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CONJUGACY OF ELEMENTS IN A NORMAL RING

BY
TAW-PIN LIM

Let (R, *) be a ring R with an involution *, i.e., * is a map R— R such that
for all a,be R

(a+b)*=a*+b*
(ab)*=b*a*

a**=a.

The trace and norm of an element a in (R, *) are respectively

T(a)=a+a*, N(a)=aa*.
(R, *) is said to be a normal ring if for all ae R
N(a)= N(a*)
or equivalently,

aa*=a*a.

It is well-known that two real quaternionic elements a and b have the same
trace and norm if and only if they are conjugates, i.e., there exists a non-zero
quaternion x such that xa = bx. This result is now extended to a normal ring
(R, *), R being not commutative and having no zero divisors.

As usual, we write [x, y]= xy — yx for all x, y € R. The symbol Z denotes the
center of R. Clearly, x € Z implies x*¢ Z.

Following Dyson [1], a ring (R, *) is said to have the scalar product property
(and is henceforth abbreviated as a SPP-ring) if for all a,be R

[a*, b*]=[a, b]
or equivalently,
T(ab)=T(ba).

Lemma 1. (i) A normal ring (R, *) is a SPP-ring.
(ii) A 2-torsionfree SSP-ring (R,*) is a normal ring.

Proof. (i) For all ¢, be R
T(ab)= N(a+ b*)— N(a)— N(b*)
= N(a*+b)—N(a*)— N(b)
= T(ba).
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(i) For all a€R, 2aa* = T(aa*)= T(a*a)=2a*a. Hence, aa* = a*a.

A SPP-ring which is not 2-torsionfree need not be normal. We have the
following

ExampLE 1. Let F be a field of char 2 and R be the F-algebra of matrices of

the form:
Xy z
0 x wj, x,v,z,weF.
0 0 x

The map which sends
Xy z X w z
0 x w| to [0 x vy
0 0 x 0 0 «x

is an involution * on R. It is easy to verify that (R,*) is a SPP-ring. It is not
normal because for

)

I
o oo
i
o oo

aa*# a*a.

Lemma 2. Let (R, *) be a normal ring which is not commutative. Then for all
a,beR

T(a)=T(b), N(a)=N(b)

imply xa = bx for some x€ R, x# 0.

Proof. First assume b# a*. Since T(a)=T(b), X=b—-a*=a—-b*#0 and
we have xa=(b—a*)a=ba—a*a=ba—bb*=b(a—b*)=bx.

Next assume b=a* and a¢ Z. Then x=[a, y]#0 for some yeR, y#0.
Whence, xa =[a, yla=[a, yal=[a*, a*y*]= a*[a*, y*]= a*[a, y]= bx.

Lastly, assume b=a™ and ae Z. Since R is not commutative, there exists

non-zero elements y,z in R such that x=[y, z]#0. Hence, xa=[y, z]a=
Ly, zal=[y*, a*z*]= a*[y*, z*]=a™[y, z] = bx.

The converse to the above is not true in general.

ExampLE 2. Let F be a field of char# 2 and R be the ring of 2 X2 matrices
over F. The map * defined by

t ul* w  —u
[ ] =[ ], tuov,weF
vow -v t
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is an involution on R. It is easily verified that (R, *) is a normal ring. For

a_[l 0] be _[1 0]
0 1) “*“lo ol

xa = x = bx but clearly a and b have distinct traces and norms.
The converse, however, is true if R has no zero divisors.

THeOREM. Let (R, *) be a normal ring which is not commutative and has no
zero divisors. Then for all a, b€ R,

T(a)=T(b), N(a)=N(b)
if and only if
xa=bx forsome x€R, x#0.

Proof. Assume xa =bx for sime xe R, x#0. Then xT(a)x*= T(xax*)=
T(bxx™) = T(bx*x)= T(xbx*)=xT(b)x* and xaa*x*=bxx*b*=bx*xb*=
bx*(bx*)* = (bx*)*bx* = xb*bx* = xbb*x*. Hence,

T(a)=T(b) and aa™=bb*.

The converse is Lemma 2.
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