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Regularization and generalized double shuffle relations

for p-adic multiple zeta values

Hidekazu Furusho and Amir Jafari

Abstract

We will introduce a regularization for p-adic multiple zeta values and show that the
generalized double shuffle relations hold. This settles a question raised by Deligne, given
as a project in the Arizona Winter School 2002. Our approach is to use the theory of
Coleman functions on the moduli space of genus zero curves with marked points and its
compactification. The main ingredients are the analytic continuation of Coleman functions
to the normal bundle of divisors at infinity and definition of a special tangential base point
on the moduli space.

Introduction

This paper is a continuation of [BF06]. Let p be a prime number. The first author in [Fur04]
introduced p-adic multiple zeta values (MZVs) for admissible indices (n1, . . . , nm) ∈ Zm

>0, that is
when nm > 1. In [BF06] the double shuffle relations for these p-adic MZVs were proved. In this
work we extend their result. By using the moduli space of genus zero curves with marked points and
its stable compactification, we introduce a series regularization of p-adic MZVs for non-admissible
indices and then prove a generalized double shuffle relation. This relation is an extension of the
double shuffle relation in [BF06]. This includes a comparison between the integral regularization
and the series regularization of p-adic MZVs.

Let us first review the story for complex valued MZVs. Recall that for positive integers n1, . . . , nm

the (complex) MZV is defined by

ζ(n1, . . . , nm) =
∑

0<k1<···<km

1
kn1

1 · · · knm
m

. (0.1)

They were studied first by Euler for m = 1 and m = 2. It is easy to see that the series is convergent
if and only if nm > 1. The double shuffle relations consist of series shuffle relations and integral
shuffle relations. Both of them are product formulae between MZVs. The simplest example of the
series shuffle relation is

ζ(n1)ζ(n2) = ζ(n1, n2) + ζ(n2, n1) + ζ(n1 + n2).

It is easily obtained from the expression (0.1) and can be generalized in a similar way to other
MZVs. The simplest example of the integral shuffle relation is

ζ(n1)ζ(n2) =
n1−1∑
i=0

(
n2 − 1 + i

i

)
ζ(n1 − i, n2 + i) +

n2−1∑
j=0

(
n1 − j + 1

j

)
ζ(n2 − j, n1 + j).
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This follows from the iterated integral expression for MZVs. Using these formulae we can get
many relations among the MZVs. However, the double shuffle relations are not enough to capture
all the relations between MZVs. There are two regularization of the MZVs for non-admissible
indices: the series regularization, which extends the validity of the series shuffle relation, and the
integral regularization, which extends the validity of the integral shuffle relation. The several variable
multiple polylogarithm (MPL)

Lin1,...,nm(x1, . . . , xm) =
∑

0<k1<···<km

xk1
1 · · · xkm

m

kn1
1 · · · knm

m
(0.2)

with complex variables x1, . . . , xm is the device to construct the series shuffle regularization. It is
clear that when the indices are admissible the limit of (0.2) when the xi approach 1 is ζ(n1, . . . , nm).
In general one can show that Lin1,...,nm(1− ε, . . . , 1− ε) =

∑N
i=0 ai(ε) logi ε, where ai(ε) ∈ C[[ε]] are

analytic functions in a neighborhood of ε = 0. The series regularized MZV ζS(n1, . . . , nm) ∈ C[T ]
is by definition the polynomial

∑N
i=0 ai(0)T i. The one variable MPL

Lin1,...,nm(z) = Lin1,...,nm(1, . . . , 1, z) =
∑

0<k1<···<km

zkm

kn1
1 · · · knm

m
(0.3)

with one complex variable z is the device to construct the integral regularization. It is clear that
when the indices are admissible the limit of (0.3) when z approaches 1 is ζ(n1, . . . , nm). It can
be shown that Lin1,...,nm(1 − ε) =

∑M
i=0 bi(ε) logi ε, where bi(ε) ∈ C[[ε]] are analytic functions in a

neighborhood of ε = 0. The integral regularized MZV ζI(n1, . . . , nm) ∈ C[T ] is by definition the
polynomial

∑M
i=0 bi(0)T i. We note that ζI(1) = −T . There is a comparison relation between these

two regularizations that we now describe. Let L be the C linear map from the polynomials C[T ] to
itself defined via the generating function1

∞∑
n=0

L(T n)
un

n!
= exp

(
−

∞∑
n=1

ζI(n)
n

un

)
. (0.4)

The regularization relation [IKZ06] asserts that

ζS(n1, . . . , nm) = L(ζI(n1, . . . , nm)). (0.5)

The generalized double shuffle relation is in fact three types of relations: the series shuffle rela-
tion for series regularized MZV, the integral shuffle relation for integral regularized MZV, and
the relation (0.5) that gives the comparison between these two regularizations. It is conjectured
that the generalized double shuffle relations capture all the possible relations between the MZVs
(cf. [Rac02]).

Now we explain the story for p-adic MZVs. The one variable MPL in (0.3) has a p-adic analogue
as a Coleman function on P1(Cp) − {0, 1,∞}. This function depends on a choice of the branch
of p-adic logarithm. We denote this function by Lian1,...,nm

(z), where a ∈ Qp is the value of the
chosen p-adic log at p. In [Fur04] the p-adic MZV ζp(n1, . . . , nm) ∈ Qp for an admissible index
is defined as a certain limit of this Coleman function as z approaches 1. It is shown in therein
that this limit exists and is independent of the choice of the branch of p-adic logarithm. Using the
language of the tangential base points, it can be explained as follows. The function Lian1,...,nm

(z)
is a Coleman function on P1 − {0, 1,∞}. First analytically continue it to the tangent plane at the
point z = 1, punctured at the origin. Let z denote the canonical parameter of P1 − {0, 1,∞}. Then
t = 1 − z is regarded as a local parameter of this tangent plane and it can be shown that the
function obtained via this analytic continuation is a polynomial in T := loga t. We want to stress

1There is a sign error in [Gon02] for this formula.
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that this polynomial is independent of the choice of a and we define the integral regularized p-adic
MZV ζp

I(n1, . . . , nm) ∈ Qp[T ] to be this polynomial. When nm > 1, ζp
I(n1, . . . , nm) is a constant

polynomial (cf. [Fur04]).
We will use a method inspired by [Gon02] to define the series regularized p-adic MZV. We use a

p-adic analogue of the several variable MPL in (0.2). It is denoted by Lian1,...,nm
(x1, . . . , xm) where a

is the value of the branch of p-adic logarithm at p. It is a Coleman function on M0,m+3, the moduli
space of genus zero curves with m + 3 marked points. We identify this space with

Am − {x1 · · · xm = 0 or 1 − xi · · · xj = 0, i � j}.
Let M0,m+3 denote the stable compactification of M0,m+3. The line (1−t, 1−t, . . . , 1−t) in M0,m+3

when t approaches 0 intersects a unique divisor D0 (denoted later by D′
m) of M0,m+3. Let R denote

this intersection point and L be the tangent line above R in the normal bundle of D0 minus the
zero section. The series regularized p-adic MZV is defined by

ζS
p (n1, . . . , nm) := Lia,(D0)

n1,...,nm
(x̄1, . . . , x̄m)|L,

where Li
a,(D0)
n1,...,nm(x̄1, . . . , x̄m) is the analytic continuation of MPL to the part of the normal bundle

of D0 minus the zero section that lies over the open part of D0 outside all the other divisors. The
series regularized p-adic MZV ζS

p (n1, . . . , nm) is a polynomial in Qp[T ] where T = loga t. It a priori
depends on a.

