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We study the evolution of collisionless plasmas that, due to their macroscopic evolution,
are susceptible to the firehose instability, using both analytic theory and hybrid-kinetic
particle-in-cell simulations. We establish that, depending on the relative magnitude of
the plasma β, the characteristic time scale of macroscopic evolution and the ion-Larmor
frequency, the saturation of the firehose instability in high-β plasmas can result in three
qualitatively distinct thermodynamic (and electromagnetic) states. By contrast with the
previously identified ‘ultra-high-beta’ and ‘Alfvén-inhibiting’ states, the newly identified
‘Alfvén-enabling’ state, which is realised when the macroscopic evolution time τ exceeds
the ion-Larmor frequency by a β-dependent critical parameter, can support linear Alfvén
waves and Alfvénic turbulence because the magnetic tension associated with the plasma’s
macroscopic magnetic field is never completely negated by anisotropic pressure forces.
We characterise these states in detail, including their saturated magnetic-energy spectra.
The effective collision operator associated with the firehose fluctuations is also described;
we find it to be well approximated in the Alfvén-enabling state by a simple quasi-linear
pitch-angle scattering operator. The box-averaged collision frequency is νeff ∼ β/τ , in
agreement with previous results, but certain subpopulations of particles scatter at a much
larger (or smaller) rate depending on their velocity in the direction parallel to the mag-
netic field. Our findings are essential for understanding low-collisionality astrophysical
plasmas including the solar wind, the intracluster medium of galaxy clusters and black
hole accretion flows. We show that all three of these plasmas are in the Alfvén-enabling
regime of firehose saturation and discuss the implications of this result.

Key words: astrophysical plasmas, plasma instabilities, space plasma physics

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825100731
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 02 Oct 2025 at 07:21:37, subject to the Cambridge Core terms of use, available at

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0022377825100731
https://orcid.org/0000-0001-8071-3083
https://orcid.org/0000-0003-1676-6126
https://orcid.org/0000-0001-8479-962X
https://crossmark.crossref.org/dialog?doi=10.1017/S0022377825100731&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825100731
https://www.cambridge.org/core


2 A.F.A. Bott, M.W. Kunz, E. Quataert, J. Squire and L. Arzamasskiy

1. Introduction

Over the last decade, numerous studies have provided compelling evidence that
kinetic instabilities play a key role in determining many of the basic physical
properties of collisionless (or weakly collisional), magnetised plasma. These insta-
bilities, which are driven by gradients in macroscopic properties of the plasma such
as bulk fluid velocity or temperature, can amplify ‘microscopic’ electromagnetic
fluctuations in the plasma exponentially at a rate that is generically much greater
than the plasma’s macroscopic evolution rate. The fluctuations are microscopic in
the sense that their characteristic length scales, which are generically related to
the Larmor or inertial scales of the plasma’s constituent ions and electrons, are
much smaller than both the plasma’s macroscopic length scales and the Coulomb
mean free paths of particles. Once these electromagnetic fluctuations attain suffi-
cient amplitudes, feedback mechanisms are thought to affect various features of
the plasma in which they are present. These features include the plasma’s micro-
physics, e.g., ‘anomalous’ scattering of particles at a rate much greater than would
naively be expected given the plasma’s Coulomb collisionality (Kunz et al. 2014a;
Riquelme, Quataert & Verscharen 2015; Melville, Schekochihin & Kunz 2016;
Riquelme, Quataert & Verscharen 2018), thermodynamics, e.g., regulation of pres-
sure anisotropies (Hellinger & Trávníček 2008; Camporeale & Burgess 2010) and
heating (Sharma et al. 2007; Lyutikov 2007; Kunz et al. 2011; Sironi & Narayan
2015), transport properties, e.g., suppression of heat transport (Komarov et al. 2016;
Roberg-Clark et al. 2018; Komarov et al. 2018; Yerger et al. 2025) and macro-
scopic dynamics, e.g., wave propagation (Squire et al. 2016, 2017; Kunz et al.
2020; Majeski, Kunz & Squire 2023) and turbulence (Hellinger et al. 2015, 2019;
Markovskii, Vasquez & Chandran 2019; Squire et al. 2019; Bott et al. 2021; Squire
et al. 2022, 2023; Arzamasskiy et al. 2023; Majeski, Kunz & Squire 2024). Because
many astrophysical plasma environments – including the solar wind (Alexandrova
et al. 2013), black hole accretion flows (Yuan & Narayan 2014) and the intracluster
medium (ICM) of galaxy clusters (Schekochihin & Cowley 2006; Simionescu et al.
2019) – are either collisionless or weakly collisional, understanding these types of
plasma is vital for obtaining even a rudimentary understanding of these systems.

Despite the significant progress that has been made towards understanding the
feedback of kinetic instabilities on the macroscopic evolution of collisionless plas-
mas, a comprehensive theoretical framework for this phenomenon has not yet been
established. There are two current barriers to the completion of such a frame-
work. Firstly, many different types of kinetic instability can arise (Bott, Cowley &
Schekochihin 2024). For example, bulk fluid motions and temperature gradients can
generate pressure anisotropies, in turn driving kinetic instabilities (e.g. the mirror
instability (Barnes 1966; Hasegawa 1969) and ion-cyclotron instability (Sagdeev &
Shafranov 1960)). Other instabilities – for example, the whistler heat-flux instability
(Levinson & Eichler 1992) – are driven directly by temperature gradients. Because
the precise mechanism of the feedback depends on the properties of electromagnetic
fluctuations associated with each instability (e.g. its scale and/or polarisation), all of
these kinetic instabilities need to be studied independently, and then their interplay
explored subsequently. This (frankly Herculean) task has not yet been completed.
Secondly, previous studies have shown that the fundamental nature of kinetic insta-
bilities can depend qualitatively on certain parameters including, but not limited
to, the plasma β ≡ 8πp/B2 (defined as the ratio of the thermal pressure p to the
magnetic pressure), the ion-cyclotron frequency Ωi and the macroscopic evolution
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time τ . For many instabilities, their behaviour over the full extent of parameter space
that is relevant to astrophysical systems has not yet been explored systematically.

In this paper, we address this second barrier for ion firehose instabilities. These
instabilities arise when the macroscopic evolution of a collisionless plasma gives
rise to an excess of parallel ion pressure p‖i as compared with the perpendicular
ion pressure p⊥i . The development of such a state follows the generic prescrip-
tion given above: for ion pressure anisotropies �i ≡ p⊥i/p‖i − 1�−1.35/β‖i (where
β‖i ≡ 8πp‖i/B2), ion-Larmor-scale electromagnetic modes becomes unstable,

1
while

for �i < −2/β‖i , a broad spectrum (from macroscopic scales down to ion-Larmor
scales) of Alfvénic modes is destabilised. A closely related class of instabilities, elec-
tron firehose instabilities, can be driven by electron pressure anisotropy (see e.g.
Hollweg & Völk 1970; Paesold & Benz 1999; Li & Habbal 2000; Gary & Nishimura
2003). However, for the sake of simplicity, we do not treat these here, and hereafter
refer to the ion firehose instability as just the ‘firehose instability’.

A new study of firehose instabilities in collisionless, βi � 1 plasma is timely,
because the plasma’s properties after the firehose instability’s saturation depend
on plasma parameters in a manner that remains unclear from previous studies.
These prior studies do concur that, once firehose modes are destabilised, they grow,
backreact on the evolution of �i and then regulate it, with this regulation being
maintained via an anomalous collisionality νeff. However, several key results change
significantly depending on βi and τΩi , including the specific value (�i)sat at which
the pressure anisotropy is regulated, the specific value of νeff as well as the char-
acteristic energy δB2/B2

0 and spectrum of the magnetic-field perturbations. For
example, using two-dimensional hybrid-kinetic particle-in-cell (PIC) simulations of
shearing plasmas with βi = 200 and τΩi ∼ 103– 3 × 104 (where Ωi is the ion-Larmor
frequency), Kunz et al. (2014a) found that (�i)sat � −2/βi for all the shear rates
that were studied, νeff ∼ 10−2–10−1Ωi , δB2/B2

0 ∼ 0.07–0.3 and a magnetic-energy
spectrum peaked at wavelengths much greater that ρi . By contrast, hybrid-kinetic
PIC simulations of expanding, magnetised plasmas at βi ∼ 1 and τΩi ∼ 103–104

in both two- and three-dimensional geometries (Hellinger & Trávníček 2008, 2015;
Hellinger et al. 2019; Bott et al. 2021) found tighter regulation of pressure anisotropy
((�i)sat � −1.4/β‖i ), much smaller values of the effective collisionality (νeff � 10−3)
that were time-dependent, δB2/B2

0 � 10−2, and fluctuations with wavelengths not
much larger that ρi . Melville et al. (2016), who performed similar simulations to
those of Kunz et al. (2014a) with characteristically smaller shearing time scales
(τΩi ∼ 102–104) and larger values of the beta parameter (βi = 102–103), made some
progress on this problem, identifying the ultra-high-beta regime (βi � τΩi ) in which
the regulation of the pressure anisotropy was less efficient (�i �−2/β‖i ) than for
smaller βi . Yet the full range of plasma parameters realised in firehose-susceptible
astrophysical plasmas of interest has not been comprehensively explored.

Understanding quantitatively the thermodynamics and collisionality of firehose-
susceptible high-β plasmas as a function of β, τ and Ωi is necessary because these
properties can have dramatic implications for the macroscopic dynamics of the
plasma in which the firehose instability is operating. For example, the discrepancy
in the specific value of (�i)sat (−2/β‖i versus −1.4/β‖i ), which might naively seem

1
The precise value of this threshold has a weak dependence on βi – see § 2.
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4 A.F.A. Bott, M.W. Kunz, E. Quataert, J. Squire and L. Arzamasskiy

FIGURE 1. Phase-space map of high-βi firehose-susceptible plasmas in βi and τΩi .

to be a numerical triviality of little consequence, is in fact qualitatively significant,
because the effective Alfvén speed

vA,eff ≡ vA

(
1 + β‖i�i

2

)1/2

(1.1)

at which Alfvén waves propagate in a pressure-anisotropic plasma decreases as �i

does, with it tending to zero as �i → −2/β‖i . In a plasma with �i = −2/β‖i , the
Alfvénic restoring force is exactly cancelled out by anisotropic pressure forces, a
state we identify as ‘Alfvén inhibiting’ because linear Alfvén waves can no longer
propagate. If instead the feedback of the firehose instability regulates the pressure
anisotropy such that �i � −2/β‖i , an ‘Alfvén-enabling’ state would result, in which
linear Alfvén waves would still be able to propagate (albeit with a lower parallel
phase speed). Thus, both wave and turbulent dynamics should be profoundly differ-
ent in a plasma whose firehose-regulated pressure anisotropy satisfies �i � −2/β‖i

than in a plasma with �i � −1.4/β‖i .
In this paper, we put forward a comprehensive theory for how the firehose instabil-

ity grows, saturates and then affects the thermodynamics and collisionality of high-β
plasma. We claim that, depending on the relative magnitude of βi and τΩi , there
are three qualitatively distinct regimes: ultra-high-β, Alfvén-inhibiting and Alfvén-
enabling. For each of these regimes, we provide estimates of (�i)sat, νeff and δB2/B2

0 .
We also describe characteristic properties of the wavevectors of firehose modes and
various features that emerge in the ion distribution function. A key pillar of our
theory, supported by linear calculations and nonlinear simulations, is a complete
explanation for when a high-β firehose-susceptible plasma attains an Alfvén-enabling
or Alfvén-inhibiting state. We find that, at fixed βi , an Alfvén-enabling state is
attained if τ exceeds some βi -dependent critical value τcr ∼ Ω−1

i β1.6
i . Figure 1 illus-

trates which state is realised as a function of (τΩi , βi), with some astrophysical
high-β plasma environments of interest placed in this parameter space. Because τΩi

is very large in most high-β astrophysical plasmas, the Alfvén-enabling state is the
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more relevant one (see § 7). We also propose and test a model for an effective
firehose collision operator, which we use to understand better certain key proper-
ties of plasmas in Alfvén-enabling states (e.g. the saturation energy of the firehose
fluctuations and the velocity-space anisotropy of the ion distribution function).

This paper is organised as follows. In § 2, we outline the linear theory of fire-
hose instabilities in high-β plasmas. In § 3 we describe qualitatively the ultra-high-β,
Alfvén-inhibiting and Alfvén-enabling states, and account for why they arise. In
particular, we explain with recourse to the theory outlined in § 2 why it is that,
for τ > τcr(βi), the minimum value of �i attained during the plasma’s evolution
obeys (�i)min > −2/βi , and thereby why Alfvén-enabling states are realised. We
then corroborate this theory with a series of simulations of expanding plasmas (§ 4),
which we also use to characterise the ‘saturated’ state of the firehose instability in
Alfvén-inhibiting and Alfvén-enabling states. In § 5, we interpret the results of these
simulations in detail, and in particular provide further analysis about the more subtle
features of the Alfvén-enabling state. Of these features, understanding the saturated
amplitude of the firehose fluctuations naturally motivates consideration of the effec-
tive firehose collision operator that arises in the Alfvén-enabling state (see § 6). In
§ 7, we situate our theory with respect to prior studies of firehose instabilities, and
also discuss their ramifications for various different astrophysical systems. Finally,
in § 8, we provide a summary of our key results.

2. The linear theory of firehose instabilities in high-β plasmas
2.1. Overview

The existence of qualitatively distinct states in firehose-susceptible, high-β plasmas
stems in part from properties of the instability in its linear stage. In this section, we
therefore describe the linear theory of the firehose instability. Though the linear the-
ory of firehose instabilities has been discussed extensively in prior research (which
we review in § 2.2), previously reported results do not completely account for the
instability’s properties in high-β plasmas. We therefore report a new analytical and
numerical linear study in this regime (§ 2.3). We find that oblique firehose modes
are dominant for βi � 1, with parallel ion-Larmor-scale firehose modes always hav-
ing a smaller growth rate, in contrast to plasmas with βi ∼ 1. Furthermore, the
value of the pressure anisotropy at which ion-Larmor-scale oblique firehose modes
are destabilised (�i = p⊥i/p‖i − 1 � −1.35/β‖i ) is less negative than that for longer-
wavelength firehose modes at fixed βi , and is similar to the threshold value in
βi ∼ 1 plasma. Aided by analytic theory, we explain these results in §§ 2.4 and 2.5,
respectively.

2.2. A review of the firehose instability’s linear theory
Although a comprehensive understanding of the linear theory of the firehose insta-

bility (including at kinetic scales) was only obtained in the last few decades, the
instability itself was first identified well over sixty years ago. The first studies of
the firehose instability (Chandrasekhar, Kaufman & Watson 1958; Parker 1958;
Vedenov & Sagdeev 1958) showed that the dispersion relation of long-wavelength
Alfvén waves (i.e. those modes with frequency ω whose parallel and perpendicular
wavenumbers satisfy k‖ρi 	 |�i + 2/β‖i |−1/2 � 1 and k⊥ρi 	 1, respectively) is

ω2 = k2
‖v

2
A

(
1 + �iβ‖i

2

)
= k2

‖v
2
A,eff. (2.1)
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These modes become linearly unstable if the ion-pressure anisotropy �i satisfies
�i < −2/β‖i (or, equivalently, if v2

A,eff < 0). We identify this condition as the ‘fluid’
firehose instability threshold, and the resulting instability as the non-resonant (or
fluid) firehose instability. The instability of these modes can be understood physi-
cally as follows: once the parallel ion pressure exceeds the perpendicular pressure
by an amount equal to twice the magnetic energy, parallel pressure forces on
an Alfvénic perturbation can overpower the restoring magnetic tension that, in a
pressure-isotropic plasma, is responsible for the wave’s propagation.

