exchange lemma – Derivation/Graphical version). Let A be an injective
matrix and ⊆A B for some matrix B. Suppose that

X B=A and =X
X̃1sur

X̃2

Pinv

for some matrix X , surjective matrix X̃1, matrix X̃2 and invertible matrix P. Then,

A

Pinv B

= B
.

Proof

= ⇔

Def. A
B

B

A

Pinv

= ⇔

Tbl. 5(8)X B

B
B

Pinv

X

Pinv

= B ⇐
Multiply B

B

X

Pinv

= ⇔
Tbl. 5(5)

X

P−1
inv

= ⇔
Tbl. 5(13) X

=P−1
inv

P−1
inv

⇔
X̃ := P−1

invX

=P−1
inv

X̃

⇔
Tbl. 5(5)

=Pinv

X̃

⇔
Multiply P−1

inv

P−1
inv

= P−1
inv

Pinv

X̃

⇔
Identity

=
X̃

P−1
inv

⇔
Tbl. 5(2)

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

42 J. de Araújo Mota et al.

=
X̃

⇔Break X̃ =
X̃1

X̃2 ⇔
Lem. 3

=X̃1 ⇔
Exclusion

=X̃1

From X̃2 = , we can say that X̃2 is any matrix. On the other hand, the equality

X̃1 = shows us that X̃1 must be at least surjective. Thus,

X̃X P−1
inv

= X̃1sur

X̃2

=⇔Break X̃
X P−1

inv
⇔

Multiply Pinv

=X= X̃1sur

X̃2

PinvX P−1
inv

Pinv ⇔
Identity X̃1sur

X̃2

Pinv

�

Note that X = P

[
X̃1

X̃2

]
gives the form of some of the possible solutions to the problem.

This derivation also extends the solution initially presented by the reference, but this time is
constructed according to the requirements of the problem. We can then write an algorithm
that receives the matrix X , uses the derived property, and returns the desired “selector”:

Algorithm 4. Selector for the Exchange Lemma

procedure Matrix SELECTOR(Matrix X)

P

[
I

M

]
Z←ROWECHELON(X)

[Selector]← P

[
0
I

]
return [Selector]

5 Conclusions and future work

Throughout this paper, a series of examples involving problems of different nature were
presented to demonstrate that graphical linear algebra allows for calculational, point-free
reasoning, and program derivation on matrices and linear subspaces.

Future work will mainly focus on graphical syntax. The next step will be to build a char-
acterization for general relationships in graphic notation, expanding their use. Furthermore,
a certainly productive direction will be to establish, in diagrams, a schematic descrip-
tion of several other normal forms and matrix factorizations, allowing the exploration and
elucidation of the theory of several known theorems and algorithms.

From the development of graphical syntax and its consequent review of concepts,
another area to focus on in future work is program derivation. For this, a good start will be
to find derivations for theorems previously proven only by verification.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 43

Acknowledgements

Several anonymous individuals are thanked for contributions to these instructions.

Data availability statement

Data availability is not applicable to this article as no new data were created or analysed in
this study.

Author contributions

All authors contributed equally to analysing data and reaching conclusions and in writing
the paper.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior – Brasil (CAPES) – Finance Code 001.

Conflicts of interest

The authors report no conflict of interest.

References

Arens, R. (1961) Operational calculus of linear relations. Pac. J. Math. 11(1), 9–23.
Axler, S. J. (1997) Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer.
Baez, J. & Erbele, J. (2015) Categories in control. Theory Appl. Categ. 30, 836–881.
Barańczuk, S. & Szydło, B. (2021) Two algorithms for the exchange lemma. Numerical Algorithms

86(3), 1041–1050.
Baroni, M. & Zamparelli, R. (2010) Nouns are vectors, adjectives are matrices: Representing

adjective-noun constructions in semantic space. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, pp. 1183–1193.

Beezer, R. A. (2014) Extended echelon form and four subspaces. Am. Math. Mon. 121(7), 644–647.
Bird, R. & De Moor, O. (1996) The algebra of programming. In NATO ASI DPD, pp. 167–203.
Bonchi, F., Holland, J., Pavlovic, D. & Sobocinski, P. (2017) Refinement for signal flow graphs.

In 28th International Conference on Concurrency Theory (CONCUR 2017), Dagstuhl, Germany.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pp. 24:1–24:16.

Bonchi, F., Piedeleu, R., Sobociński, P. & Zanasi, F. (2019) Graphical affine algebra, pp. 1–12.
Bonchi, F., Sobociński, P. & Zanasi, F. (2014) A categorical semantics of signal flow graphs. In

International Conference on Concurrency Theory. Springer, pp. 435–450.
Bonchi, F., Sobocinski, P. & Zanasi, F. (2015) Full abstraction for signal flow graphs. In POPL 2015.