The main result of this paper is the following.

Theorem 0.1.

(i) The series regularized MZV ζS
p (n1, . . . , nm) ∈ Qp[T ] is well defined, that is, it is independent

of the choice of the branch parameter a ∈ Qp.

(ii) If nm > 1 then ζS
p (n1, . . . , nm) is constant and is equal to the p-adic MZV ζp(n1, . . . , nm) in

[Fur04].

(iii) The generalized double shuffle relation holds, i.e. ζS
p (n1, . . . , nm) satisfies the series shuffle

relation and ζI
p (n1, . . . , nm) satisfies the integral shuffle relation. Furthermore, the regulariza-

tion relation

ζS
p (n1, . . . , nm) = Lp(ζI

p (n1, . . . , nm))

holds, where Lp is defined by analogous generating series in (0.4) where we replace ζI(n) by
ζI
p (n).

This theorem is used together with some results of Racinet and the first author to prove the
following result.

Theorem 0.2. Deligne’s p-adic MZVs satisfy the generalized double shuffle relations.

The definition of these p-adic MZVs is recalled in § 7. This definition was suggested in the 2002
Arizona Winter School and the theorem above solves the project proposed by Deligne.

1. Review of Coleman functions

We recall some definitions and properties of Coleman functions and tangential base points as devel-
oped in [Bes02], [Bes05] and [BF06]. We fix a branch of p-adic logarithm log : Q×

p → Qp with value
a ∈ Qp at p for the rest of this paper.

Let X be a smooth variety over K, a finite extension of Qp. Let NC(X) denote the category
of unipotent flat vector bundles on X, i.e. a vector bundle together with a flat connection on it
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such that it is an iterative extension of trivial vector bundles together with a trivial flat connection.
This category is a neutral tannakian category and any point x ∈ X(K) defines a fiber functor ωx

from NC(X) to the category VecK of finite dimensional K-vector spaces (cf. [Del89]). In [Vol03],
Vologodsky has constructed a canonical system (after fixing a branch of p-adic logarithm) of iso-
morphisms aX

x,y : ωx −→ ωy for any pair of points in X(K). The properties of these isomorphisms
are summarized in [Bes05, § 2]. Following [Bes05], an abstract Coleman function is a triple (M,s, y)
where M ∈ NC(X), s ∈ HomOX

(M,OX) and y is a collection of yx ∈ Mx for all x ∈ X(L) for any
finite extension L of K, where Mx is the fiber of M over x and is an L-vector space defined by the
fiber functor ωx : NC(XL) → VecL.

This data must satisfy the following:

(a) for any two points x1, x2 ∈ X(L) = XL(L) we have aXL
x1,x2

(yx1) = yx2;

(b) for any field homomorphism σ : L −→ L′ that fixes K and x ∈ X(L) we have σ(yx) = yσ(x).

There is a natural notion of morphism between the abstract Coleman functions. The connected
component of an abstract Coleman function is called a Coleman function. A Coleman function
is also interpreted as a function on X(K) by assigning to x the value s(yx). This is indeed a
locally analytic function. In this paper, we will use both approaches for Coleman functions, i.e. the
interpretation as a triple (M,s, y) as above and the interpretation as a locally analytic function.
The set of Coleman functions on X is a ring which we denote by Cola(X). Here a ∈ Qp is the value
of the chosen branch of the p-adic logarithm at p.

Let X be a smooth OK-scheme and D =
∑

i∈I Di be a divisor with relative normal crossings
over OK , with the Di smooth and irreducible over OK . Let J be a non-empty subset of I. In [BF06]
a tangential morphism ResD,J : NC((X − D)K) −→ NC(N 00

J ) was constructed. Here N 00
J is the

normal bundle of DJ =
⋂

j∈J Dj minus the normal bundles of DJ−{j} for all j ∈ J (the normal
bundle N∅ is considered as the zero section of NDJ

), and then restricted to DJ − ⋃
j �∈J(Dj ∩ DJ).

The construction is given as follows (cf. [BF06, § 3]): For each j ∈ J consider the valuation vj

on K(X) associated with the divisor Dj . Let OX(D−1) be the localization of OX at D. There
exists a multi-filtration FJ on OX(D−1), indexed by tuples χ = (χj ∈ Z)j∈J , such that Fχ

J is
the OX -module generated by {f ∈ OX(D−1), vj(f) � χj for all j ∈ J}. It is easy to see that
Spec(GrJOX(D−1)) is precisely N 00

J . Suppose we have a connection ∇ : M → M ⊗OX
Ω1

X(log D)
with logarithmic singularities along D. We give Ω1

X(D−1) = Ω1
X(log D) ⊗ OX(D−1) the induced

filtrations from the filtration on OX(D−1). It is easy to see that the differential d preserves the
filtration. Now M(D−1) = M ⊗OX(D−1) and M ⊗Ω1

X(D−1) have the induced filtrations. It follows
that the extended connection ∇ : M(D−1) → M ⊗Ω1

X(D−1) respects the filtration. The connection
ResD,J(M) is the graded quotient of this connection.

Let κ be the residue field of OK . It was shown in [BF06] that if the Frobenius endomorphism
of (X,D)κ locally lifts to an algebraic endomorphism of (X,D) then this morphism respects the
action of the Frobenius endomorphism. Indeed by [Shi02] and [CLS99] the categories NC(X − D)
and NC(N 00

J ) are isomorphic to the categories of the unipotent isocrystals NC†((X −D)κ)⊗K and
NC†((N 00

J )κ) ⊗ K on the reductions (X − D)κ and (N 00
J )κ and therefore admit a natural action

of the Frobenius endomorphism. Choose a point t̃ ∈ (N 00
J )κ(κ) which is the reduction of a point

t ∈ N 00
J (L) for some extension L of K. The point t̃ defines a fiber functor ωt̃ from NC†((X−D)κ) to

VecL, which is Frobenius invariant if we take a high power of the Frobenius. Then following [Bes02]
for any point x̃ ∈ (X −D)κ(κ), which is the reduction of x ∈ N 00

J (L), we get a canonical Frobenius
invariant isomorphism ãx̃,t̃ : ωx̃ −→ ωt̃. The above categorical equivalence gives an isomorphism
ax,t : ωx −→ ωt. Now for any x′ ∈ (X − D)(L) and t′ ∈ N 00

J (L) we define

ax′,t′ = ax′,x ◦ ax,t ◦ at,t′ .
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This is independent of the choice of x and t. Using this we have a way (developed in [BF06, § 4])
to extend a certain type of Coleman functions (which were called Coleman functions of ‘algebraic
origin’ in [BF06]) (M,s, y) on X − D to a Coleman function (M ′, s′, y′) on N 00

J as follows. Let
M ∈ NC(X −D) and y be a compatible system over X −D as before. The morphism s : M → OX

induces a morphism sD : M(D−1) → OX(D−1) which we assume to be compatible with the filtration
FJ . Then the Coleman function (M ′, s′, y′) is defined by M ′ = ResD,J(M) as described above and
the morphism s′ is Gr(sD) : ResD,JM → ON 00

J
. The section y′ will be a collection of y′t (t ∈ N 00

J (L))
with y′t = ax,t(yx) for some x ∈ (X − D)(L).

2. The moduli space M0,N+3 and its compactification

In this section we give a quick review on some basic properties of the moduli space M0,N+3 of genus
zero curves with N + 3 distinct marked points and its stable compactification M0,N+3. The basic
references are [GHP88], [GM04] and [Man99].