It is immediately clear from (2.1) that shorter-wavelength perturbations grow more
rapidly than longer-wavelength ones, implying that the scale of the fastest-growing
firehose modes must be determined by finite-Larmor-radius (FLR) effects. For non-
resonant parallel firehose modes, these FLR effects can be characterised analytically
(Shapiro & Shevchenko 1963; Kennel & Sagdeev 1967; Davidson & Völk 1968), with
the parallel wavenumber k‖,peak ∼ |�i + 2/β‖i |−1/2ρ−1

i at which peak growth occurs
being determined by gyroviscosity, i.e. the off-diagonal components of the pressure
tensor associated with agyrotropy in the distribution function (e.g. Schekochihin
et al. 2010). Whenever |�i + 2/β‖i | 	 1, which is either achieved near threshold
(that is, when |�i + 2/β‖i | 	 1 in plasmas with βi ∼ 1, or whenever |�i | 	 1 in
high-βi plasmas), the wavelength of the fastest-growing non-resonant mode is much
larger than the ion-Larmor scale.

More recent studies that solved the hot-plasma dispersion relation numerically
for a bi-Maxwellian plasma discovered the existence of two kinetic variants of the
firehose instability: the resonant parallel firehose instability (Gary et al. 1998) and
the oblique firehose instability (Yoon, Wu & de Assis 1993; Hellinger & Matsumoto
2000). Modes of the resonant parallel firehose instability are destabilised by gyroreso-
nant interactions with suprathermal ions having parallel velocities v‖ = (� + Ωi)/k‖
(where � is the real frequency of the mode). These modes have a characteristic par-
allel wavenumber k‖ρi ∼ 1 when β‖i ∼ �i ∼ 1, are circularly polarised, right-handed
and propagating. Although the instability is technically thresholdless (Sagdeev &
Shafranov 1960; see also Appendix A.2), previous numerical studies found that such
modes only attain growth rates γ‖f at ion-Larmor scales that are not infinitesimal
fractions of the ion-Larmor frequency when �i exceeds some β‖i -dependent thresh-
old. For example, Matteini et al. (2006) report that, in order for γ‖f � 5 × 10−3Ωi ,
one requires that �i �−0.6(β‖i − 0.63)−0.58. By contrast, oblique firehose modes are
non-propagating and linearly polarised, with k‖ρi ∼ k⊥ρi ∼ 0.5. Studies with β‖i � 1
identified a threshold that scales with β‖i in the same way as the fluid firehose
threshold, but with a less negative numerical prefactor: �i �−1.4β−1

‖i (Hellinger &
Matsumoto 2000, 2001). These conditions together imply that, when β‖i ∼ 1, the
resonant parallel firehose instability tends to dominate, but that the oblique firehose
instability should become dominant when β‖i � 1.

The less negative values of the pressure anisotropy required for the resonant and
oblique firehose instabilities to operate linearly at ion-Larmor scales have been con-
sidered and discussed extensively for collisionless, β‖i � 1 plasma similar to the solar
wind (Hellinger et al. 2006; Matteini et al. 2007, 2012, 2013). Several studies present
results of direct relevance to high-β plasmas. For example, in addition to identify-
ing the existence of the resonant parallel firehose instability, Gary et al. (1998)
characterise its linear threshold for βi � 10. Hellinger et al. (2006) compute linear
instability thresholds for both the resonant parallel and oblique firehose instabilities
in a bi-Maxwellian plasma for βi � 30. However, complementary results for linear
firehose instability thresholds in plasmas with larger βi have not been the focus of
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any previous published studies, nor have results for peak growth rates. We therefore
report these results in the next section.

2.3. The kinetic firehose instability at βi � 1

To determine the linear thresholds and growth rates of firehose-unstable modes
as a function of wavenumber in a plasma with bi-Maxwellian ions and Maxwellian
electrons,

2
we solve their linear dispersion relation numerically. We take the electric

field δE and magnetic field δB associated with such perturbations to be of the
form

δE ∝ exp[i(k · r − ωt)], δB ∝ exp[i(k · r − ωt)], (2.2)

where k and ω are the wavevector and (complex) frequency of the perturbation.
The dispersion relation of firehose perturbations having arbitrary k is the hot-
plasma dispersion relation (Davidson 1983), which we provide for a plasma with
arbitrary distribution functions in Appendix A.1. For a hydrogenic plasma with bi-
Maxwellian ions (with parallel temperature T‖i and perpendicular temperature T⊥i )
and Maxwellian electrons (with temperature Te), the dispersion relation simplifies to

det

{
k2ρ2

i

β⊥i

[
k̂k̂ − I

(
1 − ω2

k2
‖v

2
th⊥i

v2
th⊥i

c2

) ]
+ σ̃ bi-M

}
= 0, (2.3)

where vth⊥i ≡ √
2T⊥i/mi and σ̃ bi-M = σ̃ bi-M(k‖ρi , k⊥ρi , ω/k‖vth⊥i , me/mi , Te/T‖i , �i)

is a dimensionless rank-three tensor that can be written in terms of the plasma
dispersion function and sums of modified Bessel functions (see Appendix A.1). To
find the complex frequency ω of firehose-unstable modes at fixed values of βi , me/mi ,
Te/T‖i , vth⊥i/c and �i , we choose values of k‖ρi and k⊥ρi at which such modes are
expected to be realisable, and then solve for the roots ω/k‖vth⊥i of (2.3). Numerically,
this is carried out using the secant method, with the initial guesses inputted into
the algorithm being determined by an analytical approximation to the hot-plasma
dispersion relation that is valid when βi , βe � 1 (taken from Bott et al. 2024 ).

Figure 2 shows the growth rate γ = Im(ω) of firehose-unstable modes in a plasma
with βi = 200 as a function of k‖ρi and k⊥ρi for representative choices of the other
parameters. Similarly to prior numerical studies in βi � 1 plasma, we observe that, as
�i is decreased from zero towards the (negative) instability thresholds, modes whose
growth rates are not infinitesimally small first emerge only at ion-Larmor scales, at
a critical value of the ion pressure anistropy, �cr � −1.35/βi , that is less negative
than the fluid firehose threshold �i = −2/βi at fixed βi (figure 2a). Of these modes,
the fastest-growing ones are oblique firehose modes (k‖ρi � 0.45, k⊥ρi � 0.35) with
zero real frequency. As �i is decreased further, the region of (k‖ρi , k⊥ρi) space
over which the firehose instability operates extends, with long-wavelength modes
becoming unstable once �i < −2/βi (see figure 2b).

The growth rate γpeak of the fastest-growing firehose-unstable modes is an increas-
ing function of −(�i − �cr)βi (see figure 2c) and a decreasing function of βi at fixed

2
As discussed in the Introduction, bi-Maxwellian electron distributions with �e < 0 are associated with electron

firehose instabilities; to focus exclusively on ion firehose instabilities, we therefore choose �e = 0. Physically, this
simplification is appropriate in plasmas whose electron population is not ‘too’ collisionless (e.g. the ICM – see Kunz
et al. 2022): more specifically, if νe � β/τ , where νe is the rate of electron Coulomb collisions, then |�e| 	 1/β,
and so the electron population can be treated as Maxwellian from the standpoint of their stability.
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FIGURE 2. (a) Linear growth rate γ of firehose-unstable modes as a function of parallel and
perpendicular wavenumber for a range of different �i at βi = 200, mi/me = 1836, Te = T‖i

and vthe/c = 0.05. The growth rates are calculated on a 4002 grid in (k‖ρi , k⊥ρi ), with equal
logarithmic spacing in both directions. (b) Critical value of �i below which firehose instability
onsets, �cr, as a function of parallel and perpendicular wavenumber at βi = 200. (c) Peak growth
rate γpeak of the firehose instability as a function of (�i − �cr)βi for a range of βi (solid lines).
The dashed lines shows the semi-analytic result (2.4), the red dotted line shows the power-law
scaling (2.8) that empirically is a good fit for moderately large βi . (d) Plot of γpeak as a function
of βi for a range of |�i |βi . The blue dashed line shows (2.4); the red dot-dashed line shows the
analytic result (2.6); and the red dotted line shows the power law (2.7).

�iβi (see figure 2d). The particular scaling of γpeak with βi at fixed �iβi depends on
the latter’s exact value. When |�i − �cr|βi 	 1, we find that

γpeak ≈ 2.9|�i − �cr|Ωi (for |�i − �cr|βi 	 1). (2.4)

When �i = −2/βi , a different scaling can be derived analytically (Bott et al. 2024):

γpeak ≈ 51/2

23/2
(k‖ρi)

2
peak

Ωi

β
1/2
i

(for �i = −2/βi), (2.5)

where the characteristic parallel wavenumber of the fastest-growing mode, (k‖ρi)peak,
is a weakly varying function of βi that is given by special mathematical functions.
For values of βi that are very large (βi � 106), the following simple expression for
(k‖ρi)peak (and therefore γpeak) can be found through an asymptotic analysis (Bott
et al. 2024):

(k‖ρi)peak ≈
[

2
log (27πβi/10)

]1/2

,

γpeak ≈ 51/2

21/2

Ωi

β
1/2
i log (27πβi/10)

(for �i = −2/βi , βi very large). (2.6)
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By contrast, for values of βi that are only moderately large (βi ∈ [10, 104]), it can
be shown empirically via fitting to the direct numerical solution of the linearised
Vlasov equation that γpeak at �i = −2/β‖i has, to a very good approximation, a
simple power-law dependence on βi :

γpeak ≈ 0.3Ωiβ
−0.6
i (for �i = −2/βi , 1 	 βi 	 105). (2.7)

This result can be extended to �i close to (but not exactly equal to) −2/β‖i , for
which we find that the peak growth rate is related to the pressure anisotropy via a
simple power-law scaling:

γpeak ≈ 0.4|�i − �cr|0.6Ωi (for �i ≈ −2/βi , 1 	 βi 	 105). (2.8)

The validity of these asymptotic approximations is tested in figure 2(c,d).
Figure 2(c) confirms that, in the relevant regime, the expressions (2.4) and (2.8)
are good approximations to the numerically determined growth rate as a function of
�i − �cr. Furthermore, figure 2(d) shows that the decrease of γpeak with increasing
βi is primarily accounted for by the β−0.6

i dependence included in (2.7) for βi 	 105.
For quantitative agreement over a larger range of βi , an exact power-law fit is an
oversimplification, as shown by the better agreement of the numerically determined
growth rate with (2.6).

In summary, we find that, in plasma with β‖i � 1, the fastest-growing unstable
modes are oblique firehose modes, and that these modes emerge at less negative
pressure anisotropies (�i �−1.35/β‖i ) than fluid firehose modes (�i < −2/β‖i ).
Furthermore, the resonant parallel firehose instability does not feature significantly
in our numerical solution of the dispersion relation, seeming to imply that it is sub-
dominant to the oblique instability in β‖i � 1 plasma. We account for both of these
findings in §§ 2.4 and 2.5, respectively.

2.4. Why the threshold of the oblique firehose instability is larger than −2/β‖i

The numerical result that kinetic-scale oblique firehoses in a bi-Maxwellian, βi � 1
plasma are destabilised at a less negative value of the pressure anisotropy can be
elucidated by physical arguments and additional mathematical analysis.

The physical basis for a reduced threshold arises from modifications to the effec-
tive parallel pressure force acting on a magnetic-field perturbation when the thermal
ion-Larmor radius is only a finite fraction of that perturbation’s wavelength. As
explained in § 2.2, the fluid firehose instability is an instability of Alfvén waves in
which, due to an excess of parallel pressure compared with perpendicular pres-
sure, parallel pressure forces on the perturbed volume of plasma associated with
the Alfvén wave become sufficiently large to overcome the restorative perpendicular
pressure and magnetic-tension forces. When the scale of the perturbation is not much
larger than ρi , thermal ions are less well ‘tied’ to the field line’s trajectory because of
their gyromotion. This results in an additional contribution to the net flux of perpen-
dicular momentum into the perturbed volume of plasma, and therefore enhanced
parallel pressure forces.

That the reduced threshold is a FLR effect can be proven analytically by taking
advantage of the numerical observation that marginally unstable oblique firehose
modes have no real frequency. Using this fact, we can derive a somewhat simplified
(but still transcendental) equation for the threshold condition of the instability for a
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plasma with arbitrary ion and electron distribution functions. Via a subsidiary expan-
sion in k‖ρi ∼ k⊥ρi 	 1, we can then write down a simple expression for the threshold
condition that includes the leading-order FLR corrections (see Appendix A.3). These
corrections are proportional to high-order moments of the distribution function
(specifically, fourth order or higher). For a plasma with bi-Maxwellian ions and
Maxwellian electrons, we deduce that the threshold condition is

�i

(
1 + 3

2
k2

‖ρ
2
i − 3

8
k2

⊥ρ2
i

)
+ 2

β‖i
=O(

�i k
4ρ4

i

)
. (2.9)

For any perturbation having k‖ < 2k⊥, the condition (2.9) implies that the value of �i

required for instability is less negative than the fluid firehose threshold �i = −2/β‖i .
For modes with the same wavevector as those oblique modes that we observe numer-
ically to become unstable at �i ≈ �c � −1.35/βi (i.e. k‖ρi � 0.45, k⊥ρi � 0.35),
(2.9) implies �i ≈ −1.6/β‖i , which is (to the order of accuracy of the subsidiary
expansion) not too dissimilar to the numerically determined result. This agreement
supports the conjecture that FLR effects are responsible for the observed weakening
in the instability threshold.

2.5. Why the resonant parallel firehose instability is subdominant in β‖i � 1 plasma
The apparent unimportance of the resonant parallel firehose instability when

β‖i � 1, a finding consistent with previous numerical results (see § 2.2), can be
proven analytically. We show in Appendix A.2 that, when �i � −1.35/β‖i , the
fastest-growing resonant parallel firehose modes (which, in contrast to plasma with
�i ∼ β‖i ∼ 1, satisfy k‖ρi 	 1) have a growth rate that is exponentially small in
1/β‖i , i.e. γ‖f ∼ β

−1/2
‖i exp (−0.74β‖i). By comparison, the peak growth rate γ⊥f of

the resonant oblique firehose instability satisfies γ⊥f ∼ |�i − �cr| Ωi when �i is close
to the instability’s threshold anisotropy, �cr � −1.35/β‖i (cf. (2.4)). Assuming that
|�i − �cr| 	 1/β‖i , it can be shown that γ⊥f greatly exceeds γ‖f when

(�cr − �i)β‖i � β
1/2
‖i exp (−0.74β‖i). (2.10)

For β‖i � 4, the right-hand side of (2.10) is at least an order of magnitude below
unity. We conclude that in a high-β‖i plasma with an increasingly negative pressure
anisotropy, the resonant oblique firehose instability becomes much faster growing
than its parallel counterpart once �i < �cr.