ACM, pp. 515–526.
Bonchi, F., Sobociński, P. & Zanasi, F. (2017) Interacting Hopf algebras. J. Pure Appl. Algebra

221(1), 144–184.
Carboni, A. & Walters, R. F. (1987) Cartesian bicategories I. J. Pure Appl. Algebra 49(1-2), 11–32.
Coddington, A. (1973) Extension Theory of Formally Normal and Symmetric Subspaces. Memoirs

of the American Mathematical Society, nr. 134. ISBN 0-8218-1834-1.
Cross, R. (1998) Multivalued Linear Operators. Chapman & Hall/CRC Pure and Applied

Mathematics. Taylor & Francis.
Fischer, G. (2012) Lernbuch Lineare Algebra Und Analytische Geometrie, 2nd ed. Springer Vieweg.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

44 J. de Araújo Mota et al.

Gonthier, G. (2011) Point-free, set-free concrete linear algebra. In Interactive Theorem Proving:
Second International Conference, ITP 2011, Berg en Dal, The Netherlands, August 22–25, 2011.
Proceedings 2. Springer, pp. 103–118.

Hinze, R. & Marsden, D. (2023) Introducing String Diagrams: The Art of Category Theory.
Cambridge University Press.

Lack, S. (2004) Composing props. Theory Appl. Categ. 13(9), 147–163.
Mac Lane, S. (1961) An algebra of additive relations. Proc. Natl. Acad. Sci. U.S.A. 47(7), 1043.
Mac Lane, S. (2013) Categories for the Working Mathematician, vol. 5. Springer Science & Business

Media.
Macedo, H. D. & Oliveira, J. N. (2013) Typing linear algebra: A biproduct-oriented approach. Sci.

Comput. Program. 78(11), 2160–2191.
Oliveira, J. N. (2018) Programming from metaphorisms. J. Logical Algebraic Methods Program. 94,

15–44.
Paixão, J., Rufino, L. & Sobociński, P. (2022) High-level axioms for graphical linear algebra. Sci.

Comput. Program. 218, 102791.
Santos, A. & Oliveira, J. N. (2020) Type your matrices for great good: A haskell library of

typed matrices and applications (functional pearl). In Proceedings of the 13th ACM SIGPLAN
International Symposium on Haskell. New York, NY, USA: Association for Computing
Machinery, pp. 54–66.

Selinger, P. (2010) A survey of graphical languages for monoidal categories. In New Structures for
Physics. Springer, pp. 289–355.

Selinger, P. (2011) A survey of graphical languages for monoidal categories. In New Structures for
Physics, pp. 289–355.

Sernadas, A., Ramos, J. & Mateus, P. (2008) Linear algebra techniques for deciding the correct-
ness of probabilistic programs with bounded resources. Preprint, SQIG-IT and IST-TU Lisbon,
pp. 1049–001.

Sobociński, P. (2015) Graphical linear algebra. Mathematical blog.[Online]. Available at: https://
graphicallinearalgebra.net.

Stein, D. & Samuelson, R. (2024) Towards a compositional framework for convex analysis
(with applications to probability theory). In Foundations of Software Science and Computation
Structures. Cham: Springer Nature Switzerland, pp. 166–187.

Strang, G. (2009) Introduction to Linear Algebra, 4th ed. Wellesley, MA: Wellesley-Cambridge
Press.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. &
Polosukhin, I. (2023) Attention is all you need.

Wikipedia contributors. (2023) Zassenhaus algorithm — Wikipedia, the free encyclopedia. [Online;
accessed 16-November-2023].

Zanasi, F. (2015) Interacting Hopf Algebras: The Theory of Linear Systems. PhD Thesis. Ecole
Normale Supérieure de Lyon.

Appendix A Wikipedia’s Zassenhaus algorithm

Input
Let V be a vector space and U , W two finite-dimensional subspaces of V with the following spanning
sets:

U = 〈u1, . . . , un〉 and W = 〈w1, ..., wk〉 .
Finally, let B1, . . . , Bm be linearly independent vectors so that ui and wi can be written as

ui =
m∑

j=1

ai,jBj and wi =
m∑

j=1

bi,jBj.

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://graphicallinearalgebra.net
https://graphicallinearalgebra.net
https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 45

Output
The algorithm computes the base of the sum U +W and a base of the intersection U ∩W .