The moduli space M0,N+3 can be identified with

GN
m −

⋃
1�n�m�N

{ m∏
i=n

xi = 1
}

.

Here Gm = A1 − {0}. The identification is given by sending (x1, . . . , xN ) to the N + 3 marked
points on P1 given by (0, x1 · · · xN , x2 · · · xN , . . . , xN , 1,∞). Note that with this identification we
have canonical coordinates x1, . . . , xN on M0,N+3.

We need to work with M0,N+3, the stable compactification of this moduli space. There is a very
concrete description of this space in [GHP88] that we now recall. Let VN be the set of all distinct
ordered 4-tuples of {1, . . . , N + 3}. There is an embedding

r : M0,N+3 ↪→ AVN

given by sending (P1, . . . , PN+3) to all cross ratios of 4-tuples of points. To normalize the cross ratio
we recall that r(0,∞, 1, x) = x. Let λv for v ∈ VN be the coordinates of AVN . The image variety
will be given by the following equations:

λv1v2v3v4λv2v1v3v4 = 1,
λv1v2v3v4 = 1 − λv2v3v4v1 ,

λv1v2v4v5λv1v2v3v4 = λv1v2v3v5 ,

for all distinct 5-tuples v1, v2, v3, v4, v5 in {1, . . . , N + 3}. Now the compactification M0,N+3 is
obtained simply by taking the closure of this variety inside (P1)VN . This means that we homogenize
the equations by letting λv = av/bv.

To give a natural stratification of M0,N+3 which is of combinatorial origin we need to recall
the notion of stable labeled trees. A stable tree is a tree (in the meaning of [Ser80, § 2] and is not
oriented or planar) such that each of its vertices has valency at least 3. A stable (N + 3)-labeled
tree is a stable tree with N +3 external edges labeled by distinct labels from the set {1, . . . , N +3}.
Any stable curve of genus zero with N +3 marked points defines a stable (N +3)-labeled tree. This
construction is standard and for details consult the above references.

Any vertex t of a stable (N + 3)-labeled tree T defines an equivalence relation ∼t on the
set {1, . . . , N + 3} which can be identified with the set of external edges, as follows: i ∼t j if
either the corresponding external edges have a common vertex or there is a path from i to j in T
that avoids t. It is easy to check that this forms an equivalence.
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To each stable (N + 3)-labeled tree T we associate a closed smooth subvariety of M0,N+3,
denoted by D(T ). In coordinates it is defined by

λv = 0 for all v ∈ V (T ),

where V (T ) is the subset of VN of those quadruples (v1, v2, v3, v4) such that for some internal vertex
t of T we have v1 ∼t v4 but v2 	∼t v4 and v3 	∼t v4. The main properties of this subvariety are as
follows.

Proposition 2.1 [GHP88].

(i) The codimension of D(T ) is equal to the number of internal edges of T .

(ii) An inclusion D(T ) ⊆ D(T ′) holds if and only if T ′ is obtained by contracting T along certain
internal edges.

(iii) The subvariety D(T ) is canonically isomorphic to
∏

t∈T0
M0,val(t). Here T0 is the set of internal

vertices of T and val(t) denotes the valency of t.

(iv) Let D∗(T ) = D(T ) − ⋃
D(T ′), where the union is taken over all the trees that can be con-

tracted to T except T itself. Then the set of D∗(T ) for all non-equivalent labeled trees gives a
stratification of M0,N+3.

(v) If T and T ′ are two stable trees with only one internal edge then the corresponding subvarieties
D(T ) and D(T ′) are codimension one divisors. Let A1 and A2 be the set of external edges
attached to the corresponding two vertices of T and similarly define A′

1 and A′
2 for T ′. The

divisors D(T ) and D(T ′) intersect if and only if one of the following conditions hold:

Ai ⊆ A′
j or A′

i ⊆ Aj

for some i, j ∈ {1, 2}.
We consider the following affine covering of M0,N+3. For each labeled tree T let U(T ) be the

open subset of M0,N+3 given by

λv 	= 0 for all v 	∈ V (T ).

Notice that for v ∈ V (T ) we should have λv 	= ∞ on U(T ). Because if λv1v2v3v4 = ∞ with
(v1, v2, v3, v4) ∈ V (T ) then λv2v1v3v4 = 0 but (v2v1v3v4) 	∈ V (T ). This shows that U(T ) is affine.
The basic properties of these subsets are collected in the following lemma.

Lemma 2.2 [GHP88].

(i) If T is a contraction of T ′ along some internal edges then U(T ) ⊂ U(T ′). Therefore M0,N+3 ⊂
U(T ) for all choices of T .

(ii) If the combinatorial tree associated to a marked stable curve q ∈ M0,N+3 is T then q ∈ U(T ).
Therefore we have a covering of M0,N+3 by the U(T ).

(iii) We have the following relation:

U(T ) = M0,N+3 −
⋃

D(T ′),

where the union is taken over all the labeled trees T ′ such that T cannot be contracted to T ′.

Finally we need to have an inductive way of constructing a coordinate system on U(T ). In fact
we can choose N elements of v1, . . . , vN ∈ VN such that the corresponding functions λvi form a
coordinate system on U(T ), i.e. the coordinate ring of U(T ) will be a localization of the polynomial
algebra Q[λv1 , . . . , λvN

]. This is done in [GHP88, § 3.2]. To explain this, some preparation is needed.
If T is a stable (N + 3)-labeled tree and i is a label, then we define T\i, which is a stable (N + 2)-
labeled tree, as follows. If the valency of the vertex of the external edge associated to i is at least 4
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then we just remove the external edge associated to i. If the internal vertex of the external edge
associated to i has valency 3 then removing the external edge makes the tree unstable. Therefore
we also contract the internal edge which has a common vertex with the external edge associated
to i. Note that the labels of T\i are from the set {1, . . . , N + 3} − {i}.

The median of three distinct labels i, j and k in a labeled tree T is the unique vertex t such that
removing t divides i, j and k into different connected components.

Lemma 2.3. Let T be an (N + 3)-labeled stable tree. Let i be a label such that the valency of the
vertex of the external edge associated to i, denoted by vi, is either at least 4 or there are at least
two external edges attached to vi (such a label always exists). Inductively let λv1 , . . . , λvN−1

be a
coordinate system on U(T\i). Let (d1, d2, d3) be a distinct triple of labels in {1, . . . , N + 3}\{i}
with the following property: If the valency vi is at least 4 then the median of d1, d2, d3 should be
vi. If the valency of vi is 3 then the median of d1, d2, d3 should be the unique vertex connected by
an internal edge to vi and d3 is a external edge attached to vi. Then λv1 , . . . , λvN−1

, λd1d2d3i is a
coordinate system for U(T ).

Proof. Refer to [GHP88, § 3.2].

3. The tangential base point

In this section we will select a special divisor on M0,N+3 and define a particular line in the normal
bundle of this divisor that will play a crucial role in our definition of the series regularization of
p-adic MZVs.