Perhaps more surprisingly, the resonant parallel firehose instability also becomes
subdominant to the non-resonant (fluid) parallel firehose instability in β‖i � 1, bi-
Maxwellian plasma at pressure anisotropies not much more negative than the
fluid firehose threshold, �i = −2/β‖i . If �i < −2/β‖i , then the non-resonant par-
allel firehose operates at all parallel wavenumbers that satisfy (Schekochihin et al.
2010)

k‖ρ‖i < 4
∣∣∣∣ 1
β‖i

+ �i

2

∣∣∣∣1/2

, (2.11)

and the peak instability growth rate is

γ‖f,nr ≡
∣∣∣∣ 2
β‖i

+ �i

∣∣∣∣Ωi at (k‖ρi)‖f,nr ≡ 2
∣∣∣∣ 2
β‖i

+ �i

∣∣∣∣1/2

. (2.12)
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If we assume that |2/β‖i + �i | 	 2/β‖i , it then follows that γ‖f,nr � γ‖f is equivalent
to the condition

3

|2 + �iβ‖i | � β
1/2
‖i exp

(
−β‖i

2

)
. (2.13)

This bound can be satisfied near marginality of the non-resonant firehose insta-
bility provided that β‖i � 7. Thus, in stark contrast to plasmas with β‖i ∼ 1 (see
e.g. Hellinger & Matsumoto 2001), the resonant parallel firehose instability is
unimportant in β‖i � 1 plasma.

The relative inefficacy of the resonant parallel firehose instability in high-β plasma
has a simple physical explanation. As was mentioned in § 2.2, the instability is driven
by resonant wave–particle interactions: specifically, right-handed circularly polarised
hydromagnetic waves drain energy from gyroresonant particles with parallel veloci-
ties v‖ = (ω + Ωi)/k‖ ≈ vthi/k‖ρi . In a plasma with βi ∼ �−1

i � 1, the gyroresonant
particles have characteristic velocities v‖ ∼ �

−1/2
i vthi that are much greater than the

ion thermal velocity. This reveals why the growth rates of the unstable modes are
very small: due to their long wavelengths, the hydromagnetic waves can only interact
resonantly with suprathermal ions, of which there is only a small number compared
with the thermal population. The stabilising action of cyclotron damping is weak on
such modes, which in turn allows even a small anisotropy to be able to overcome this
damping. However, for shorter-wavelength modes, cyclotron damping is simply too
strong for the instability to operate. This conclusion is consistent with the findings
of Matteini et al. (2006), who presented evidence of distribution functions becom-
ing less distorted by resonant interactions as βi was increased in one-dimensional
expanding-box simulations of firehose-unstable plasma with βi � 10; this finding was
attributed to the particles that were resonant with parallel firehose modes being
increasingly suprathermal.

While the resonant parallel firehose instability is generically unimportant in high-
βi plasmas with bi-Maxwellian ion distributions, this conclusion does not necessarily
hold for plasmas with non-bi-Maxwellian distributions. Indeed, we will show that
right-handed circularly polarised modes can be destabilised by the distribution func-
tion that naturally arises during the nonlinear evolution of the oblique firehose
instability. These ‘secondary parallel firehose modes’ are characterised and discussed
in § 5.2.

3. Properties of high-βi plasmas with saturated firehose instability
3.1. Possible saturated states of the instability

Once firehose modes are linearly destabilised, they grow until they are able to
backreact significantly on the pressure anisotropy that drives their growth. Previous
analytical and numerical studies suggest that this backreaction causes a transition
from exponential growth of the magnetic energy of the modes to secular, power-law
growth (Schekochihin et al. 2008; Rosin et al. 2011). In turn, the secular-growth
phase eventually transitions into saturation, with the magnetic energy no longer

3
Using the estimate γ‖f ∼ |�i |1/2 exp (−1/|�i |) derived in Appendix A.2 here with �i ≈ −2/β‖i is valid,

because the wavenumber (k‖ρi )‖f ≈ 2β
−1/2
‖i at which peak growth of the resonant instability of the right-handed

mode is attained is much larger than the wavenumber of the smallest-scale mode that becomes unstable to the
non-resonant instability: (k‖ρi )‖f/(k‖ρi )‖f,nr ≈ ∣∣2 + �i β‖i

∣∣−1/2 � 1. Therefore, the fastest-growing resonant parallel
firehose mode is still propagating, and its real frequency is still much greater than its growth rate.
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Property Ultra-high-beta Alfvén-inhibiting Alfvén-enabling
�sat < − 2/βi � − 2/βi � − 1.6/βi
νeff ≈0.25Ωi �0.5βi/τ �0.6βi/τ

μB ∼4pi/Ωi �τ B2/4π �0.8τ B2/4π

δB2/B2
0 ∼1 �βi (τΩi )

−1? ∼β
1/4
i (τΩi )

−1/2

Long-wavelength
(kρi 	 1) modes?

Yes Yes No

TABLE 1. Summary of typical values describing the ultra-high-beta, Alfvén-inhibiting and
Alfvén-enabling states of a firehose-unstable plasma. Properties include the regulated pres-
sure anisotropy in saturation �sat, the particle-averaged effective collisionality νeff, the implied
effective Braginskii viscosity μB,eff and the characteristic energy δB2/B2

0 of the firehose fluc-
tuations. Whether or not the magnetic-energy spectrum of firehose fluctuations extends to
wavelengths much greater than ρi is also indicated. We note that δB2/B2

0 in the Alfvén-
inhibiting state remains uncertain, because our study and that of Melville et al. (2016) obtain

discrepant results (see discussion in § 3.1.2).

growing. Based on both previous studies (in particular, Melville et al. 2016) and
the results of this paper, we claim that there are three qualitatively distinct states –
ultra-high-beta, Alfvén-inhibiting and Alfvén-enabling – that can be realised by the
saturation of firehose instabilities in high-β plasmas. Which of these states is realised
depends on the relative magnitude of just two independent parameters: βi and τΩi ,
where we formally define the macroscopic evolution time τ by

τ ≡
∣∣∣∣(b̂b̂ − I

3

)
: ∇u

∣∣∣∣−1

=
∣∣∣∣ d
dt

log
B

n2/3

∣∣∣∣−1

. (3.1)

We describe each of these states in §§ 3.1.1–3.1.3, respectively. To aid comparison
between these states, table 1 summarises their key properties.

The one commonality between all states is the emergence of an effective collision-
ality νeff associated with the firehose fluctuations, which manifests as an additional
isotropisation term in the Chew–Goldberger–Low (CGL) equations that describes
the evolution of parallel and perpendicular pressures in magnetised plasmas (Chew,
Goldberger & Low 1956):

dp⊥
dt

= p⊥
d
dt

log (nB) − ∇ · q⊥ − q⊥∇ · b̂ − νeff(p⊥ − p‖), (3.2a)

dp‖
dt

= p‖
d
dt

log
n3

B2
− ∇ · q‖ + 2q⊥∇ · b̂ − 2νeff(p‖ − p⊥), (3.2b)

where q‖ and q⊥ denote the parallel heat fluxes of parallel and perpendicular tem-
perature, respectively. This effective collisionality in turn gives rise to an anomalous
viscous stress tensor Π. In a weakly collisional plasma (νeff 	 Ωi ), this tensor is
approximated well by

Π ≈ −μB,eff

(
b̂b̂ − I

3

)(
b̂b̂ − I

3

)
: ∇u = μB,eff

τ

(
b̂b̂ − I

3

)
, (3.3)
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where

μB,eff = pi

νeff
� −1

2
(�i)satβ‖i

B2

4π
τ (3.4)

is the effective Braginskii viscosity.

3.1.1. Ultra-high beta: τ � βiΩ
−1
i

The ‘ultra-high-beta’ state is realised when the effective collisionality required to
regulate the pressure anisotropy back to the value required for marginal stability
of the firehose instability (i.e. νeff ∼ β‖i/τ ) becomes larger than Ωi , and therefore
is not realisable. Microphysically, the ultra-high-beta state is characterised by large-
amplitude magnetic-field perturbations: after a brief exponential growth phase, the
fluctuations grow secularly for a time of order τ until δB2/B2

0 ∼ 1 and a broad spec-
trum of firehose fluctuations emerge (including wavelengths that are much greater
than ρi ). These relatively large-amplitude fluctuations result in an effective collision-
ality νeff ≈ 0.25Ωi (Melville et al. 2016). There is, of course, an effective viscosity
associated with this scattering rate, but because its value is ∼pi/Ωi , the viscous
stress tensor may not be sufficiently anisotropic that the form (3.3) is an adequate
description.

3.1.2. Alfvén inhibiting: βiΩ
−1
i 	 τ � τcr(βi )

If τΩi/βi is much greater than unity, but is not too large (see § 3.1.3), then the time
tsat ∼ (βiτ/Ωi)

1/2 taken for the firehose instability to saturate, as observed empirically
by Melville et al. (2016), becomes much smaller than τ , and a state distinct from
the ultra-high-beta one is realised. After a time ∼tsat has passed, particle scattering
becomes efficient enough to regulate the pressure anisotropy to the marginal value
of the long-wavelength firehose instability (�sat � −2/βi ) as well as inhibit further
growth of magnetic perturbations. Using shearing-box simulations of collisionless
plasmas, Melville et al. (2016) found that the effective collisionality νeff in this state
was given approximately by νeff � 0.5Sβ, where S � 1/τ is the rate of shear (i.e.
the stretching rate of the magnetic field by the incompressible flow). This effective
collisionality gives rise to an effective Braginskii viscosity in the plasma given by
μB,eff � τ B2/4π .

As for the magnetic-field perturbations themselves, the key difference between the
Alfvén-inhibiting and ultra-high-beta states is that the characteristic magnitude of the
perturbed energy in the former is much smaller than the energy of the background
field. However, the precise scaling of δB2/B2

0 with βi , τ and Ωi in the Alfvén-
inhibiting state remains unclear based on relevant studies to date. In their high-β
shearing-box simulations, both Kunz et al. (2014a) and Melville et al. (2016) found
empirically that δB2/B2

0 ∼ (βi/τΩi)
1/2 	 1 over a range of βi and τΩi , while the

hybrid expanding-box (HEB) simulation study reported in § 4 of this paper instead
obtains δB2/B2

0 ∼ βi/τΩi 	 1. One plausible explanation for the discrepancy in
these scalings is that our simulation study covers characteristically smaller values of
βi and larger values of τ than considered by Kunz et al. (2014a) and Melville et al.
(2016), with only some overlap. The smallest values of δB2/B2

0 in Kunz et al. (2014b)
and Melville et al. (2016) are comparable to the largest values that we observed in
the simulations described in § 4, and over this (albeit limited) range, we see evidence
of a flatter power-law dependence of δB2/B2

0 on βi/τΩi emerging at sufficiently
small values of this parameter in our simulations. This would seem to suggest that
mechanisms whose efficacy scales strongly with mode amplitude, such as nonlinear
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mode coupling or trapping, could start to affect the saturation of the firehose insta-
bility at small enough values of βi/τΩi . Another possibility is the contribution of
long-wavelength firehose modes to the total energy budget in the shearing-box sim-
ulations; such modes, which are inefficient at causing the pitch-angle scattering of
particles, can nonetheless grow significantly if the pressure anisotropy attains a value
�i 	 −2/βi at the time tnl at which secular growth begins, which was generically the
case in the prior shearing-box studies and also in a few of our expanding-box sim-
ulations. A third possibility is that, for values of τΩi that are only a few orders
of magnitude larger than unity, in which saturation occurs on time scales com-
parable to τ , the type of macroscopic motion that generates pressure anisotropy
affects that saturation (see § 7 for further discussion of this issue). In particular, for
the unidirectional expansions we simulate, flux conservation implies that the out-of-
plane component of the perturbed magnetic field decreases at the same rate as the
macroscopic field, whereas for a two-dimensional shear, the out-of-plane component
remains constant. This would give rise to larger values of δB2/B2

0 . Irrespective of the
precise scaling of δB2/B2

0 with β/τΩi , in all of the simulations of Alfvén-inhibiting
states discussed in this paper, the saturated firehose fluctuations satisfy δB2/B2

0 	 1
and evidence of a broad spectrum of modes (including long-wavelength modes) is
observed.

3.1.3. Alfvén enabling: τ � τcr(βi )

Finally, if τ exceeds a critical, βi -dependent ‘transition’ time scale τcr = τcr(βi),
then another qualitatively distinct state is realised. The key property that underpins
the transition between the Alfvén-inhibiting state and this, third, Alfvén-enabling
state is the wavenumber dependence of the firehose instability’s threshold: ‘kinetic’
ion-Larmor-scale firehose modes are destabilised at smaller characteristic pressure
anisotropies than are longer-wavelength firehose modes (see § 2.2). The instability
threshold of the oblique ion-Larmor-scale firehose modes implies the existence of a
time scale τcr such that only ion-Larmor-scale firehose modes ever become unstable
if τ � τcr (see § 3.2 for a more extended demonstration of this). The condition arises
because oblique ion-Larmor-scale firehose modes can undergo significant exponen-
tial growth – and thereby backreact on the plasma – before a broad spectrum of
firehose modes develops if the pressure anisotropy of the plasma is driven at a
slower rate than the characteristic linear growth rate of the oblique ion-Larmor-scale
firehoses. This transition time scale then determines whether the Alfvén-enabling
or Alfvén-inhibiting state is realised. In general, τcr is a monotonically increasing
function of βi . For certain ranges of βi , simplified expressions for τcr can be deter-
mined using analytic approximations for the growth rate of oblique ion-Larmor-scale
firehose modes. For plasma with values of βi that are not too large (βi 	 105), we
find that τcr ∝ β1.6

i Ω−1
i (cf. (3.7)); for βi very large (βi � 105), τcr ∝ β

3/2
i log βi Ω−1

i
(cf. (3.6)).

Although there are some commonalities, the Alfvén-enabling state differs qual-
itatively from both the ultra-high-beta and Alfvén-inhibiting states in several key
regards. Macroscopically, the saturated pressure anisotropy attains a value �sat �
−1.6/βi that simultaneously marginalises kinetic-scale firehose modes while allow-
ing long-wavelength, linear Alfvénic modes to be stable and propagate (thus, the
moniker ‘Alfvén-enabling’). Microphysically, the firehose-induced effective colli-
sionality νeff � 0.4βi/τ efficiently regulates the pressure anisotropy, similarly to
the Alfvén-enabling state, with associated Braginskii viscosity μB,eff � 0.8τ B2/4π .
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However, the fundamental nature of the firehose modes themselves differ in the
Alfvén-enabling state, with the wavelengths of all modes being comparable to the
ion-Larmor scale. These modes that are present can be categorised into two pop-
ulations: oblique firehose modes; and a newly identified population of ‘secondary’
parallel firehose modes, which are initially damped but are then destabilised by the
backreaction of the oblique firehose modes on the ion distribution function. The
resulting distribution function is notable in not being a bi-Maxwellian, which, in
turn, accounts for why �sat � −1.6/βi does not attain the marginal stability value
for a bi-Maxwellian distribution (�i � −1.35/βi ). The presence of the secondary
parallel firehose modes – which generically have a larger amplitude than the oblique
modes – gives rise to the scaling of the perturbed field energy, on account of their
distinct saturation mechanism: δB2/B2

0 ∼ β
1/4
i (τΩi)

−1/2.