Algorithm
The algorithm creates the following block matrix of size ((n+ k)× (2m)):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 a1,2 · · · a1,m a1,1 a1,2 · · · a1,m
...

...
...

...
...

...
an,1 an,2 · · · an,m an,1 an,2 · · · an,m

b1,1 b1,2 · · · b1,m 0 0 · · · 0
...

...
...

...
...

...
bk,1 bk,2 · · · bk,m 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Using elementary row operations, this matrix is transformed to the row echelon form. Then, it has
the following shape: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1,1 c1,2 · · · c1,m • • · · · •
...

...
...

...
...

...
cq,1 cq,2 · · · cq,m • • · · · •
0 0 · · · 0 d1,1 d1,2 · · · d1,m
...

...
...

...
...

...
0 0 · · · 0 d�,1 d�,2 · · · d�,m

0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
0 0 · · · 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here, • stands for arbitrary numbers, and the vectors
(
cp,1, cp,2, . . . , cp,m

)
for every p ∈ {1, ..., q}

and
(
dp,1, dp,2, . . . , dp,m

)
for every for every p ∈ {1, ..., �} are nonzero.

Then (y1, . . . , yq) with

yi :=
m∑

j=1

ci,jBj

is a basis of U +W and (z1, . . . , z�) with

zi :=
m∑

j=1

di,jBj

is a basis of U ∩W .
Proof of correctness
First, we define π1 : V × V→ V , (a, b) �→ a a to be the projection to the first component. Let H :=

{(u, u) | u ∈U} + {(w, 0) |w ∈W } ⊆ V × V . Then π1(H)=U +W and H ∩ (0× V)= 0× (U ∩W).
Also, H ∩ (0× V) is the kernel of π1|H , the projection restricted to H . Therefore, dim(H)= dim(U +
W)+ dim(U ∩W). The Zassenhaus algorithm calculates a basis of H . In the first m columns of this
matrix, there is a basis yi of U +W . The rows of the form (0, zi) (with zi �= 0) are obviously in
H ∩ (0× V). Because the matrix is in row echelon form, they are also linearly independent. All rows
which are different from zero ((yi, •) and (0, zi)) are a basis of H , so there are dim(U ∩W) such zis.
Therefore, the zis form a basis of U ∩W .

(Wikipedia contributors, 2023)

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

46 J. de Araújo Mota et al.

Appendix B Zassenhaus: Pointwise proof

Proof [Pointwise notation – Calculational but pointwise]

(1)

Im(A)∩ Im(B)

= { Definition of the intersection – Table 3(15) }
{(∗, y)| y ∈ Im(A) and y ∈ Im(B)}

= { Definition of image – Table 3(9) }
{(∗, y)| ∃x1, x2; Ax1 = y and Bx2 = y}

= { Lemma 1 }
{(∗, y)| ∃x1, x2; Ax1 = y and Ax1 = Bx2}

= { Theorem 2 }
{(∗, y)| ∃x1, x2, x3; Ax1 = y, Ax1 = Bx2 and x3 = 0}

= { Table 5(9) }
{(∗, y)| ∃x1, x4; Ax1 = y, Ax1 = Bx2 and x2 + x4 = 0}

= { Lemma 2 }
{(∗, y)| ∃x1, x4; Ax1 = y and Ax1 + Bx4 = 0}

= { Matrix notation }{
(∗, y)| ∃x1, x4;

[
A B
A 0

] [
x1

x4

]
=
[

0
y

]}
= { Hypothesis }{

(∗, y)| ∃x1, x4;

[
C 0 0
E D 0

]
X�

[
x1

x4

]
=
[

0
y

]}
= { Variable change }⎧⎨

⎩(∗, y)| ∃x1, x4, ∃x̃1, x̃2, x̃3;

⎡
⎣x̃1

x̃2

x̃3

⎤
⎦= X�

[
x1

x4

]
and

[
C 0 0
E D 0

] ⎡⎣x̃1

x̃2

x̃3

⎤
⎦= [

0
y

]⎫⎬
⎭

= { X invertible – Table 5(2) }⎧⎨
⎩(∗, y)| ∃x̃1, x̃2, x̃3;

[
C 0 0
E D 0

] ⎡⎣x̃1

x̃2

x̃3

⎤
⎦= [

0
y

]⎫⎬
⎭

= { Arithmetic }
{(∗, y)| ∃x̃1, x̃2, x̃3; Cx̃1 = 0 and Ex̃1 +Dx̃2 = y}

= { Theorem 2 }
{(∗, y)| ∃x̃1, x̃2; Cx̃1 = 0 and Ex̃1 +Dx̃2 = y}

= { C injective – Table 5(4) }

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

Point-free calculational proofs and program derivation 47

{(∗, y)| ∃x̃1, x̃2; x̃1 = 0 and Ex̃1 +Dx̃2 = y}
= { Table 5(10) }
{(∗, y)| ∃x̃1, x̃2; x̃1 = 0 and E0+Dx̃2 = y}