Let 1 � i � N be an integer, and define Ti and T ′
i to be the stable (N + 3)-labeled trees

with one internal edge and two vertices v1 and v2. The external edges attached to v1 in Ti have
labels {1, . . . , i + 1} and in T ′

i have labels {2, . . . , i + 2}. The external edges of v2 in Ti have labels
{i+ 2, . . . , N + 3} and in T ′

i have labels {i+ 3, . . . , N + 3, 1}. We let Di = D(Ti) and D′
i = D(T ′

i ) in
the notation of the previous section. Note that there is a unique tree, which we denote by T , with N
internal edges that can be contracted to the Ti, and similarly there is a unique tree, which we denote
by T ′, with N internal edges that can be contracted to the T ′

i . In fact T is a trivalent tree with
internal vertices v0, . . . , vN where vi and vi+1 are connected by an internal edge and the external
edges of v0 are {1, 2}, the external edge attached to vi is i + 2 for 0 < i < N and the external edges
of vN are {N +2, N +3}. The existence of these trees implies that the intersection of D1, . . . ,DN is
a single point which we denote by P and similarly the intersection of D′

1, . . . ,D
′
N is a single point

denoted by Q.

Lemma 3.1. The collection of λ1,N+3,i+2,i+1 for i = 1, . . . , N gives a coordinate system for U(T ).
Similarly the collection λ2,1,i+3,i+2 for i = 1, . . . , N gives a coordinate system for U(T ′).

Proof. We only prove the first part, the second part being similar. The proof is by induction on
N . For N = 1, U(T ) = P1 − {1,∞}, and λ1432 sends (0, x, 1,∞) to x, so we have the natural
coordinate. Suppose we have proved the lemma for N−1. Then U(T\2) by induction has coordinates
λ1,N+3,i+1,i+2 for i = 2, . . . , N . According to Lemma 2.3 we have to add λd1,d2,1,2, such that (d1, d2, 1)
has median v1, the vertex of the external edge associated to 3 in T . This can be achieved if we let
d1 = 3 and d2 = N + 3. However since λ3,N+3,1,2 = 1 − λ1,N+3,3,2 we can use λ1,N+3,3,2 as an extra
coordinate.

Note that for the point q = (0, x1 · · · xN , x2 · · · xN , . . . , xN , 1,∞) we have the coordinates
λ1,N+3,i+2,i+1(q) = xi. Furthermore

zi := λ2,1,i+3,i+2(q) =
1 − x1 . . . xi

1 − x1 · · · xi+1
, (3.1)
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where xN+1 := 0. Also notice that since (1, N + 3, i + 2, i + 1) ∈ V (T ) so the equation of Di inside
U(T ) is λ1,N+3,i+2,i+1 = 0 or more naively xi = 0. Similarly the equation of D′

i inside U(T ′) is
λ2,1,i+3,i+2 = 0 or zi = 0. The divisor D′

N given by zN = 0 is the special divisor that will play an
important role in defining our regularization.

Let EN be the Zariski open subset of M0,N+3 defined by

EN := GN
m −

⋃
I⊆{1,...,N}

{∏
i∈I

xi = 1
}

.

For a subset I of {1, . . . , N} consisting of non-consecutive numbers we have the divisor
∏

i∈I xi = 1
inside M0,N+3. Its closure inside M0,N+3 is denoted by D(I).

Lemma 3.2. The line 	 = {(t, t, . . . , t)} inside M0,N+3 has a limit in M0,N+3 when t approaches 1;
we denote this point by R. This point lies on the divisor D′

N given by zN = 0. Its coordinates using
the coordinate system z1, . . . , zN are given by (1

2 , 2
3 , . . . , (N − 1)/N, 0). The point R does not lie on

any other component of M0,N+3 − EN .

Proof. As is explained in § 2, all the divisors of M0,N+3−M0,N+3 are in one-to-one correspondence
with unordered partitions of {1, . . . , N + 3} into two subsets, where each subset has at least two
elements. For a given partition A ∪ B, the equation of the divisor associated to it inside (P1)VN is
given by λv1v2v3v4 = 0 for all quadruples such that the sets {v1, v4} and {v2, v3} are separated by
A and B. Now since the cross ratio of (0, tk, tl, ti) has the limit (l − k)/(l − i) when t approaches
1 and the cross ratio (0, tk,∞, ti) has the limit 1, it follows that the limit of (0, tN , . . . , t, 1,∞)
when t approaches 1 will not lie on any divisor other than the one obtained by the partition
{1, N + 3} ∪ {2, . . . , N + 2}. In fact since the cross ratio of (0, ti, tj ,∞) approaches 0, the limit
point lies on this divisor. This also shows that R belongs to U(T ′) using the above notation. The
coordinates of the point (0, tN , . . . , t, 1,∞) in terms of zi are

zi =
1 − ti

1 − ti+1
(i < N), zN = 1 − tN .

So when t approaches 1 we get the desired coordinates of the lemma. If I is a subset of {1, . . . , N}
then the divisor D(I) ∩ U(T ′) lies inside the divisor

1 −
∏
i∈I

1 − zi · · · zN

1 − zi−1 · · · zN
= 0. (3.2)

An easy inspection shows that the above divisor has zN = 0 as a component. If we remove this com-
ponent then the point R does not lie on the remaining components. The reason is that substituting
zi = i/(i + 1) for i < N in (3.2) we get∏

i∈I(1 − [(i − 1)/N ]zN ) − ∏
i∈I(1 − (i/N)zN )∏

i∈I(1 − [(i − 1)/N ]zN )
,

The numerator is (|I|/N)zN + · · · where the remaining factors are divisible by z2
N . Now if we divide

by zN and let zN = 0 we get |I|/N .

Let N 00(N) be the normal bundle of D′
N minus the zero section and restricted to D′0

N = D′
N −⋃

D where D runs over all the divisors of M0,N+3 −M0,N+3 other than D′
N . This is a Gm-bundle.

According to the lemma above we have the following embedding:

ιN : Gm = SpecQ

[
t,

1
t

]
↪→ N 00(N),

t 
→
(

1
2
, . . . ,

N − 1
N

,Nt

)
.

By this we identify N 00(N) with D′0
N × Gm.
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Lemma 3.3. The composition

Gm
ιN−→ N 00(N) πN−→ N 00(N − 1)

is ιN−1. Here πN is the projection induced from M0,N+3 → M0,N+2 obtained by neglecting the
(N + 2)nd marked point.

Proof. Note that πN sends the special divisor of M0,N+3 to the special divisor of M0,N+2. Using the
coordinates zi the equation of πN will become (z1, . . . , zN ) −→ (z1, . . . , zN−2, zN−1 · zN ). (This can
be easily derived from the obvious description of the map in xi coordinates which is (x1, . . . , xN ) −→
(x1, . . . , xN−1) and a change of variables.) Therefore the point (1

2 , . . . , [(N − 1)/N ], Nt) will map to
(1
2 , . . . , [(N − 2)/(N − 1)], (N − 1)t) which is by definition ιN−1(t).

4. Series regularization of p-adic multiple zeta values

Let 1 � l � m. The MPL is the series defined by

Lin1,...,nm(xl, . . . , xm) =
∑

0<k1<···<km

xkl
l · · · xkm

m

kn1
1 · · · knm

m
.

Notice that the number of variables could be smaller than the depth m. This satisfies the differential
equation

dLin1,...,nm(xl, . . . , xm) =
m∑
i=l

∂iLin1,...,nm(xl, . . . , xm),

where ∂iLin1,...,nm(xl, . . . , xm) is given by the following formula:

Lin1,...,ni−1,...,nm(xl, . . . , xm)d log xi, if ni > 1,
Lin1,...,n̂i,...,nm(xl, . . . , xi−1xi, . . . , xm)d log(1 − xi)

− Lin1,...,n̂i,...,nN
(xl, . . . , xixi+1, . . . , xm)d log xi(1 − xi), if ni = 1.