3.2. Why an Alfvén-enabling state is realised when τ � τcr

Although the reduced instability threshold for ion-Larmor-scale firehose modes
had been identified previously, and while Alfvén-enabling states have been observed
in simulations (see e.g. Hellinger & Trávníček 2008; Bott et al. 2021), we are
not aware of any existing theories explaining the physics underpinning the transi-
tion in high-β plasma between the Alfvén-inhibiting and Alfvén-enabling states. We
therefore outline such a theory here, based on our results from § 2.3.

In a plasma in which �i is driven increasingly negative at a sufficiently slow
rate, resonant oblique firehose modes can grow significantly and regulate the pres-
sure anisotropy before �i becomes negative enough for fluid firehose modes to be
destabilised. More specifically, if the characteristic time scale ∼γ −1

⊥f over which the
resonant oblique firehose modes grow linearly is much smaller than the time interval
�t over which the pressure anisotropy would be driven by the macroscopic evolu-
tion from �i � −1.35/β‖i to �i = −2/β‖i (i.e. γ⊥f�t � 1), then the growth of these
modes will regulate �i before �i becomes �−2/β‖i . In this case, an Alfvén-enabling
state will persist. If, by contrast, γ⊥f�t 	 1, then resonant oblique firehose modes
will not have had the chance to grow before the plasma attains �i �−2/β‖i and
(linear) Alfvén waves no longer propagate.

In the case when �i is driven linearly in time over a time scale τ (i.e. �i ≈ −t/τ ,
where t = 0 is defined as the time at which the pressure is isotropic), the condition for
the Alfvén-enabling state to result is γ⊥f�t = 0.65γ⊥fτ/βi � 1. The transition time
scale τcr is then the characteristic value of τ at which γ⊥f�t ≈ Nfold, where Nfold is an
order-unity factor equal to the number of e-folding times of the instability required
for the resonant oblique firehoses to backreact on the plasma (in our simulations,
we find Nfold ≈ 5). This implies that

τcr(βi) ≈ 1.5Nfoldβiγ
−1
⊥f . (3.5)

Because γ⊥f decreases with βi , we conclude that τcr monotonically increases as βi

does. Then using the simplified expressions for the growth rate of resonant oblique
firehose modes given in § 2.3, explicit expressions for τcr as a function of βi can be
found in various different parameter regimes. When βi � 106, substituting (2.6) into
(3.5) gives

τcr(βi) ≈ 0.9Nfoldβ
3/2
i log

(
27πβi

10

)
Ω−1

i (for very large βi). (3.6)
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By contrast, if βi satisfies 1 	 βi 	 105, then we instead substitute in the empirical
scaling (2.7) into (3.5) to obtain

τcr(β‖i) ≈ 5Nfoldβ
1.6
i Ω−1

i (for 1 	 βi 	 105). (3.7)

In both regimes, the transition time scale is much greater than the ion gyroperiod.
However, in plasmas where the ratio of the macroscopic evolution time scale τ to
the ion gyroperiod is many orders of magnitude larger than βi – as is often the cases
in astrophysical plasmas of interest (see § 7) – both (3.6) and (3.7) imply that τ > τcr,
with the consequence that such plasmas will always end up in an Alfvén-enabling
state.

We can also make specific predictions for the relationship between the parameter
τ and the minimum value (�i)min of the pressure anisotropy attained when (�i)min

is close to −2/β‖i . For example, assuming that the first minimum of �i is attained
when oblique, kinetic-scale firehose fluctuations begin to modify the equilibrium –
i.e. when γ⊥f�t ≈ Nfold – it follows that (�i)min ≈ −1.35/βi − Nfold/(γ⊥fτ). Then, in
the case of moderately large βi (1 	 βi 	 105), (2.8) for the peak growth rate of
oblique firehose modes when (�i)min is close to −2/β‖i implies that

(�i)min ≈ �cr − 1.8
(

Nfold

τΩi

)0.625

. (3.8)

This states that the difference (�i)min − �cr does not depend on β‖i in this parameter
regime, instead being proportional to (τΩi)

−0.625. Another corollary of (3.8) is that
(�i)minβi is not a function of τ , Ωi and βi independently, but rather only of the
specific combination τ/τcr.

3.3. Summary and the rest of this paper
In this section, we have summarised the possible states that can be realised in

firehose-saturated, high-β plasmas. These claims obviously require careful justifica-
tion with recourse to nonlinear analytical studies and/or simulations. While such
a study on the transition between ultra-high-beta and Alfvén-inhibiting states has
already been completed by Melville et al. (2016), no prior study has been done of
the analogous transition between the Alfvén-inhibiting and Alfvén-enabling states.
We have carried out such a study and report its results in §§ 4–6. Readers who are
happy to take such results on trust, and are instead keen to consider the relationship
of our theory of firehose saturation with previous studies and the implications for
astrophysical high-β plasmas, are encouraged to skip forward to § 7.

4. Kinetic simulations of firehose-susceptible high-β plasmas
4.1. Overview

While the existence of Alfvén-enabling and Alfvén-inhibiting states in firehose-
susceptible plasmas can be predicted via the linear theory of the firehose instability,
determining the equilibrium properties of these two states necessitates modelling the
firehose’s nonlinear saturation across a range of different parameters (e.g. β‖i , τ )
as pressure anisotropy is driven by a plasma’s macroscopic evolution. This is most
effectively done numerically. In this section, we first explain why so-called HEB
simulations are particularly well suited to this purpose, and describe the method
underpinning them. Then, we outline the results of a parameter study of numerous
such simulations, characterising the time evolution of quantities such as the pressure
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anisotropy �i , the effective Alfvén speed vA,eff and the magnetic-field strength δBf

of the firehose fluctuations. This, in turn, allows us to determine the equilibrium
thermodynamic and microphysical properties of the Alfvén-enabling and Alfvén-
inhibiting states, respectively.

Our key finding is that, in expanding, high-βi plasmas with an expansion time
τexp (see § 4.2.1) that satisfies τexp � τcr(β‖i) (i.e the ‘asymptotic’ Alfvén-enabling
state), the pressure anisotropy is regulated to a value �i � −1.6/β‖i that is above
the value �i = −2/β‖i at which Alfvén waves cease to propagate. By contrast, if
βiΩ

−1
i 	 τexp 	 τcr(β‖i) (i.e. an Alfvén-inhibiting state), then �i � −2/β‖i . We also

show that the firehose fluctuations are qualitatively distinct in the two regimes. In
the Alfvén-inhibiting state, a broad spectrum of magnetic fluctuations (including
long-wavelength modes) is excited; in the Alfvén-enabling state, magnetic energy is
primarily concentrated in fluctuations at ion-Larmor scales. In the latter case, there
are two types of modes: oblique modes and parallel ion-Larmor-scale modes. The
latter are not, in fact, resonant parallel firehose modes of the conventional type, but
are instead a secondary instability associated with the (non-bi-Maxwellian) ion distri-
bution that is created by resonant scattering of suprathermal ions by the oblique fire-
hose modes. That the saturated value of �i is somewhat more negative (� − 1.6/β‖i )
than the linear threshold of the resonant oblique firehose instability in a bi-
Maxwellian plasma (� − 1.35/β‖i ) can also be attributed to the non-bi-Maxwellian
form of the ion distribution function in saturation.

Finally, we characterise the velocity-space-averaged effective collisionality νeff for
firehose-susceptible plasmas in both the Alfvén-enabling and the Alfvén-inhibiting
states (see § 4.4). We confirm that, for all of our expanding-box simulations,
νeff ∼ βi/τexp, in agreement with previous shearing-box simulations of the firehose
instability that are not in the ultra-high-beta regime (Kunz et al. 2014a; Melville
et al. 2016). We then provide quantitative estimates of the plasma’s effective parallel
Braginskii viscosity μB in our simulations.

4.2. Simulation set-up

4.2.1. Why simulate an expanding plasma?
As was mentioned in the Introduction, a range of different macroscopic bulk-flow
fluid motions – including shearing and expanding motions – can give rise to nega-
tive ion-pressure anisotropy (�i < 0) in collisionless, magnetised plasma. To see this
in more detail, let us assume that the parallel and perpendicular pressures evolve
according to the double-adiabatic equations (i.e. the CGL equations (3.2b) after
dropping the heat fluxes and effective collisionality):

d
dt

log
p⊥
nB

= 0,
d
dt

log
p‖ B2

n3
= 0. (4.1)

In any collisionless plasma governed by these equations whose initial temperature is
isotropic (i.e. T‖ = T⊥ at some time t = 0), the pressure anisotropy satisfies

�i = B3/B3
0

n2/n2
0

− 1, (4.2)

where the subscript ‘0’ is from here on used to denote the value of a quantity at
t = 0. Thus, the ion-pressure anisotropy will decrease in any double-adiabatic plasma
in which B3/n2 decreases due to the plasma’s macroscopic evolution.
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Of the motions that cause B3/n2 to decrease, a particularly advantageous one to
choose for our purposes is that of spatially uniform expansion at a constant rate
in one direction transverse to the mean magnetic field. There are a few different
physical situations in which this type of expansion could arise: during the motion of
a macroscopic, linearly polarised magnetosonic wave travelling perpendicularly to
the background magnetic field; in certain regions of compressive turbulence; and,
finally, the expansion of cylindrical, magnetised plasma – for example, generated
by an exploding wire array in a laboratory astrophysics experiment. Assuming that
expansion occurs at a rate 1/τexp, where τexp is the expansion time, it follows that
B ∝ n = n0/(1 + t/τexp), and so

�i = n

n0
− 1 = − t

t + τexp
. (4.3)

Beyond studying specific physical systems, there are three pragmatic reasons for this
choice of motion in order to study firehose instabilities. First of these is the possi-
bility of simulating such an expansion exactly via a coordinate transform method,
allowing for a simulation domain that is both fixed and homogeneous to be used.
Using a coordinate transform method (of which a shearing box is another example)
maximises the effective separation between macro- and microscales for a fixed sim-
ulation domain size; it also allows for simulation-domain-averaged properties of the
plasma (including the ion distribution function) to be used as a reasonable analogue
for that plasma’s ‘equilibrium’ properties, minimising the uncertainty that could be
introduced by macroscopic spatial variation of the plasma. The second reason is that,
in contrast to a shearing-box simulation (e.g. Kunz et al. 2014a), the direction of the
macroscopic magnetic field does not change as the motion proceeds, which simplifies
comparing different times in the simulation. Finally, compared with other ‘simple’
motions, an expansion in a direction transverse to the background magnetic field
gives rise to a comparably slow evolution of the pressure anisotropy over a fixed
period of time. For example, a two-dimensional incompressible motion in which
there is simultaneously expansion in one direction transverse to the background
magnetic field and contraction in the parallel direction, causing the background
magnetic-field strength to vary as B = B0/(1 + t/τexp), would give rise to a value
of |d�i/dt | that is initially three times larger than the analogous one-dimensional
transverse expansion. As we show in § 4.3.1, accessing the Alfvén-enabling regime
when βi � 1 requires macroscopic evolution rates that are at least several orders
of magnitude smaller than the ion-Larmor frequency Ωi ; because such simulations
are expensive, choosing a motion that minimises the rate of change of �i at a
fixed time period is desirable. Motivated by these considerations, we choose in this
paper to simulate plasmas expanding in a single transverse direction. In addition to
its application to the specific physical systems mentioned earlier in this paragraph,
we anticipate that the evolution and saturation of the firehose instability becomes
insensitive to the specifics of the macroscopic motion driving it provided there is suf-
ficient separation of relevant time scales; we revisit this assumption after describing
our simulation results in § 7.

4.2.2. Hybrid expanding box simulations with Pegasus++
To capture all ion firehose instabilities correctly, the plasma’s ions (but not necessar-
ily the electrons) must be modelled kinetically. We therefore choose to conduct HEB
simulations. Although this approach and its implementation have been described
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elsewhere (e.g. Hellinger & Trávníček 2005; Bott et al. 2021), we explain the method
here for completeness. All HEB simulations reported in this paper were carried out
using the PIC code Pegasus++ (Kunz et al. 2014b; Bott et al. 2021).

In the HEB approach, one transforms from the locally co-moving frame of the
expanding plasma to a co-moving frame in which the metric extends as the plasma
expands, and then performs all subsequent calculations in this expanding frame.
Denoting position in the co-moving, non-expanding frame by r , and in the co-
moving, expanding frame by r ′, the frame transformation is characterised by a
matrix Λ ≡ ∂ r/∂ r ′, with determinant λ = det Λ. For HEB PIC simulations using
Pegasus++, we evolve two sets of equations: those describing the motion of ion
macroparticles and those describing the evolution of electromagnetic fields. The for-
mer, which constitute evolution equations for the primed-frame positions r ′

p = Λ−1r p

and velocities v′
p = Λ−1v p of macroparticles, are given by

dr ′
p

dt ′ = v′
p, (4.4a)

dv′
p

dt ′ = e

mi
Λ−2

[
E ′(t ′, r ′

p) + v′
p

c
× B′(t ′, r ′

p)

]
− 2Λ−1 dΛ

dt ′ v′
p, (4.4b)

where the fields E ′ and B′ are related to the physical electric field E and magnetic
field B in the unprimed frame via

4

B′ = λΛ−1 B and E ′ = ΛE. (4.5)

To solve (4.4b), Pegasus++ employs a straightforward modification of the Boris
push that groups the velocity-dependent non-inertial force with the v′

p × B rota-
tion. The fields B′ and E ′ in turn satisfy modified versions of Faraday’s law and a
generalised Ohm’s law, respectively:

5

∂ B′

∂t ′ = −c∇′ × E ′, (4.6a)

E ′ = −u′

c
× B′ − Te

en′ ∇′n′ + [∇′ × (Λ2 B′)] × B′

4πen′λ
. (4.6b)

Fluid quantities in the primed frame are calculated in the usual way by taking
moments of the primed-frame ion distribution function. This is done by summing
up the (weighted) phase-space contributions from each ion macroparticle of shape
S centred on the phase-space position (r ′

p, v′
p) to the phase-space position (r ′, v′).

For example, the primed-frame ion density n′ and primed-frame ion-flow velocity
u′, which are related to their unprimed analogues via n′ = λn and u′ = Λ−1u, are
computed via

n′(r ′) =
∑

p
S
[
r ′ − r ′

p(t
′)
]

and u′(r ′) = 1
n′
∑

p
v′

p S
[
r ′ − r ′

p(t
′)
]
. (4.7)

4
The fields E′ and B′ are not the physical transformations of E and B into the primed frame, but are instead

convenient proxy fields to evolve.
5
The (transformed) Hall term, [∇′ × (Λ2 B′)] × B′/4πen′λ, in Ohm’s law was incorrectly reported as

(∇′ × B′) × Λ2 B′/4πen′λ in both Hellinger & Trávníček (2005) and Bott et al. (2021). This error was not replicated
in Pegasus++ itself, neither here nor for Bott et al. (2021).
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At any given time, physical variables can be computed directly from the primed-
frame variables using the appropriate inverse coordinate transform.