= { Theorem 2 }
{(∗, y)| ∃x̃2; E0+Dx̃2 = y}

= { Table 5(3) }
{(∗, y)| ∃x̃2; 0+Dx̃2 = y}

= { Axiom 1 }
{(∗, y)| ∃x̃2; Dx̃2 = y}

= { Definition of image – Table 3(9) }
Im(D)

(2)

Im(A)+ Im(B)

= { Definition of sum – Table 3(16) }
{(∗, y)| y ∈ Im(A)+ Im(B)}

= { Definition of image – Table 3(9) }
{(∗, y)| ∃x1, x2; Ax1 + Bx2 = y}

= { Axiom 1 }
{(∗, y)| ∃x1, x2, ỹ; x1 = ỹ and Ax1 + Bx2 = y}

= { Table 5(1) }
{(∗, y)| ∃x1, x2, ỹ; Ax1 = ỹ and Ax1 + Bx2 = y}

= { Matrix notation }{
(∗, y)| ∃x1, x2, ỹ;

[
A B
A 0

] [
x1

x2

]
=
[

y
ỹ

]}
= { Hypothesis }{

(∗, y)| ∃x1, x2, ỹ;

[
C 0 0
E D 0

]
X�

[
x1

x2

]
=
[

y
ỹ

]}
= { Variable change }⎧⎨

⎩(∗, y)| ∃x1, x2, ỹ, ∃x̃1, x̃2, x̃3;

⎡
⎣x̃1

x̃2

x̃3

⎤
⎦= X�

[
x1

x2

]
and

[
C 0 0
E D 0

] ⎡⎣x̃1

x̃2

x̃3

⎤
⎦= [

y
ỹ

]⎫⎬
⎭

= { X invertible – Table 5(2) }⎧⎨
⎩(∗, y)| ∃ỹ, x̃1, x̃2, x̃3;

[
C 0 0
E D 0

] ⎡⎣x̃1

x̃2

x̃3

⎤
⎦= [

y
ỹ

]⎫⎬
⎭

= { Arithmetic }

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

48 J. de Araújo Mota et al.

{(∗, y)| ∃ỹ, x̃1, x̃2, x̃3; Cx̃1 = y and Ex̃1 +Dx̃2 = ỹ}
= { Theorem 2 }
{(∗, y)| ∃ỹ, x̃1, x̃2; Cx̃1 = y and Ex̃1 +Dx̃2 = ỹ}

= { Variable change }
{(∗, y)| ∃ỹ, x̃1, x̃2, ∃ỹ1, ỹ2; Cx̃1 = y, Ex̃1 = ỹ1, Dx̃2 = ỹ2 and ỹ= ỹ1 + ỹ2}

= { Theorem 2 }
{(∗, y)| ∃x̃1, x̃2, ỹ1, ỹ2; Cx̃1 = y, Ex̃1 = ỹ1 and Dx̃2 = ỹ2}

= { Table 5(1) }
{(∗, y)| ∃x̃1, x̃2, ỹ1, ỹ2; Cx̃1 = y, x̃1 = ỹ1 and x̃2 = ỹ2}

= { Theorem 3 }
{(∗, y)| ∃x̃1, ỹ1; Cx̃1 = y and x̃1 = ỹ1}

= { Axiom 1 }
{(∗, y)| ∃x̃1; Cx̃1 = y}

= { Definition of image – Table 3(9) }
Im(C)

�

https://doi.org/10.1017/S0956796825000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796825000085

	Theoretical Pearl
	Introduction
	The category of linear relations
	Relational algebra unifies matrix and subspace laws
	Problems with syntax

	Graphical linear algebra
	Graphical syntax
	Symmetric strict monoidal categories

	Translating graphical notation to pointwise notation
	Scalars, matrices and other constructions
	Diagrammatic reasoning

	Verification proofs in GLA
	Introductory example: finding the fundamental subspaces
	The Zassenhaus' algorithm

	Programs and properties derivation in GLA
	Simple example: Right inverse of a wide triangular matrix
	Switching from implicit to explicit basis
	Calculating a basis for the intersection

	The exchange lemma

	Conclusions and future work
	Wikipedia's Zassenhaus algorithm
	Zassenhaus: Pointwise proof