Here by convention xl−1 = 1 and in the case where nm = 1 and i = m we omit the last line, i.e.
formally let xm+1 = 0 and assume Lin1,...,nm(xl, . . . , xm−1, 0) = 0. By iterated integrations we get a
Coleman function on M0,N+3 (for N � m) satisfying the differential equation and having the above
expansion near the origin. We denote the corresponding Coleman function by (we may sometimes
omit the ‘a’) Lian1,...,nm

(xl, . . . , xm) in accordance with a branch a ∈ Qp of the p-adic logarithm.
We remark that the way we have parameterized M0,N+3 is specially useful to see that MPL is a
Coleman function.

The following proposition describes the behavior of the MPL functions around the divisor D′
N

which is essential for our definition of regularized p-adic MZV.

Proposition 4.1.

(i) On the region ]D′
N [∩M0,N+3(Cp) the Coleman function Lian1,...,nm

(xl, . . . , xm) can be uniquely

expressed as
∑M

i=0 fa
i (z1, . . . , zN ) · (loga zN )i for some M ∈ N, where fa

i is a locally analytic
function on the region, and can be extended to D′0

N (refer to the previous section for the
definition of the coordinates zi and D′

N ).

(ii) The analytic continuation of Lian1,...,nm
(xl, . . . , xm) to N 00

D′
N

, which can be identified with D′0
N ×

Gm, is given by
∑M

i=0 fa
i (z1, . . . , zN−1, 0) · (loga zN )i.

Proof. The proof is given by induction on the weight. Both statements are clear for weight 1. Using
the formula given before for the differential of MPL we see that by the induction hypothesis the
differential of Lin1,...,nm(xl, . . . , xm) can be expressed as

∑
giωi where gi are Coleman functions of
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the desired (logarithmic) form and ωi are holomorphic forms on M0,N+3 with logarithmic singularity
along zN = 0 (and other divisors which we are not interested in). Integrating such a form will give the
desired logarithmic expansion. This proves the first part of the proposition. The second part of
the proposition follows from the definition of the analytic continuation explained in [BF06, § 4].

We are now ready to give the following definition for the series regularized p-adic MZV, which
is more accurately an element of Qp[T ]. Its definition a priori depends on the choice of a branch of
p-adic logarithm, i.e. a choice of a ∈ Qp for the value of this logarithm at p.

Definition 4.2. The series regularized p-adic MZV ζS
p (n1, . . . , nm) ∈ Qp[T ] is defined as follows.

The analytic continuation of Lian1,...,nm
(x1, . . . , xm) to N00

D′
N

for N � m can be restricted to the line

defined by ιN : Gm → N 00
D′

N
; this way we get a Coleman function in Qp[loga t]. If we replace loga t

by T and use the notation of the previous proposition, we get

ζS
p (n1, . . . , nm) = τ∗

NLi
a(D′

N )
n1,...,nm(x1, . . . , xm)

=
M∑
i=0

fa
i

(
1
2
, . . . ,

N − 1
N

, 0
)
· (T + loga N)i ∈ Qp[T ].

This is independent of the choice of N � m which follows from Lemma 3.3. This regularization
will be independent of the choice of the branch a. But this will be proved later in Theorem 6.4.

Proposition 4.3. The MPL Lian1,...nm
(t, . . . , t) is uniquely expressed in a neighborhood of t = 1 as

M∑
i=0

ga
i (t) loga(1 − t)i, (4.1)

where ga
i are locally analytic functions that can be extended to t = 1, then ζS

p (n1, . . . , nm) =∑M
i=0 ga

i (1)T i.

Proof. The uniqueness is clear. With the notation of Proposition 4.1 we have

ga
r (t) =

N∑
i=r

(
i

r

)
fa

i

(
1 − t

1 − t2
, . . . ,

1 − tN−1

1 − tN
, 1 − tN

)(
loga 1 − tN

1 − t

)i−r

.

By letting t = 1 and comparing it with the definition of regularized MZV, the claim follows.

5. Series shuffle relation

We now describe the series shuffle relation for multiple polylogarithms. To do this we need the
notion of generalized shuffles of order r and s, denoted by

Sh�(r, s) :=
⋃
N

{σ : {1, . . . , r + s} → {1, . . . , N} | σ is onto,

σ(1) < · · · < σ(r), σ(r + 1) < · · · < σ(r + s)}.
We recall the definition from [Gon02, § 7.1]. Let

Zm
++ = {(k1, . . . , km) ∈ Zm

+ | 0 < k1 < · · · < km} ⊂ Zm.

There is a natural decomposition

Zr
++ × Zs

++ =
⋃

σ∈Sh�(r,s)

Zσ
++,
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where

Zσ
++ := {(k1, . . . , kr+s) ∈ Zr+s

++ | ki < kj if σ(i) < σ(j), ki = kj if σ(i) = σ(j)}.
For example for r = s = 1 we have

{k1 > 0} × {k2 > 0} = {0 < k1 < k2} ∪ {0 < k1 = k2} ∪ {0 < k2 < k1}.
We define the permuted multiple polylogarithm by

Liσn1,...,nr+s
(x1, . . . , xr+s) =

∑
(k1,...,kr+s)∈Zσ

++

xk1
1 · · · xkr+s

r+s

kn1
1 · · · knr+s

r+s

.

Then formally we have

Lin1,...,nr(x1, . . . , xr)Linr+1,...,nr+s(xr+1, . . . , xr+s)

=
∑

σ∈Sh�(r,s)

Liσn1,...,nr+s
(x1, . . . , xr+s). (5.1)

In fact Liσn1,...,nr+s
(x1, . . . , xr+s) is of the form Liq1,...,ql

(y1, . . . , yl) with the same weight and the
yi are either one of the xj or the product of two of the xj . If we let N = r + s, notice that this
function cannot be considered in general as a Coleman function on M0,N+3. This follows from the
fact that the parameterization of M0,N+3 is not symmetric with respect to the permutation of
the coordinates x1, . . . , xN . Recall that we only remove the product of the consecutive coordinates
equaling 1. However, all of these functions can be considered as Coleman functions on EN which
was defined in § 3.

Since the shuffle formula given above is formal, its validity can be extended if we regard the
functions as Coleman functions on EN . The idea of the proof of series shuffle relation for MZV is
to restrict to the line (t, t, . . . , t) and use the asymptotic expansion around t = 1. The crucial step
is the following proposition, which was inspired by Proposition 7.7 of [Gon02].

Proposition 5.1. Let 1 = p1 � p2 � · · · � pm � pm+1 = N +1 be integers and let yi =
∏pi+1−1

j=pi
xj

(the empty product is defined to be 1). Assume below that nk > 1 and k + l = m. Let F be the
following Coleman function on M0,N+3: for l > 0, F is

Lia
n1,...,nk,1, . . . , 1︸ ︷︷ ︸

l

(y1, . . . , yk, yk+1, . . . , yk+l) − Lia
n1,...,nk,1, . . . , 1︸ ︷︷ ︸

l

(yk+1, . . . , yk+l)

and for l = 0, F is

Lian1,...,nk
(y1, . . . , yk) − Lian1,...,nk

(yk).

For a divisor D in M0,N+3−M0,N+3 let F (D) denote the extension of F to the normal bundle N 00
D .

Then F (D) = 0 for D = D′
N ,D′

N−1 and DN .