For our simulations, we set

Λ(t) =
(

1 + t

τexp

)
x̂ x̂ + ŷ ŷ + ẑ ẑ, (4.8)

where {x̂, ŷ, ẑ} is a set of basis vectors of an orthogonal coordinate system in which
ẑ is parallel to B(t = 0) (and remains parallel to the mean ‘guide’ field in the simula-
tion domain throughout). In terms of the evolution of the side lengths [Lx(t), Lz(t)]
of a two-dimensional spatial domain, (4.8) gives

Lx(t) = Lx0

(
1 + t

τexp

)
, Lz(t) = Lz0. (4.9)

We define the effective expansion time τexp,eff via

τexp,eff ≡
(

d
dt

log
B3

n2

)−1

=
(

d
dt

log B

)−1

= t + τexp. (4.10)

We choose this definition for three reasons. Firstly, in the limit of small pressure
anisotropy, it is a simple matter to show that d�i/dt ≈ d(�iβ‖i)/dt ≈ −1/τexp,eff as
the plasma expands. Secondly, in the saturated phase of the firehose instability, it
can be shown that the box-averaged effective collisionality associated with firehose
fluctuations is inversely proportional to τexp,eff (see § 4.4). Finally, although τexp,eff

increases in time, the ion-cyclotron frequency Ωi ∝ B = B0τexp/τexp,eff decreases in
such a way that their product is constant: τexp,effΩi = τexpΩi0.

We ran numerous HEB simulations of this type with different values of τexp and
βi0. We chose to perform these simulations in a 2.5-dimensional geometry – that
is, particles move in three dimensions and the electromagnetic fields are three-
dimensional, but spatial gradients are restricted to the two-dimensional (x, z) plane
– because such simulations can capture the relevant physics at significantly reduced
computational costs. Periodic boundary conditions were applied in all spatial direc-
tions. Table 2 outlines the key parameters of all of the simulations reported in the
paper. All simulations were initialised with equal parallel and perpendicular temper-
atures. The numerical resolution of the simulations was chosen (�x = �z = 0.26ρi )
such that the characteristic wavenumbers of firehose modes would be sufficiently
well resolved: the maximum wavenumber kmax of modes that could be resolved in
our simulations was kmax = π/�z � 12.1ρ−1

i . We note that, as a result of this choice,
for those of our simulations with βi0 = 200, the wavenumber k = d−1

i at which fluc-
tuations on the scale of ion skin depth di exist was not resolved; however, we believe
that this is an acceptable limitation, because in high-β plasmas, the characteristic
scale of firehose fluctuations is ρi , not di (see e.g. Bott et al. 2024). Simulations were
run until what appeared to be a saturated state was obtained. The large number Nppc

of particles per cell used in these simulations is necessary in order to suppress the
effect of numerical collisions (arising from the Poisson noise due to finite sampling
of the ion distribution function) on both the evolution of the pressure anisotropy
and the firehose instability itself. Even with such large values of Nppc, we find that
numerical collisionality has a quantitative (but not a qualitative) effect on some of
our results (see Appendix B).
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Run βi0 τexpΩi0 τ̃0 βi (tmin) τ̃eff Nppc tend/τexp tendΩi0
A 6 2 × 103 4.2 7.77 2.8 5 × 103 2.1 4.2 × 103

BI 12 5 × 102 0.35 15.1 0.24 5 × 103 5.2 2.6 × 103

BII 12 2 × 103 1.4 14.1 1.1 5 × 103 3.0 6.0 × 103

BIII 12 8 × 103 5.6 13.7 4.5 1 × 104 1.9 1.5 × 104

BIV 12 2 × 104 14 13.6 11 1 × 104 1.0 2.0 × 104

CI 25 2 × 103 0.43 27.6 0.37 1 × 104 0.72 1.4 × 103

CII 25 5 × 103 1.1 27.0 0.95 1 × 104 1.0 5.0 × 103

CIII 25 8 × 103 1.7 26.9 1.5 1 × 104 0.72 5.8 × 103

CIV 25 2 × 104 4.3 26.7 3.9 1 × 104 0.66 1.3 × 104

CV 25 5 × 104 11 26.6 9.7 2 × 104 0.49 2.5 × 104

DI 50 2 × 102 0.01 65.4 0.01 1 × 104 3.1 6.3 × 102

DII 50 5 × 102 0.04 58.2 0.03 1 × 104 2.0 1.0 × 103

DIII 50 2 × 103 0.14 53.8 0.13 1 × 104 2.0 4.0 × 103

DIV 50 5 × 103 0.35 52.5 0.33 1 × 104 0.82 4.1 × 103

DV 50 1.25 × 104 0.89 51.8 0.84 1 × 104 0.75 9.4 × 103

DVI 50 2 × 104 1.4 51.7 1.3 1 × 104 0.38 7.6 × 103

DVII 50 5 × 104 3.5 51.3 3.4 1 × 104 0.37 1.9 × 104

EI 100 2 × 103 0.05 106 0.04 1 × 104 3.0 6.0 × 103

EII 100 5 × 103 0.12 104 0.11 1 × 104 1.2 6.0 × 103

EIII 100 1.25 × 104 0.29 102 0.28 1 × 104 0.78 9.8 × 103

EIV 100 3 × 104 0.70 102 0.68 1 × 104 0.50 1.5 × 104

FI 200 5 × 102 0.004 227 0.003 1 × 104 3.3 1.7 × 103

FII 200 1 × 103 0.01 216 0.007 1 × 104 2.7 2.7 × 103

FIII 200 2 × 103 0.02 210 0.014 1 × 104 2.7 5.4 × 103

FIV 200 5 × 103 0.04 205 0.037 1 × 104 2.0 1.0 × 104

FV 200 1.25 × 104 0.10 203 0.094 1 × 104 0.64 8.0 × 103

TABLE 2. Parameters of all HEB simulations performed in this study. Here, tmin is the time
at which the (first) minimum of the pressure anisotropy is attained, tend is the time at which
the simulation run was ended and τ̃0 and τ̃eff are defined by τ̃0 ≡ τexpΩi0β

−1.6
i0 /27 and τ̃eff ≡

τexp,effΩi (tmin)βi (tmin)
−1.6/27, respectively. The empirical factor of 27 is introduced so that

runs with τ̃eff � 1 are at all times in an Alfvén-enabling state (see § 4.3.1). In units of ρi , all
simulations were run with the same numerical resolution (�x = �z = 0.26ρi ), and with the

same initial side lengths of the simulation domain (Lz0 = 1.5Lx0 = 300ρi ).

4.3. Results

4.3.1. Box-averaged pressure anisotropy and effective Alfvén speed
The existence of both Alfvén-enabling and Alfvén-inhibiting states among the
expanding plasmas we have simulated is illustrated in figure 3(a), which posi-
tions each simulation in a [−Ωi(d�i/dt)|t=0)

−1, βi0] = [τexpΩi0, βi0] phase space,
and indicates whether the value of the ion-pressure anisotropy (�i)min attained at
the first minimum (at some time t = tmin) is more (red) or less (blue) negative than
�i = −2/β‖i . Qualitatively, at fixed βi0 the simulated plasmas transition from being
in an Alfvén-enabling state (for which (�i)min > −2/β‖i ) to an Alfvén-inhibiting state
(for which (�i)min 	 −2/β‖i ) as the expansion time is decreased. Furthermore, the
characteristic expansion time at which this transition occurs is (for the suite of
simulations we have conducted) a monotonically increasing function of β‖i . More
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FIGURE 3. Phase-space maps of various simulations of high-βi firehose-susceptible plasmas,
which indicate whether an Alfvén-enabling state (�i > −2/β‖i ) is maintained at all times (blue
points) or not (red points). In (a), we include the HEB simulations completed for this paper
(denoted by ‘×’), as well as the shearing-box hybrid-kinetic simulations reported in Kunz
et al. (2014a) (‘+’) and Melville et al. (2016) (‘ · ’). The dashed line that provides an accu-
rate delineation of consistently Alfvén-enabling states and other states is given by the equation
τexpΩi = 27β1.6

i (cf. figure 1 and (3.7)).

quantitatively, figure 3(b) shows that the scaling (3.7) of τcr with β‖i derived in § 2
(dashed line) is an excellent fit to the measured (effective) expansion time τexp,eff at
which the instantaneous values of βi and (�i)min satisfy (�i)min ≈ −2/β‖i . For refer-
ence, in figure 3(a) we plot also the positions in the same [−Ωi(d�i/dt)|t=0)

−1, βi0]
phase space of previously published high-βi shearing-box simulations of the firehose
instability (Kunz et al. 2014a; Melville et al. 2016); these simulations all realised
the Alfvén-inhibiting state in saturation, a finding consistent with their initialised
parameters.

A simple way to illustrate how the evolution of the pressure anisotropy and the
effective Alfvén speed changes as the expanding plasma transitions from being
Alfvén-inhibiting to Alfvén-enabling is to fix βi0, and compare the evolution of �iβ‖i

and v2
A,eff/v

2
A over time for a selection of increasing values of τexp. This comparison

is made in figure 4. It is clear from figure 4(a) that, for �i > �cr � −1.35/β‖i , the
initial evolution of �iβ‖i is independent of τexp, as predicted by (4.3).

6
However,

once the oblique firehose instability is triggered, we see that for comparatively larger
expansion times (e.g. black and red lines in figure 4a), −�iβ‖i stops increasing
at smaller characteristic values of t/τexp, and attains a less positive value −�iβ‖i

at the time tmin at which the first minimum of �i , (�i)min, is attained. At times
t > tmin, −�iβ‖i is regulated, eventually converging to an order-unity value in all of
our simulations. For the largest values of τexp, we find that the pressure anisotropy
is ultimately regulated to values �i ≈ −1.6/β‖i . By contrast, for the comparatively
smaller expansion times (e.g. cyan and blue lines), �i ≈ −2/β‖i , characteristic of an
Alfvén-inhibiting state. These saturated values of �i imply that, for the simulations
with comparatively smaller expansion times that we have run, the plasma attains

6
The one exception to this is run DVII (with τexpΩi0 = 5 × 104, βi0 = 50; black line), in which −�i β‖i seems

to increase slightly less quickly than in the other runs. This is due to the cumulative effect of numerical collisionality
over such a long run time (see Appendix B).
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(a) (b)

FIGURE 4. Time evolution of (a) the firehose-instability parameter −�iβ‖i and (b) the squared
and normalised effective Alfvén speed v2

A,eff/v
2
A for all of the D runs (βi0 = 50). In (a), the

dotted black line denotes the threshold �iβ‖i = −1.35 of the oblique firehose instability when
βi � 1, while the dashed black line shows the fluid firehose threshold �iβ‖i = −2. In (b), the
dotted (dashed) black line denotes the corresponding value v2

A,eff = 0.32v2
A (v2

A,eff = 0v2
A) of the

squared effective Alfvén speed at the threshold of the oblique firehose instability (fluid firehose
threshold).

(a) (b)

FIGURE 5. (a) Values of the firehose-instability parameter −�iβ‖i at the time tmin at which
the pressure anisotropy attains its first minimum, (�i )min, for all runs, as a function of
τexp,effΩi/β‖i (tmin)

1.6. The dotted (dashed) black line denotes the threshold �iβ‖i = −1.35
of the oblique firehose instability (the fluid firehose instability threshold, �iβ‖i = −2) when
βi � 1; the dotted-dashed purple line denotes (4.11). (b) Values of the difference between
(�i )min and the value �cr at which the oblique firehose becomes unstable as a function of
τexp,effΩi/β‖i (tmin)

1.6, for all runs. The dotted-dashed purple line denotes (4.11).

an Alfvén-inhibiting state with v2
A,eff/v

2
A ≈ 0, while for the larger expansion times,

v2
A,eff/v

2
A ≈ 0.2 (see figure 4b). For intermediate values of τexp, (�i)min drops below

�i = −2/β‖i by an O(1/β‖i) value, but the ‘steady-state’ values of �i that are
subsequently attained imply that the state in these runs is, in saturation, Alfvén-
enabling (albeit with a reduced value of v2

A,eff/v
2
A compared with runs in which

(�i)min > −2/β‖i ).
A key prediction of the theory outlined in § 2 is that the transition between Alfvén-

enabling and Alfvén-inhibiting states in firehose-susceptible high-βi plasmas is a
function of the parameter τexp,effΩi/β

1.6
i (in the limit where 1 	 βi 	 105). We test

this prediction in figure 5(a) by plotting for each of our simulations the relationship
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(a) (b)

FIGURE 6. (a) Values of the firehose-instability parameter −�iβ‖i at the time tsat at which the
square of the perturbed magnetic-field strength δB2

f /B2
0 associated with the firehose fluctuations

attains its maximum value, (δB2
f /B2

0 )max, for all runs as a function of τexp,effΩi/β‖i (tsat)
1.6. The

dashed black line denotes the fluid firehose instability threshold, �iβ‖i = −2, when βi � 1. (b)

Values of the square of the effective Alfvén speed, v2
A,eff/v

2
A at t = tsat, for all runs as a function

of τexp,effΩi/β‖i (tmin)
1.6.

between τexp,effΩi/β
1.6
i and (�i)minβ‖i(tmin). We see that the value of τexp,effΩi/β

1.6
i is

predictive of (�i)minβ‖i(tmin) for all of our simulations, with the decreasing nonlinear
relationship

(�i)minβ‖i(tmin) ≈ −1.35 − 5.1
β‖i(tmin)(

τexp,effΩi

)0.625 (4.11)

between the two parameters being a good fit to our data. This relationship is
consistent with the prediction (3.8) that was based on the linear theory of the
firehose instability (with Nfold � 5.4). It follows that (�i)minβ‖i(tmin) ≈ −2 when
τexp,effΩi ≈ 27β1.6

i . Furthermore, figure 5(b) shows that the power-law dependence
of (�i)min − �cr on (τexp,effΩi)

−0.625 that was predicted by (3.8) is well satisfied.
The parameter τexp,effΩi/β

1.6
i also has a quasi-deterministic relationship with the

values of �iβ‖i and v2
A,eff/v

2
A in our simulations once the firehose instability has sat-

urated. We illustrate this in figure 6 by plotting −�iβ‖i and v2
A,eff/v

2
A at the time

tsat at which the firehose fluctuations attain their peak magnetic-field strength; we
denote the value of �i attained at this time as (�i)sat. Figure 6(a) shows that, as
τexp,effΩi/β‖i(tsat)

1.6 increases from below unity to much greater values, (�i)satβ‖i(tsat)
increases monotonically from a value close to −2 to a less negative value of �−1.6;
equivalently, v2

A,eff/v
2
A increases from being close to zero to �0.2. For the simula-

tions we have performed, we find that for τexp,effΩi/β‖i(tsat)
1.6 � 80, (�i)satβ‖i(tsat)

does not become less negative if τexp,effΩi/β‖i(tsat)
1.6 is increased further still (and

v2
A,eff/v

2
A does not increase). We infer from this that such a state is the ‘asymptotic’

Alfvén-enabling state for asymptotically large values of τexp,effΩi/β‖i(tsat)
1.6. Given

that the relevance of the parameter τexp,effΩi/β
1.6
i is derived entirely from the lin-

ear theory of the firehose instability, it is perhaps unsurprising that the correlation
between τexp,effΩi/β‖i(tsat)

1.6 and (�i)satβ‖i(tsat) is indeed less strong than that between
τexp,effΩi/β‖i(tmin)

1.6 and (�i)minβ‖i(tmin); however, the existence of any correlation at
all suggests that the initial evolution of the firehose instability has a qualitative effect
on the subsequent dynamics. Furthermore, the spread in values of (�i)satβ‖i(tsat)
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FIGURE 7. Two-dimensional visualisations of the out-of-plane component of the perturbed mag-
netic field in two simulations at βi0 = 50 representing (a) an Alfvén-enabling state (run DVI)
and (b) an Alfvén-inhibiting state (run DIII). The perturbed field appears at three different times:
in the linear, nonlinear and saturated phases of the firehose instability, respectively. We note that,
as a fraction of the expansion time, the characteristic times at which the linear, nonlinear and
saturated states are realised are longer in the Alfvén-inhibiting than Alfvén-enabling regime;
this is because the firehose instability develops at a comparatively slower rate in this case when
compared with the expansion rate.

at particular values of τexp,effΩi/β‖i(tsat)
1.6 is partially explained by the fact that, for

plasmas in an Alfvén-enabling state, �iβ‖i periodically fluctuates once the firehose
instability has saturated; our chosen measure of �iβ‖i in saturation is pointwise
in time, and so does not account for this effect. Comparison with time-dependent
phase-space plots of [τexp,effΩi/β‖i(tsat)

1.6, (�i)satβ‖i(tsat)] (not shown) supports this
explanation, and also recovers the same general trend that is observed in figure 6(a).