Proof. Notice that D′
N intersects D′

N−1 and D′
N−1 intersects DN . In fact we saw in § 2 that all the

divisors D′
i intersect at a single point Q. To see that D′

N−1 and DN intersect we can use part (v)
of Proposition 2.1.

We will prove below that F (DN ) is zero and F (D′
N ) and F (D′

N−1) are constant. Now since D′
N−1

and DN intersect if we apply Proposition 3.6 of [BF06] it follows that F (D′
N−1) is zero. A similar

argument using the divisors D′
N−1 and D′

N implies that F (D′
N ) vanishes as well.

Lemma 5.2. The extension of Lian1,...,nm
(y1, . . . , ym) to N 00

DN
is zero.

Proof. The constant term of MPL at the origin, i.e. the intersection of the Di for i = 1, . . . , N , is
zero. This follows from the fact that in the neighborhood of the origin we have the power series
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expansion without constant term. We now calculate the differential of the MPL and take its residue
at xN = 0. The differential which contributes is the differential with respect to the last parameter
ym. If nm = 1 it is Lin1,...,nm−1(y1, . . . , ym−2, ym−1ym)d log(1 − ym); however, its residue along
xN = 0 is zero. If nm > 1 it is Lin1,...,nm−1,nm−1(y1, . . . , ym)d log ym and its residue along xN = 0 is
Lin1,...,nm−1,nm−1(y1, . . . , ym), which is an MPL of weight one smaller than the original MPL. Hence
by using induction we can deduce that the extension of MPL to N 00

DN
will be zero. This finishes the

proof of the lemma.

Let us now show that F (D′
j) is constant for j = N − 1, N . Recall that the coordinates zi for the

divisors D′
i are related to the original coordinates xi by

xi =
1 − zi · · · zN

1 − zi−1 · · · zN
.

The residue of d log xi at zN = 0 and zN−1 = 0 is zero for i < N . This implies that the differentials
with respect to those indices i for which ni > 1 do not contribute. If ni = 1 for i < k then the
differential of F with respect to yi (we are assuming yi 	≡ 1) is

Lin1,...,n̂i,...,nk,1, . . . , 1︸ ︷︷ ︸
l

(y1, . . . , yi−1yi, . . . , yk+l)d log(1 − yi)

− Lin1,...,n̂i,...,nk,1, . . . , 1︸ ︷︷ ︸
l

(y1, . . . , yiyi+1, . . . , yk+l)d log yi(1 − yi).

Since d log yi has residue zero along zN = 0 or zN−1 = 0 an induction on the weight shows that this
difference is zero when the residue is taken. So the only variables that are left are those yk+1, . . . , yk+l

that are not identically 1 when l > 0 and yk when l = 0. The induction implies that these also do
not have any contribution. We provide the details for the case when l > 0, the case l = 0 being
similar and even simpler. The differential with respect to yi when i > k is given by

Lin1,...,nk,1, . . . , 1︸ ︷︷ ︸
l−1

(y1, . . . , yi−1yi, . . . , yk+l)d log(1 − yi)

− Lin1,...,nk,1, . . . , 1︸ ︷︷ ︸
l−1

(yk+1, . . . , yi−1yi, . . . , yk+l)d log(1 − yi)

− Lin1,...,nk,1, . . . , 1︸ ︷︷ ︸
l−1

(y1, . . . , yiyi+1, . . . , yk+l)d log yi(1 − yi)

+ Lin1,...,nk,1, . . . , 1︸ ︷︷ ︸
l−1

(yk+1, . . . , yi−1yi, . . . , yk+l)d log yi(1 − yi).

Now it is clear that induction on the weights implies that the first two and the last two terms will
cancel each other after taking the residues. This finishes the proof of Proposition 5.1.

Corollary 5.3. With the notation of Proposition 5.1 and nk > 1, the analytic continuation
of Lian1,...,nk

(y1, . . . , yk) to N 00
D′

N
is constant and is equal to ζp(n1, . . . , nk). Therefore in this case

ζS
p (n1, . . . , nm) coincides with the p-adic MZV in [Fur04].

Proof. By Proposition 5.1 the analytic continuation is the same as the analytic continuation of
Lian1,...,nk

(yk). If yk = xm then the claim follows from Lemma 3.3 and the definition of p-adic MZV.
If yk = xi · · · xm, a similar argument as above using the differential equation of MPL shows that the
analytic continuation of Lian1,...,nk

(yk)−Lian1,...,nk
(xm) to D′

N and D′
N−1 is constant and it is zero if

it is continued to DN . This finishes the proof.
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6. Proof of the main theorems

We will derive the validity of series shuffle relations from (5.1). The main idea is to get a nice means
of analytic continuation to give series shuffle relations. A difficulty is that the terms of (5.1) are not
Coleman functions of M0,N+3 (N = r + s) but Coleman functions of EN which generally no longer
have a good reduction. Hence we are not able to use directly the method of analytic continuation to
normal bundle explained in § 1 and 4. In order to achieve this we introduce a subfamily Col′a inside
Cola(EN ) which contains all terms of (5.1) and in purely algebraic way we extend the methods of
analytic continuation into Col′a to give series shuffle relations.

Let τ ∈ Sm. Put Mτ
0,N+3 = M0,N+3×AN ,τ AN where τ : AN → AN is a map sending xi → xτ (i),

i.e.

Mτ
0,N+3 = GN

m −
⋃

1�n�m�N

{ m∏
i=n

xτ(i) = 1
}

.

Denote its coordinate along D′τ
N by

zτ
i =

1 − xτ(1) · · · xτ(i)

1 − xτ(1) · · · xτ(i−1)
.

Let Cola(Mτ
0,N+3)(log D′τ

N ) be the subalgebra of Cola(Mτ
0,N+3) each of which has an expansion∑M

i=0 fa
i (zτ

1 , . . . , zτ
N )·(loga zτ

N )i as Proposition 4.1(i). Let Col′a to be the subalgebra inside Cola(EN )
generated by all Cola(Mτ

0,N+3)(log D′τ
N ) for τ ∈ SN . Note that EN ⊂ Mτ

0,N+3 and hence
Cola(EN ) contains Cola(Mτ

0,N+3) for all τ . For each f ∈ Col′a its restriction into 	 = {(t, . . . , t)}
has an expansion

∑M
i=0 ga

i (t) loga(1− t)i like (4.1). By the algebraic prescription described in Propo-
sition 4.3 we get an algebra homomorphism

t̃aN : Col′a → Qp[[T ]]

sending it to
∑M

i=0 ga
i (1) loga(1 − t)i. Its restriction to Cola(Mτ

0,N+3)(log D′τ
N ) agrees with

ta,τ
N : Cola(Mτ

0,N+3)(log D′τ
N ) → Qp[[T ]],

which is the analytic continuation into N 00
D′

N
and the restriction into τN (Gm).

We note that Lin1,...,nm(xτ(1), . . . , xτ(m)) ∈ Col′a for τ ∈ Sm by Proposition 4.3.

Lemma 6.1. We have t̃am(Lin1,...,nm(xτ(1), . . . , xτ(m))) = ζS
p (n1, . . . , nm) for any τ ∈ Sm.

Proof. The proof is clear because Lin1,...,nm(x1, . . . , xm)|� = Lin1,...,nm(xτ(1), . . . , xτ(m))|�.
Lemma 6.2. With the notation of formula (5.1), the image of Liσn1,...,nr+s

(x1, . . . , xr+s) (σ ∈
Sh�(r, s)) under the tangential morphism t̃ar+s is ζS

p (σ(n1, . . . , nr+s)). Here σ(n1, . . . , nr+s) =
(c1, . . . , cN ) where N is the cardinality of the image of σ and

ci =

{
nm + nl, if σ−1(i) = {m, l},
nm, if σ−1(i) = {m}.

Proof. Note that
Liσn1,...,nr+s

(x1, . . . , xr+s) = Lic1,...,cN
(y1, . . . , yN )

where

yi =

{
xmxl, if σ−1(i) = {m, l},
xm, if σ−1(i) = {m}.

Now since the tangential morphism tar+s is invariant under the action of the symmetric group, with
a permutation of the parameters we can assume that we are in the situation of Proposition 5.1.
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Therefore if cN > 1 the result follows from Corollary 5.3. If for some k we have ck−1 > 1 and
ck = · · · = cN = 1 then we necessarily have yk = xi, . . . , yN = xr+s with i = r + s + k − N .
Proposition 5.1 implies that the extension of

Lic1,...,ck−1,1, . . . , 1︸ ︷︷ ︸
N−k+1

(y1, . . . , yN )

to N 00
D′

r+s
is the same as the extension of

Lic1,...,ck−1,1, . . . , 1︸ ︷︷ ︸
N−k+1

(xi, . . . , xr+s) ∈ Cola(M0,r+s)

to N 00
D′

r+s
. Another application of the same proposition implies that this extension is the same as

the analytic continuation of

Lic1,...,ck−1,1, . . . , 1︸ ︷︷ ︸
N−k+1

(xr+s−N+1, . . . , xr+s)

to N 00
D′

r+s
. This is a Coleman function on M0,r+s with variables (x1, . . . , xr+s). Using Lemma 6.1 to

calculate its image of t̃ar+s we may replace it by

Lic1,...,ck−1,1, . . . , 1︸ ︷︷ ︸
N−k+1

(x1, . . . , xN ) ∈ Cola(M0,r+s).

By Lemma 3.3 the image of this function under the map tar+s is the same if we consider it as a
function on M0,N and apply the map taN . By definition therefore the image under taN of this function
as a Coleman function on M0,N is ζS

p (c1, . . . , cN ).

Hence we have t̃ar+s(Liσn1,...,nr+s
(x1, . . . , xr+s)) = ζS

p (σ(n1, . . . , nr+s)).

Theorem 6.3. Series shuffle relations for series regularized p-adic MZV hold, i.e.

ζS
p (n1, . . . , nr) · ζS

p (nr+1, . . . , nr+s) =
∑

σ∈Sh�(r,s)

ζS
p (σ(n1, . . . , nm+p))

holds for all r, s, n1, . . . , nr+s � 1.

Proof. Apply the homomorphism t̃ar+s to both sides of the identity (5.1) and use the previous
lemma.

It is interesting that this theorem together with the observation that ζS
p (1) = −T as a polynomial

in Qp[T ], which follows from the fact that Lia1(z) = −loga(1 − z), implies that the definition of the
series regularization is independent of the branch of the p-adic logarithm.

Theorem 6.4. The definition of series regularized p-adic MZV ζS
p (n1, . . . , nm) does not depend on

the choice of a branch a ∈ Qp of the p-adic logarithm.

Proof. This is clear if nm > 1, since by Corollary 5.3 we have ζS
p (n1, . . . , nm) = ζp(n1, . . . , nm), which

is independent of the branch (cf. [Fur04]). Now assume that nk > 1 and nk+1 = · · · = nk+l = 1
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where k + l = m. Then the series shuffle relation implies that

ζS
p (1)ζS

p (n1, . . . , nk, 1, . . . , 1︸ ︷︷ ︸
l−1

)

= lζS
p (n1, . . . , nk, 1, . . . , 1︸ ︷︷ ︸

l

)

+ ζS
p (n1, . . . , nk−1, 1, nk, 1, . . . , 1︸ ︷︷ ︸

l−1

) + · · · + ζS
p (1, n1, . . . , nk, 1, . . . , 1︸ ︷︷ ︸

l−1

)

+ ζS
p (n1 + 1, . . . , nk, 1, . . . , 1︸ ︷︷ ︸

l−1

) + · · · + ζS
p (n1, . . . , nk, 1, . . . , 1, 2).

Now an induction on l proves the theorem.

Let us now explain the integral regularization of p-adic MZVs. The one variable MPL

Lin1,...,nm(z) =
∑

0<k1<···<km

zkm

kn1
1 · · · knm

m

can be viewed as a Coleman function on M0,4 = E1. Its image under the tangential morphism ta1
is the integral regularization of the p-adic MZV and we use the notation ζI

p(k1, . . . , km). This is an
element of Qp[T ] where T = loga(1 − z). By the p-adic iterated integral expression of p-adic MPL,
the first author in [Fur04] deduced an integral shuffle product formula that we now explain. For
k = (k1, . . . , km) and k′ = (k′

1, . . . , k
′
m′) with ki, k

′
j � 1 the following formula holds for p-adic MPLs:

Lik(z)Lik′(z) =
∑

τ∈Sh(N,N ′)

Liaτ(Wk,W
k′ )

(z). (6.1)

Here N = k1 + · · · + km, N ′ = k′
1 + · · · + k′

m′ and

Sh(N,N ′) := {τ : {1, . . . , N + N ′} → {1, . . . , N + N ′} | τ is bijective,
τ(1) < · · · < τ(N), τ(N + 1) < · · · τ(N + N ′)}.

For W = X1 · · ·Xk, W ′ = Xk+1 · · ·Xk+l with Xi ∈ {A,B} and τ ∈ Sh(k, l), the symbol τ(W,W ′)
stands for Z1 · · ·Zk+l with Zi = Xτ−1(i). For a = (a1, . . . , al) with l, a1, . . . , al � 1 the symbol Wa

means a word Akl−1BAkl−1−1B · · ·Ak1−1B and for such W we denote its corresponding index by
aW .

Each term in (6.1) lies in Cola(M0,4). Applying the morphism ta1 to identity (6.1) gives the
following result.

Proposition 6.5. The integral series shuffle relation for integral regularized p-adic MZVs holds,
i.e.

ζI
p(k)ζI

p (k′) =
∑

τ∈Sh(N,N ′)

ζI
p(aτ(Wk,Wk′))

holds for k = (k1, . . . , km) and k′ = (k′
1, . . . , k

′
m′).

Note that ζI
p(1) = −T and therefore the integral shuffle relation implies that

ζI
p (1, . . . , 1︸ ︷︷ ︸

n

) =
(−T )n

n!
. (6.2)

The proof of the regularization relation is a p-adic analogue of the proof given in § 7 of [Gon02].
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Theorem 6.6. The regularization relation holds. Namely for n1, . . . , nm � 1

ζS
p (n1, . . . , nm) = Lp(ζI

p (n1, . . . , nm)) (6.3)

where Lp : Qp[T ] −→ Qp[T ] is a linear map that is defined by

∞∑
n=1

Lp(T n)
un

n!
= exp

(
−

∞∑
n=1

ζI
p(n)
n

un

)
.