In summary, our simulation results confirm that the parameter τexp,effΩi/β
1.6
i is

indeed a key metric for determining whether a firehose-susceptible high-βi plasma
attains an Alfvén-inhibiting or Alfvén-enabling state once the firehose instability has
saturated.

4.3.2. Magnetic-field fluctuations
In addition to having distinct macroscopic properties – specifically, different equi-
librium pressure anisotropies and effective Alfvén speeds – the Alfvén-enabling and
Alfvén-inhibiting states are different microphysically. One manifestation of this is
the nature of the firehose fluctuations that arise. Figure 7 visualises the out-of-plane
(dominant) component of the perturbed magnetic field for two simulations hav-
ing βi0 = 50 but differing τexpΩi0, such that one realises an Alfvén-enabling state
(figure 7a; run DVI) while the other realises an Alfvén-inhibiting state (figure 7b;
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(a) (b)

FIGURE 8. (a) Time evolution of the square of the perturbed magnetic-field strength δB2
f /B2

0
associated with the firehose fluctuations for all of the D runs (βi0 = 50). (b) Maximum
value of δB2

f /B2
0 , (δB2

f /B2
0 )max, as a function of τexp,effΩi/β‖i (tsat)

1.6, for all runs. The
dash-dotted (dotted) line shows the relationship δB2

f /B2
0 � 1.6β‖i (tsat)/τexp,effΩi (δB2

f /B2
0 �

0.77(200)0.3β‖i (tsat)
0.2/(τexp,effΩi )

0.5).

run DIII). Initially, in both simulations oblique firehose fluctuations with characteris-
tic wavenumber k‖ρi ∼ k⊥ρi ≈ 0.45 are destabilised. However, the magnitude of the
magnetic-field perturbations in both the nonlinear regime and the saturated states is
larger in the simulation that realises an Alfvén-inhibiting state (relative to an Alfvén-
enabling state). In addition, oblique fluctuations occurring over a range of scales are
much more prominent in the Alfvén-inhibiting state.

How the key parameters of the expanding plasma affect the characteristic ampli-
tude of magnetic fluctuations can be most simply explored by considering the
evolution of the box-averaged perturbed magnetic energy, δB2

f /B2
0 . Figure 8(a)

shows the evolution of δB2
f /B2

0 in time at fixed βi0. The evolution of δB2
f /B2

0 in all
of our simulations proceeds through four phases. First, there is a pre-firehose phase,
in which the box-averaged magnetic-field strength of the fluctuations is simply that
associated with random grid-scale fluctuations; next, a linear growth stage, during
which the amplitude of firehose fluctuations grows exponentially; third, a nonlin-
ear phase, in which the amplitude of fluctuations continue to grow, but no longer
exponentially; finally, saturation. How δB2

f /B2
0 evolves qualitatively as a function of

time during the nonlinear and saturated phase of the firehose depends on β‖i and
τexpΩi . At sufficiently large values of τexp (at fixed β‖i ), δB2

f /B2
0 does not grow mono-

tonically during the nonlinear phase, nor is it constant in the ‘saturated’ state (see
especially the black line in figure 8a). Instead, the magnetic energy oscillates around
a mean value with a characteristic period that is much smaller than τexp,eff. These
oscillations correlate with those seen in the pressure anisotropy in § 4.3.1, implying a
direct link between the amplitude of the firehose fluctuations in saturation, and the
regulation of the pressure anisotropy. For smaller values of τexp (again at fixed β‖i ),
δB2

f /B2
0 does not oscillate in saturation. We also find that, as the expansion time τexp

is decreased, the characteristic magnitude at which δB2
f /B2

0 attains its maximum,
(δB2

f /B2
0 )max, increases.

Similarly to the pressure anisotropy and effective Alfvén speed, the specific
value of (δB2

f /B2
0 )max, when renormalised by β0.6

‖i , can be predicted with a high
degree of confidence by the parameter τexp,effΩi/β

1.6
‖i for any given βi and effec-

tive expansion time τexp,effΩi . This is demonstrated in figure 8(b). However, the
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FIGURE 9. Two-dimensional magnetic-energy spectra EB(k‖, k⊥) of the firehose fluctuations at
a selection of different times during the firehose instability’s evolution: linear phase (far left),
nonlinear phase (near left), and two times during the saturated state (near and far right). The
top row corresponds to an Alfvén-enabling state (run DVI), while the bottom row corresponds
to an Alfvén-inhibiting state (run DIII). The region circumscribed by the dashed line indicates
the region of wavenumber space (k‖ρi � 0.8, k‖ > k⊥/ tan (15◦) ≈ 3.7k⊥) that is used when
calculating the magnetic energy of quasi-parallel firehose modes for figure 10.

exact relationship between (δB2
f /B2

0 )maxβ
0.6
‖i and τexp,effΩi/β

1.6
‖i is not simply a power

law. For values of τexp,effΩi/β
1.6
‖i of order unity, (δB2

f /B2
0 )max ∝ β‖i/τexp,effΩi , a predic-

tion that arises from a naive quasi-linear scattering model (see § 5.4). However,
a shallower power-law dependence arises for either sufficiently small or suffi-
ciently large values of τexp,effΩi/β

1.6
‖i . That (δB2

f /B2
0 )max is not inversely proportional

to τexp,effΩi/β‖i at sufficiently small values of the latter parameter is consistent
with previous shearing-box simulations of firehose-susceptible high-β plasma (Kunz
et al. 2014a; Melville et al. 2016); for example, Melville et al. (2016) found that
(δB2

f /B2
0 )max ≈ 0.77(βi/τexp,effΩi)

0.5. Computing this formula for our βi0 = 200 runs,
we find reasonable agreement for those of our runs with the smallest values of
τexp,effΩi/β

1.6
‖i (figure 8b, dotted line). That the same also holds at sufficiently large

values of τexp,effΩi/β
1.6
‖i is a new finding, suggesting that the nature of the firehose

modes present in this scenario is distinct.
To explore this possibility, figure 9 displays the evolution of the magnetic-energy

spectrum, EB(k‖, k⊥), corresponding to the fluctuations visualised in figure 7, with
the top (bottom) row pertaining to the Alfvén-enabling (Alfvén-inhibiting) state. As
expected, the magnetic-energy spectra are initially very similar, indicating oblique
modes with k‖ρi ≈ k⊥ρi ≈ 0.5. However, in the nonlinear phases of the instabil-
ity, clear differences emerge. In the saturated Alfvén-inhibiting state (bottom row),
a wide range of wavenumbers is excited (including fluctuations with characteris-
tic wavelengths that are much larger than the ion-Larmor radius), and EB(k‖, k⊥)
attains a quasi-steady state. By contrast, in the saturated Alfvén-enabling state (top
row), the magnetic energy is primarily concentrated in two distinct populations of
fluctuations whose scales are comparable to the ion-Larmor radius: oblique firehose
modes and quasi-parallel modes (the latter circumscribed in the top-right panel by
the dashed line). As is also clear from figure 8(a), the ‘saturated’ Alfvén-enabling
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(a) (b) (c)

FIGURE 10. Time evolution of the square of the perturbed magnetic-field strength δB2
f /B2

0
(solid black line) associated with the firehose fluctuations, along with the analogous quantity
δB2

f,pl/B2
0 for quasi-parallel fluctuations (solid red line) and δB2

f,ob/B2
0 for oblique fluctuations

(solid blue line), for three different simulations: (a) run CV (τexpΩi0 = 5 × 104, βi0 = 25),
(b) run CII (τexpΩi0 = 5 × 103, βi0 = 25) and (c) run FIII (τexpΩi0 = 2 × 103, βi0 = 200).

state is not quasi-steady, but instead is quasi-periodic: while the spectrum of quasi-
parallel modes does not change significantly, the spectrum of oblique firehose modes
evolves periodically. In § 5.2, we argue that the quasi-parallel modes are associated
with a secondary parallel firehose instability.

A simple way to illustrate the quasi-periodic behaviour of firehose-instability sat-
uration in the Alfvén-enabling state is to examine the individual components of the
perturbed magnetic energy, δB2

f /B2
0 , i.e. the component associated with the quasi-

parallel modes, δB2
f,pl/B2

0 , and the component associated with the oblique modes,
δB2

f,ob/B2
0 . These components are obtained by dividing the (k‖, k⊥) plane into a quasi-

parallel region and a non-quasi-parallel region (see figure 9), and then calculating
the total magnetic energies residing within these two separate regions. Figure 10
shows the evolution of δB2

f /B2
0 , δB2

f,pl/B2
0 and δB2

f,ob/B2
0 for a selection of differ-

ent simulations: specifically, a simulation of an asymptotic Alfvén-enabling state
(figure 10a), a marginal Alfvén-enabling state (figure 10b) and an Alfvén-inhibiting
state (figure 10c). In the Alfvén-enabling states, we observe that δB2

f,ob/B2
0 oscillates

quasi-periodically, with the magnitude of that oscillation being comparable to its
mean value; δB2

f,pl/B2
0 also oscillates with a similar period, but with a comparatively

smaller amplitude relative to its mean. As the parameter τexp,effΩi/β
1.6
‖i decreases from

large to small (left to right in figure 10), both the absolute and relative amplitudes
of quasi-parallel and non-quasi-parallel modes change. This can be attributed to the
distinct saturation mechanisms of the quasi-parallel and oblique firehose modes (see
§ 5.4). In Alfvén-inhibiting states, the saturated value of δB2

f,ob/B2
0 does not change

on a period smaller than the expansion time. Furthermore, deviations from the max-
imum value of δB2

f,ob/B2
0 are much smaller than the maximum value itself, in contrast

to the Alfvén-enabling states.
Computing δB2

f /B2
0 , δB2

f,pl/B2
0 and δB2

f,ob/B2
0 for all of our simulations in the

Alfvén-enabling state gives a simple way to quantify – and thereby interpret – the
oscillation period of the perturbed magnetic energy. In particular, for each of these
simulations, we identify a period of the simulation in which firehose instabilities have
saturated, and then directly calculate the period τosc between the maximum value of
the perturbed magnetic energy and the next minimum value. The results of this
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(a) (b)

FIGURE 11. (a) Numerically determined (half-)period τosc of oscillation of the perturbed
magnetic energy δB2

f /B2
0 associated with all firehose modes (black), of the magnetic energy

δB2
f,pl/B2

0 associated with parallel modes (red) and of the magnetic energy δB2
f,ob/B2

0 associated
with oblique modes for all of our Alfvén-enabling simulations as a function of the expansion
time. The dashed grey line shows the theoretical prediction τosc ∝ τ

1/2
exp Ω

−1/2
i . (b) Same as (a),

but as a function of βi .

analysis are shown in figure 11. We find that τosc is, indeed, much smaller than τexp

for all of our simulations that attain Alfvén-enabling states. Furthermore, τosc/τexp

is, to a reasonable degree of approximation, inversely proportional to the square
root of τexpΩi0 (see figure 11a), whilst being approximately independent of βi (see
figure 11b). This finding is consistent with the oscillation period being comparable
in magnitude to the scattering rate of particles by the quasi-parallel modes which, in
the Alfvén-enabling state, have the largest amplitude of all firehose-unstable modes
(see § 6.4.2). This conclusion does not seem to depend on whether τosc is computed
from δB2

f /B2
0 , δB2

f,pl/B2
0 or δB2

f,ob/B2
0 (see figure 11).

4.3.3. Ion distribution functions
Another, more subtle manifestation of the distinct microphysics of Alfvén-enabling
and Alfvén-inhibiting states can be seen by comparing the domain-averaged ion
distribution functions f (v‖, v⊥) arising in the two states. The time-dependent evo-
lution of f (v‖, v⊥) in representative Alfvén-enabling and Alfvén-inhibiting states
during the linear, nonlinear and saturated stages of the firehose instability is
shown in figures 12 and 13, respectively. As follows directly from double-
adiabatic conservation laws (4.1), the ion distribution functions in all runs initially
evolve to become bi-Maxwellian, with T‖i ≈ T‖i0 and T⊥i ≈ T⊥i0/(1 + t/τexp); indeed,
figures 12(a) and 13(a) indicate little difference between fbiM − fM (left halves of
these plots) and f − fM (right halves), where fbiM is the bi-Maxwellian distribution
with the parallel and perpendicular temperatures computed from f (v‖, v⊥), and fM

the Maxwellian distribution function with its isotropic temperature computed from
f (v‖, v⊥). However, once the firehose fluctuations acquire a sufficient magnitude
to backreact on the ions, the distribution functions are no longer described well as
bi-Maxwellians (see figures 12c and 13c). In saturation (figures 12e and 13e), the
difference becomes even more pronounced.
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FIGURE 12. Domain-averaged ion-distribution function f (v‖, v⊥) in a simulation representative
of an Alfvén-enabling state (run DVI) during the (a) linear (t = 0.042τexp), (c) nonlinear (t =
0.07τexp) and (e) saturated (t = 0.375τexp) stages of the firehose instability. The right half of
each panel shows f − fM, where fM is a Maxwellian distribution with the same temperature
as f ; the left half of each panel shows fbiM − fM, where fbiM is a bi-Maxwellian with the
same parallel and perpendicular temperatures as f . (b,d , f ) The non-Maxwellian component
of the parallel ( f (v‖) − fM(v‖), left panel) and perpendicular ( f (v⊥) − fM(v⊥), right panel)
distribution functions at the same times, respectively. Dashed lines denote the corresponding
fbiM.

To characterise the departures from bi-Maxwellian distribution functions more
carefully – and thereby identify the subtle differences between the Alfvén-enabling
and Alfvén-inhibiting states – it is helpful to define one-dimensional distribu-
tion functions: the distribution function integrated over perpendicular and parallel
velocities, f (v‖) ≡ ∫ ∞

0 dv⊥v⊥ f and f (v⊥) ≡ ∫ ∞
−∞ dv‖ f , respectively. The clearest

non-bi-Maxwellian feature in the nonlinear phase of both states (figures 12d and
13d) and in saturation (figures 12 f and 13 f ) is the comparatively more pronounced
anisotropy of the distribution function at subthermal velocities. But the main differ-
ence between the two states is the distribution function of ions with suprathermal
velocities: in the Alfvén-inhibiting state (figure 13 f ), the distribution function is
quasi-isotropic for all velocities |v‖|� 1.25vthi , whereas in the Alfvén-enabling state
(figure 12 f ), a significant anisotropy is retained at specific velocities that evolve
periodically as a function of time.

7
The difference is challenging to discern from

the distribution functions themselves, but can be more clearly seen by comparing
the pitch-angle gradient of the distribution function (see figure 14). Figure 14(a)

7
In βi � 1 firehose-unstable plasma, Matteini et al. (2006) observed the development of power-law tails at

suprathermal velocities. We do not observe the development of such tails in our (comparatively much larger βi )
simulations; the distribution function remains quasi-Maxwellian.
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FIGURE 13. Domain-averaged ion-distribution function f (v‖, v⊥) in a simulation representative
of an Alfvén-inhibiting state (run DIII) during the (a) linear (t = 0.075τexp), (c) nonlinear (t =
0.2τexp) and (e) saturated (t = τexp) stages of the firehose instability. As in figure 12, the right
half of each panel shows f − fM, and the left half of each panel shows fbiM − fM. (b,d , f )
The non-Maxwellian component of the parallel ( f (v‖) − f‖M, left panel) and perpendicular
( f (v⊥) − f⊥M, right panel) distribution functions at the same times, respectively. Dashed lines
denote the corresponding fbiM.

demonstrates that in the nonlinear and saturation phases of the Alfvén-enabling state,
the pitch-angle gradient of the ion distribution is not close to zero for |v‖|� 1.75vthi ,
whereas the opposite is true for the Alfvén-inhibiting state. These features of the dis-
tribution function are directly related to properties of the effective collision operator
associated with the firehose fluctuations (see § 6).

4.4. Velocity-averaged collisionality and effective viscosity
Finally, we characterise the average collisionality νeff of all particles in our sim-

ulation. There are various approaches for measuring νeff in PIC simulations; we
adopt that taken in Riquelme et al. (2015) and Bott et al. (2021), and calculate
νeff via the rate of change of the simulation-domain-averaged first adiabatic invari-
ant μ: νeff = ˙̄μ/(T‖i − T⊥i)/B. We adopt this measure because, in a plasma without
collisionality, μ is well conserved, so its non-conservation is a clear signature of col-
lisionality. More practically, this measure allows for a time-resolved estimate of the
effective collisionality to be computed. Figure 15 shows νeff as a function of time for
two representative sets of simulations, each at fixed τexp: figure 15(a) shows three
simulations in the Alfvén-enabling regime with τexpΩi0 = 2 × 104, while figure 15(b)
shows three Alfvén-inhibiting simulations with τexpΩi0 = 2 × 103. Qualitatively, it is
clear that νeff increases with increasing βi0 (blue to red) and decreasing τexp (left to
right).
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FIGURE 14. Pitch-angle gradient of the ion distribution function f divided by 2ṽ fM (solid red
line), where ṽ = v/vthi , and fM is a Maxwellian distribution with the same temperature as f ,
averaged over v⊥. The solid blue line is the analogous quantity, but calculated using fbiM, the
bi-Maxwellian distribution function with the same parallel and perpendicular temperatures as
f . The red-pink shading denotes the standard deviation of (∂ fi/∂ξ)/(2ṽ fM), determined from
the range of v⊥ over which the average is computed. (a) Alfvén-enabling state (run DV) in
the linear phase (left panel), nonlinear phase (middle panel) and saturation (right panel). (b)
Alfvén-inhibiting state (run DIII).

(a) (b)

FIGURE 15. (a) Values of the effective collisionality νeff measured directly in the simulations
(solid lines) with Alfvén-enabling states (runs BIV, CIV and DVI). The expansion time in these
simulations is τexpΩi0 = 2 × 104. The effective collisionalities predicted by the simple model
(4.13) for each simulation are shown by the dashed lines, to which the curves asymptote at late
times. (b) Same as (a), but for three simulations (runs DIII, EI and FIII) with τexpΩi0 = 2 × 103

and therefore Alfvén-inhibiting states.

Similarly to Bott et al. (2021), we can derive a theoretical estimate for νeff by using
the firehose-collisionality-modified CGL equations (3.2b). To derive an estimate for
νeff, we make three simplifying assumptions: firstly, that heat fluxes are negligible
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(a) (b)

FIGURE 16. (a) Values of the effective collisionality 〈νeff〉sat measured directly in all simula-
tions, averaged over the time interval between the time at which the firehose fluctuations attain
their peak strength and the time at which the next local minimum is obtained. The dashed line
indicates the effective (time-averaged) value νeff = β‖i/6τexp,eff of the collisionality predicted in
asymptotic Alfvén-inhibiting states, while the dotted line shows the value νeff � 0.21β‖i/τexp,eff
appropriate for asymptotic Alfvén-enabling states. (b) Effective parallel Braginskii viscosity
μB,eff associated with the collisionality measured directly in all simulations.

(and so all terms proportional to q‖ or q⊥ in (3.2b) can be ignored); secondly, that
the dimensionless pressure anisotropy is small; and thirdly, that the expansion rate is
much smaller than the effective collision rate. It follows from these three assumptions
that (cf. Braginskii 1965)

νeff�i � d
dt

log
B

n2/3
. (4.12)

Finally, noting that for a transversely expanding plasma, B ∝ n, we deduce from
(4.12) that

νCGL
eff � 1

3�i

d
dt

log B = − 1
3�iτexp,eff

. (4.13)

This prediction is plotted in figure 15 (dashed lines). In the Alfvén-inhibiting regime,
(4.13) compares very favourably to our numerical estimates of νeff in the satu-
rated states of the simulations we show (figure 15a). In the Alfvén-enabling regime,
(4.13) agrees well with the numerical collisionality averaged over the saturated state,
but does not capture significant time-dependent fluctuations (figure 15b). Because
−�iβ‖i ∼ 1 in the saturated states of our simulations, it follows that νeff ∼ β‖i/τexp,eff,
as expected.

Turning to our complete set of runs, figure 16(a) shows the numerical estimates
of the characteristic collisionality in the saturated state of all of our simulations.
To account for the time variation of the collisionality in Alfvén-enabling states, we
average it over a time interval in which the saturated state is realised. The effective
collisionality is consistent across all of our simulations, but νeff does increase slightly
as the critical parameter τeff,expΩi/β

1.6
‖i increases. This trend follows directly from

our prior result that, in saturation, �i increases from �i � −2/β‖i to �i � −1.6/β‖i

as τeff,expΩi/β
1.6
‖i increases from small (i.e. plasma in an Alfvén-inhibiting state) to

large (i.e. plasma in an Alfvén-enabling state). Based on these values and (4.13), it
follows that we would expect νeff � β‖i/6τexp,eff in Alfvén-inhibiting states (dashed line
in figure 16), while νeff � 0.21β‖i/τexp,eff in asymptotic Alfvén-enabling states (dotted
line). The prediction is realised in our simulations.
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Having computed the domain-averaged collisionality, we can then determine the
plasma’s effective parallel Braginskii viscosity μB,eff. By comparison with (3.4), it
follows that in our HEB simulations,

μB,eff ≈ −3
2
(�iβ‖i)sat

B2

4π
τexp,eff. (4.14)

This estimate agrees well with the value of μB,eff that is directly computed from
our simulations (figure 16). That μB,eff is given by (3.4) is striking for two reasons:
(i) in stark contrast to classical, strongly collisional plasmas, the plasma’s viscos-
ity is dependent upon the magnetic-field strength and (ii) the viscosity coefficient
decreases as the expansion rate increases, i.e. weakly collisional plasmas behave like
non-Newtonian fluids.

5. Theoretical interpretation of results
5.1. Overview

While some of the results from our HEB simulations – for example, the
particle-averaged effective collisionality, or the regulation of pressure anisotropy in
Alfvén-inhibiting states – are consistent with the results of previous simulations of
firehose instabilities (e.g. Hellinger & Trávníček 2008; Kunz et al. 2014a; Riquelme
et al. 2015; Melville et al. 2016), other results are not, and so require further
analysis and interpretation. Three findings about the Alfvén-enabling state in par-
ticular are unexpected, and so warrant additional investigation. First of these is
the emergence of ion-Larmor-scale parallel firehose modes, which are specifically
predicted not to be present by the linear theory of the firehose instability in a
bi-Maxwellian plasma that was outlined in § 2.5. Secondly, the regulated pressure
anisotropy (�i)sat � −1.6/β‖i in the Alfvén-enabling state does not correspond to
the linear threshold �cr � −1.35/β‖i for the oblique firehose instability in a bi-
Maxwellian plasma (see § 2.3). The third unexpected finding is that the box-averaged
perturbed magnetic energy, δB2

f /B2
0 , does not scale as δB2

f /B2
0 ∝ βi/τexp,effΩi as

might be naively anticipated, but instead has a weaker dependence. These findings
are discussed in §§ 5.2–5.4, respectively.

5.2. Secondary parallel firehose instability in the Alfvén-enabling regime
A notable result from our simulations is the presence of ion-Larmor-scale par-

allel firehose modes in the Alfvén-enabling regime. The presence of such modes
is, at first glance, inconsistent with the linear theory of the firehose instability
in a bi-Maxwellian plasma with a negative pressure anisotropy (§ 2.5), which pre-
dicts that the resonant parallel firehose should be subdominant to oblique firehose
modes in high-β plasma. However, it can, in fact, be shown that these modes are
not whistler/fast magnetosonic modes destabilised by the resonant parallel firehose
instability (as would occur in the plasma with βi ∼ 1), but are instead a lower-
frequency mode excited by a (newly identified) secondary instability associated with
the non-bi-Maxwellian form of the distribution function. This form, presented in
§ 4.3.3, is caused by the backreaction of the oblique firehose modes on the otherwise
bi-Maxwellian distribution function that is driven by the plasma’s expansion.

To understand this secondary parallel firehose instability better, it is helpful
to describe qualitatively the types of parallel modes (and their growth) that the
(high-β) plasma can support linearly as the expansion proceeds. Initially, at the
start of the simulation, when the ion distribution function is Maxwellian, there

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825100731
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 02 Oct 2025 at 07:21:37, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825100731
https://www.cambridge.org/core


Journal of Plasma Physics 35

are two types of forward-propagating parallel modes with β
−1/2
i 	 k‖ρi � 1: right-

handed whistler/magnetosonic modes, which have characteristic real frequencies
� ∼ k2

‖ρ
2
i Ωi , and left-handed, ion-cyclotron modes which, in high-βi plasma, have

� ∼ Ωi/βi (Foote & Kulsrud 1979).
8

These two types of modes have very dif-
ferent characteristic frequencies because of their distinct physical mechanisms; the
characteristic oscillation of the higher-frequency whistler/magnetosonic modes is
supported by inertial and gyroviscous forces acting out of phase (with the action
of the Alfvén restoring force being negligible), while for the lower-frequency ion-
cyclotron modes, it is the out-of-phase action of the Alfvén restoring force and
the gyroviscous force that gives rise to oscillatory dynamics. Despite their distinct
mechanisms, both of these modes are damped (γ < 0). As the plasma expands,
the pressure anisotropy becomes increasingly negative, which changes the character
of the ion-cyclotron mode; specifically, the real frequency of this mode becomes
negative for k‖ρi ∼ 1 (though the mode remains damped). Because k‖ > 0, this
change of sign corresponds to initially forward-propagating ion-cyclotron modes
becoming backward-propagating (and vice versa); in short, the initially left-handed
forward-propagating ion-cyclotron mode becomes a type of right-handed (forward-
propagating) mode that is qualitatively distinct from the whistler/magnetosonic
mode. Physically, this change of handedness can be attributed to the Alfvénic restor-
ing force being weakened by increasingly strong parallel pressure forces associated
with the negative pressure anisotropy. The damping of these ion-cyclotron modes
finally becomes growth once the oblique firehose fluctuations begin to backreact on
the ion distribution function. These fluctuations, which have a characteristic paral-
lel wavenumber k‖ ≈ 0.5ρ−1

i , efficiently scatter particles with a characteristic velocity
v‖ ≈ vthi/(k‖ρi)ob ≈ 2vthi , and isotropise the distribution in a narrow v‖ interval. This,
in turn, enables the right-handed ion-cyclotron modes to extract energy from these
same particles, and thereby grow.