Proof. The validity of (6.3) is clear if nm > 1. The following special case for (n1, . . . , nm) = (1, . . . , 1)
can be proved exactly as in Lemma 7.9 of [Gon02]:

∞∑
n=1

ζS
p (1, . . . , 1︸ ︷︷ ︸

n

)un = exp
(
−

∞∑
n=1

ζI
p(n)
n

(−u)n
)

. (6.4)

Assume that nk > 1 and nk+1 = · · · = nm = 1. We prove the regularization formula by induction
on m − k. Note that by (5.1) we have

Lin1,...,nk
(x1, . . . , xk)Li1, . . . , 1︸ ︷︷ ︸

m−k

(xk+1, . . . , xm)

= Lin1,...,nm,1, . . . , 1︸ ︷︷ ︸
m−k

(x1, . . . , xm) + other terms, (6.5)

Lin1,...,nk
(1, . . . , 1︸ ︷︷ ︸

k−1

, x)Li1, . . . , 1︸ ︷︷ ︸
m−k

(1, . . . , 1︸ ︷︷ ︸
m−k−1

, y)

= Lin1,...,nm,1, . . . , 1︸ ︷︷ ︸
m−k

(1, . . . , 1︸ ︷︷ ︸
k−1

, x, 1, . . . , 1︸ ︷︷ ︸
m−k−1

, y) + other terms, (6.6)

where ‘other terms’ above means the collection of terms whose number of ones at the end is less
than m − k. We apply the morphism t̃aN : Col′a −→ Cola(Gm) to (6.5) and the tangential map
ta2 : Cola(M0,5) −→ Cola(Gm) to (6.6). Now if we use Proposition 5.1 it follows that the first
equation gives the series regularized p-adic MZVs and the second will give the integral regularized
p-adic MZVs. We therefore have

ζS
p (n1, . . . , nk)ζS

p (1, . . . , 1︸ ︷︷ ︸
m−k

) = ζS
p (n1, . . . , nm, 1, . . . , 1︸ ︷︷ ︸

m−k

) + other terms, (6.7)

ζI
p (n1, . . . , nk)ζI

p (1, . . . , 1︸ ︷︷ ︸
m−k

) = ζI
p(n1, . . . , nm, 1, . . . , 1︸ ︷︷ ︸

m−k

) + other terms. (6.8)

The left-hand side of (6.8) after applying the map Lp coincides with the left-hand side of (6.7).
This follows from (6.2) and (6.4). Also note that the terms which are not written in (6.7) and (6.8)
have less than m − k ones at the end, so by induction after applying Lp will match. This finishes
the proof.

7. Deligne’s problem on double shuffle relations

In [Del02], Deligne proposed the following definition for p-adic MZVs. Let X = P1\{0, 1,∞} and
πDR(X,

−→
01) denote the de Rham fundamental group of X with the tangential base point

−→
01 at 0.

This can be identified as the group-like elements with constant term 1 of the non-commutative
power series Hopf algebra Q〈〈A,B〉〉, where A corresponds to the loop around 0 and B to the loop
around 1. The coproduct is defined by ∆A = A ⊗ 1 + 1 ⊗ A and similarly for B. Since X and the
base point have a good reduction modulo p, we have an action of the Frobenius endomorphism φ
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on this fundamental group tensored with Qp which can be extended to Qp〈〈A,B〉〉. It can be shown
that under this endomorphism2

A 
→ A

p
,

B 
→ (Φp
De)

−1

(
B

p

)
Φp

De,

for a certain group-like element Φp
De of Qp〈〈A,B〉〉 with constant term 1 and the coefficients of Bn

equal zero. Deligne defines (−1)mζDe
p (n1, . . . , nm) to be the coefficient of Anm−1B · · ·Anm−1B in

Φp
De.

It was asked in [Del02] and [DG05] to prove the validity of the generalized double shuffle relation
for these p-adic MZVs. This is achieved using the results of this paper and [Fur07]. In fact in the
language of Racinet in [Rac02] we need to show that Φp

De(A,−B) ∈ DMR0(Qp). We recall his
machinery briefly. The group scheme DMR0 has k (a field of characteristic 0) valued points which is
a subset of power series k〈〈A,B〉〉 of those power series g =

∑
cW W , where W runs over all words

in A and B, such that the following hold.

(i) The constant term c∅ = 1 and cA = cB = 0.
(ii) The series g is group-like with respect to the coproduct defined above, i.e. ∆g = g ⊗ g. This is

a concise way of saying that the coefficients of g satisfy the integral shuffle relation.
(iii) Let πy : k〈〈A,B〉〉 −→ k〈〈y1, y2, . . . 〉〉 be defined as a linear map that sends all the words

ending A to zero and the word An1−1B · · ·Anm−1B to yn1 · · · ynm. Define the coproduct ∆∗ on
k〈〈y1, y2, . . . 〉〉 by

∆∗yn =
n∑

i=0

yi ⊗ yn−i, y0 := 1.

Also define

g∗ = exp
(
−

∞∑
n=1

(−1)n

n
cAn−1Byn

1

)
πy(g).

The last condition is that ∆∗g∗ = g∗ ⊗ g∗. This is a concise way of saying that the coefficients
of g∗ satisfy the series shuffle relation.

In [Fur04] a fundamental solution, denoted by G0(z)(A,B), for the p-adic KZ equation

dG(z) =
(

A
dz

z
+ B

dz

z − 1

)
G(z), z ∈ P1(Cp)\{0, 1,∞},

was constructed. Its coefficients are Coleman functions on P1\{0, 1,∞}. If we analytically continue
this function to the tangent vector 1 at z = 1, we get a power series Φp

KZ(A,B) ∈ Qp〈〈A,B〉〉, called
the p-adic Drinfel’d associator, whose coefficient for Anm−1B · · ·An1−1B is the integral regularization
(−1)mζI

p (n1, . . . , nm) evaluated at T = 0. The main result of this paper says that in the language
of Racinet

Φp
KZ(A,−B) ∈ DMR0(Qp).

Now we can prove the following theorem.

Theorem 7.1. Deligne’s p-adic MZV satisfies the generalized double shuffle relation.

Proof. It is shown in Theorem 2.7 of [Fur07] that

Φp
KZ(A,−B) = Φp

De(A,−B) · Φp
KZ

(
A

p
,Φp

De(A,−B)−1 B

p
Φp

De(A,−B)
)

.

2We are using the inverse of the usual Frobenius as opposed to [Del02].
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This can be rewritten using the product � of DMR0:

Φp
KZ(A,−B) = ΦKZ

(
A

p
,−B

p

)
� Φp

De(A,−B).

The set DMR0(Qp) and also Qp〈〈A,B〉〉 form a group under this product (see [Rac02]) and the two
elements Φp

KZ(A,−B) and Φp
KZ(A/p,−B/p) belong to this group, hence Φp

De(A,−B) ∈ DMR0(Qp).
Let

Φ̃p
De(A,B) := exp(BT )Φp

De(A,B).

The coefficient of Anm−1B · · ·An1−1B in Φ̃p
De is denoted by (−1)mζDe,I

p (n1, . . . , nm). This is
(−1)mζDe

p (n1, . . . , nm) if nm > 1, and if nm = 1 this is a polynomial in terms of T for which if
we let T = 0 we get (−1)mζDe

p (n1, . . . , nm). The series regularization is obtained by applying Lp,
i.e. the coefficient of Anm−1B · · ·An1−1B in Lp(Φ̃

p
De) is defined to be (−1)mζDe,S

p (n1, . . . , nm). The
fact that Φp

De ∈ DMR0(Qp) implies that ζDe,I
p (n1, . . . , nm) will satisfy the integral shuffle relations

and ζDe,S
p (n1, . . . , nm) will satisfy the series shuffle relations. Note that the relation between the two

regularizations automatically holds by the way we have defined the second regularization.
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