With some effort, we can characterise the growth of the secondary parallel firehose
modes (and their analogous damped modes in the initial stage of the simulation) ana-
lytically. For arbitrary background distribution functions fs0 of species s, the linear
dispersion relation of parallel modes in a hot plasma is, neglecting the displacement
current,

D± = k2
‖c2 +

∑
s

ω2
ps

ns0

{
π

∫
CL

dv‖

∫ ∞

0
dv⊥

v2
⊥

k‖v‖ − ω ∓ Ωs

×
[

k‖

(
v⊥

∂ fs0

∂v‖
− v‖

∂ fs0

∂v⊥

)
+ ω

∂ fs0

∂v⊥

] }
= 0, (5.1)

where ns0 is the equilibrium number density of species s, ωps is the plasma fre-
quency, CL is the usual Landau (‘L’) contour and we have assumed that k‖ > 0.
In a Maxwellian plasma, the ‘+’ and ‘−’ roots with ω > 0 correspond to the
whistler/magnetosonic modes and ion-cyclotron modes, respectively. Motivated by
our simulation results, we further specialise to the ‘low-frequency’ ion-cyclotron
modes with k‖ρi ∼ 1, which satisfy ω ∼ k‖vthi/βi 	 k‖vthi . We also assume a
Maxwellian electron population (as in the hybrid-kinetic simulations), and that

8
We note that the frequency � of these modes is not described by the cold-plasma dispersion relation because

� 	 k‖vthi .
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the ion distribution function’s anisotropy is small compared with its characteristic
magnitude:

vthi

v

∂ fi0

∂ξ
= vthi

(
∂ fi0

∂v‖
− v‖

v⊥

∂ fi0

∂v⊥

)
∼ ω

k‖vthi
fM 	 fM, (5.2)

where ξ ≡ v‖/v is the pitch angle. Under these assumptions, simplified expressions
can be derived for the real frequency � and growth rate γ of these modes:

�

Ωi
≈ ±

{
G(k‖ρi)

[
k2

‖d2
i +

(
π

ni0
P
∫ ∞

−∞
dv‖

∫ ∞

0
dv⊥

k‖v3
⊥

k‖v‖ ∓ Ωi

1
v

∂ fi0

∂ξ

)]

−
⎡⎣π 2

ni0

∫ ∞

0
dv⊥v3

⊥

(
1
v

∂ fi0

∂ξ

) ∣∣∣∣∣
v‖=v±

‖res

⎤⎦ [√
π

k‖ρi
exp

(
− 1

k2
‖ρ

2
i

)]}

×
{[G(k‖ρi)

]2 + π

k2
‖ρ

2
i

exp
(

− 2
k2

‖ρ
2
i

)}−1

, (5.3a)

γ

Ωi
≈ ± [G(k‖ρi)

]−1

⎡⎣π 2

ni0

∫ ∞

0
dv⊥v3

⊥

(
1
v

∂ fi0

∂ξ
− 2vwv

v2
thi

fM

) ∣∣∣∣∣
v‖=v±

‖res

⎤⎦ , (5.3b)

where di = β
−1/2
i ρi is the ion inertial length,

G(k‖ρi) = 1 + 1
k‖ρi

Re Z

(
1

k‖ρi

)
(5.4)

is a special function related to the plasma dispersion function Z(x) whose only root
occurs at k‖ρi � 1.08, vwv ≡ �/k‖ is the parallel phase velocity of the wave and
v±

‖res ≡ (� ± Ωi)/k‖ ≈ ±Ωi/k‖ is the parallel velocity of particles that are resonant
with that mode. We note that, due to our assumed ordering, we have removed the
whistler/magnetosonic branch, and so (5.3b) describes just the real frequency and
growth rate of (both forward- and backward-propagating) modes of the ion-cyclotron
type. It follows that the damping or growth of such parallel modes depends upon
the sign of the quantity

I± ≡ 1
v

∂ fi0

∂ξ
− 2vwv

v2
thi

fM (5.5)

evaluated near the resonant velocity v±
‖res. For k‖ρi < 1.08, growth occurs whenever

±I± > 0, and vice versa for k‖ρi > 1.08.
9

We can use (5.3a) to evaluate � and γ as the ion distribution function evolves
from a Maxwellian via a bi-Maxwellian distribution to the non-bi-Maxwellian state
associated with scattering by oblique firehoses. In a plasma with a bi-Maxwellian ion
distribution, (5.3b) simplifies considerably, because we have

vthi

v

∂ fi0

∂ξ
= −2�i

v‖
vthi

fM, I±|v‖=v±
‖res

= 2
vthi

(
∓ �i

k‖ρi
− vwv

vthi

)
fM, (5.6)

9
The apparent singularity in the expression (5.3b) for γ at k‖ρi ≈ 1.08 – that is, the value of k‖ρi at which

Re Z(1/k‖ρi ) ≈ −k‖ρi – is an artefact, because the numerator also vanishes at this value.
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so that

� ≈ ±�i ± Ωi

k2
‖ρ

2
i

βi
G(k‖ρi)

{[G(k‖ρi)
]2 + π

k2
‖ρ

2
i

exp
(

− 2
k2

‖ρ
2
i

)}−1

, (5.7a)

γ ≈ −Ωi

√
πk‖ρi

βi
exp

(
− 1

k2
‖ρ

2
i

) {[G(k‖ρi)
]2 + π

k2
‖ρ

2
i

exp
(

− 2
k2

‖ρ
2
i

)}−1

. (5.7b)

In the plasma’s initial state, in which �i = 0, the forward-propagating modes are
indeed those associated with the ‘−’ root, as expected, and so are left-handed,
because the numerator of (5.7a) is negative for k‖ρi < 1.08. These equations further
imply that γ < 0 initially. In the bi-Maxwellian stage, (5.7a) indicates that, for �i < 0,
the ‘−’ mode transitions from being forward-propagating to backward-propagating
at a smaller value of k‖ρi than for a Maxwellian distribution (and vice versa for
the ‘+’ mode). When �i < −2/βi , � < 0 at all wavenumbers k‖ ∼ ρ−1

i for the ‘−’
mode, and � > 0 for the ‘+’ mode. However, both the ‘+’ and ‘−’ mode are still
damped at this stage by ions with v‖ ≈ ±Ωi/k‖. Finally, in the state with the non-bi-
Maxwellian distribution, scattering by the oblique firehoses causes ∂ fi0/∂ξ |v‖=v‖res to
decrease in magnitude near v‖ ≈ ±2vthi , and � does not change its sign when these
resonant particles start to be isotropised, because (5.3a) implies that � is less sensi-
tive than γ to the value of fi at specific v‖. Once I± reverse their sign for forward-
and backward-propagating resonant parallel modes, respectively, it then follows that
their growth rate becomes positive.

This evolution is illustrated using one of our simulations (run CV, an ‘asymptotic’
Alfvén-enabling simulation) in figure 17. Figure 17(a) shows the two-dimensional
magnetic-energy spectrum at various times in the simulation around the time at
which the parallel modes are observed; figure 17(b) shows the pitch-angle gradient
of the ion distribution function fi at those same times; and figure 17(c) shows
� and γ of the ‘−’ modes, which we calculate using the approximate expressions
(5.3b). The integrals in these expressions for � and γ are evaluated numerically,
taking as their input the numerical distribution function. We see that, in the initial
stages of the growth of oblique firehose modes (figure 17a, left panel), when fi

is still approximately bi-Maxwellian (and so the pitch-angle gradient of fi is well
described by (5.6) – see figure 17b, left panel), parallel ‘−’ modes with k‖ρi > 0.5
have a negative sign, but are damped (figure 17c, left panel). However, concurrently
with the emergence of parallel modes (figure 17a, middle panel), the ion distribution
function becomes non-bi-Maxwellian (figure 17b, middle panel), and parallel ion-
cyclotron modes become linearly unstable (figure 17c, middle panel), albeit over
quite a narrow range of wavenumbers. For the fastest growing modes,

vthiI− = vthi

v

∂ fi

∂ξ
− 2

k‖vthi
�

(
− 1

k‖ρi

)
fM 	

∣∣∣∣ �

k‖vthi

∣∣∣∣ fM ∼ 1
βi

fM, (5.8)

and so, in contrast to the bi-Maxwellian, fi has the property that its pitch-angle gra-
dient is approximately equal to twice the (normalised) phase velocity vwv ∼ vthi/βi

of the linear modes that fi supports. In other words, the ion distribution func-
tion’s anisotropy is constrained by the parallel modes’ phase velocity. As the
simulation progresses further, the unstable parallel modes tend to acquire slightly
larger wavenumbers (figure 17a, right panel), with those that were initially unstable
becoming forward-propagating, stable modes again (figure 17c, right panel).
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FIGURE 17. (a) Two-dimensional magnetic-energy spectra of the firehose fluctuations in run
CV at a selection of different times around the emergence of the parallel secondary firehose
instability. (b) Pitch-angle gradient of the ion distribution function f divided by 2ṽ fM (solid
red line), where ṽ = v/vthi , and fM is a Maxwellian distribution with the same temperature as
f , averaged over v⊥, at the same times shown in (a). The solid blue line is the analogous quan-
tity, but calculated using fbiM, the bi-Maxwellian distribution function with the same parallel
and perpendicular temperatures as f . The dotted red and blue lines show ṽwv = vwv/vthi calcu-
lated using a linear dispersion relation solver that finds the complex frequency of low-frequency
modes with a given input numerical distribution function. (c) Approximate real frequencies
(red) and damping rates (blue) (cf. (5.3b)) of the ‘−’ root, for f (solid lines), fM (dotted lines)
and fbiM (dot-dashed lines) at the same times indicated in (a).

In summary, scattering by the ion-Larmor-scale oblique firehose modes that ini-
tially arise due to the negative pressure anisotropy is responsible for the development
of a non-bi-Maxwellian distribution function, which in turn is subject to an insta-
bility of right-handed parallel modes that would not be present if the distribution
function were to have remained bi-Maxwellian. This secondary firehose instability
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could also explain the persistent parallel modes with k‖ρi ∼ 1 seen in regions of neg-
ative pressure anisotropy within the hybrid-kinetic simulation of a long-wavelength,
large-amplitude Alfvén wave reported by Squire et al. (2017).

5.3. Why (�i )sat � −1.6/β‖i in high-βi Alfvén-enabling states
One finding of our simulation results that was not anticipated from the linear

theory of the firehose instability outlined in § 2 is that, in saturation, �i � −1.6/β‖i .
If, as we argue in § 5.4, the saturation of the oblique firehose instability can be
described by quasi-linear theory, then it must be the case that the plasma attains
a saturated state that is close to marginality with respect to the oblique firehose
instability. However, we showed in § 2.3 that, in a bi-Maxwellian plasma, the oblique
firehose instability’s threshold is given by �cr � −1.35/β‖i > (�i)sat. Naively, it might
therefore be expected that oblique firehose modes should still grow, and, adopting
the estimate (2.4) for these modes’ growth rate, will do so at a rate that far exceeds
the rate of the plasma’s expansion, γ⊥f ≈ 0.7Ωi/βi � 19β0.6

i /τexp,eff.
This seeming contradiction is resolved by the fact that the plasma’s ion distribu-

tion fi is not well modelled as a bi-Maxwellian distribution, but instead has a distinct
form of anisotropy. More specifically, as was illustrated in § 4.3.3, the anisotropy of
fi is concentrated at smaller characteristic values of v compared with those of a bi-
Maxwellian. This has the consequence of bringing the threshold of ion-Larmor-scale
oblique firehose modes closer to the fluid firehose threshold. That the modified form
of the anisotropy alters the oblique firehose instability’s threshold can be demon-
strated mathematically by considering the leading-order FLR corrections to the fluid
firehose threshold, which are computed for a general ion distribution function in
Appendix A.3 (cf. (A.59)):

2
β‖i

+ �i + k2
‖ρ

2
i A4i − 3

16
k2

⊥ρ2
i B4i =O(

�i k
4ρ4

i

)
, (5.9)

where A4i and B4i are given by (cf. (A.55e))

A4i = −8π
T‖i

Ti

1
niv

4
thi

∫ ∞

−∞
dv‖

∫ ∞

0
dv⊥ v⊥v2

‖

(
v2

‖ − 1
4
v2

⊥

)
fi , (5.10a)

B4i = −4π
T‖i

Ti

1
niv

4
thi

∫ ∞

−∞
dv‖

∫ ∞

0
dv⊥ v3

⊥

(
v2

‖ − 1
2
v2

⊥

)
fi . (5.10b)

Inspecting the velocity-space integrands in (5.10b) and comparing them with the
analogous integrand for the pressure anisotropy,

�i = −4π
T‖i

Ti

1
niv

2
thi

∫ ∞

−∞
dv‖

∫ ∞

0
dv⊥ v⊥

(
v2

‖ − 1
2
v2

⊥

)
fi , (5.11)

it is clear that concentrating the anisotropy of a distribution function at smaller
characteristic velocities will in general reduce the values of the ratios A4i/�i and
B4i/�i . Thus, the distribution functions attained in the saturated state of the firehose
instability simultaneously maintain comparatively larger values of (�i)sat than a bi-
Maxwellian distribution and smaller values of A4i and B4i . Computing A4i and B4i

directly for our ‘asymptotic’ Alfvén-enabling regime simulation (run CV), we find
A4i � −1.6/β‖i and B4i � −0.8/β‖i ; setting k‖ρi ≈ k⊥ρi � 0.5 to match those of the
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dominant oblique firehose mode, (5.9) predicts that (�i)sat ≈ −1.6/β‖i . This agrees
very well with its actual value in the simulation.

An outstanding question that follows naturally from our result is why, in prior
β‖i � 1 simulations of firehose-susceptible plasmas (see e.g. Hellinger & Trávníček
2008; Hellinger et al. 2019; Bott et al. 2021), it was found that (�i)sat � −1.4/β‖i , in
closer agreement with the bi-Maxwellian threshold of the oblique firehose instability.
The most plausible explanation of this (small) discrepancy pertains to the different
linear characteristics of firehose instabilities at β‖i � 1 versus β‖i � 1. Specifically,
as we demonstrated in § 2.5, when β‖i � 1, the growth rate of resonant parallel
firehose modes tends to be comparable to those of oblique modes. The presence of
a saturated population of such modes, which would not be present in high-βi plasma,
would be expected to affect the specific value of �i attained in the saturated state.
We note that, though the specific values of (�i)sat are distinct, both are such that the
plasma still attains an Alfvén-enabling state.

5.4. The perturbed magnetic energy of firehose fluctuations in saturation: part I
It was shown in § 4.3.2 that the relationship between the perturbed magnetic

energy associated with the firehose fluctuations in saturation and macroscopic
plasma parameters is not simply a power law across all values of the key parameter
τexpΩi/β

1.6
‖i , with a change occurring near the transition between the Alfvén-enabling

and Alfvén-inhibiting states. This implies that the saturation physics in these two
states must be distinct.

Such a conclusion is, at first glance, counter-intuitive. For the ion-Larmor-scale
firehose modes that we observe in both the Alfvén-enabling and Alfvén-inhibiting
states, which to a good approximation consist of perturbations to the direction
of the magnetic field, a saturated state is most plausibly maintained via pitch-
angle scattering at a rate sufficient to maintain near-marginality with respect to the
firehose instability’s threshold. Assuming that the rate νeff ∼ βi/τexp of pitch-angle
scattering by (ion-Larmor-scale) fluctuations is related to their amplitude δBf/B0 by
νeff ∼ ΩiδB2

f /B2
0 – in effect, adopting a quasi-linear scattering model based on the

assumption that δBf 	 B0 – we deduce that

δB2
f

B2
0

∼ βi

τexpΩi
. (5.12)

We note that such a quasi-linear model should be self-consistent for any firehose-
susceptible plasma in an Alfvén-enabling state, because δB2

f /B2
0 ∼ βi/τexpΩi �

β−0.6
i 	 1.
This argument, which provides testable predictions for the dependence of δB2

f /B2
0

on βi , τexp and Ωi , only partially accounts for the results of our numerical study. The
scaling νeff ∼ βi/τexp for the effective collisionality is indeed the same as reported in
§ 4.4. However, the scaling (5.12) only agrees for our simulations in Alfvén-inhibiting
states, not Alfvén-enabling ones. We conclude that the argument must overlook
aspects of firehose-instability saturation that affect the scaling of the perturbed
magnetic energy.

In order to resolve this discrepancy, a more nuanced understanding of scattering
of particles by both oblique firehose and secondary parallel firehose modes in Alfvén-
enabling states – and how this leads to the saturation of both types of firehose
instability – is required. We therefore characterise an effective ‘firehose collision
operator’ in the next section.
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6. Effective collisionality for the firehose instability
6.1. Overview

One key property of the firehose instability in its saturated state is that it provides
the plasma with an effective collisionality, νeff. Particles in the plasma experience
this collisionality predominantly as pitch-angle scattering. In this section, we move
beyond previous velocity-averaged estimates of this collisionality, and propose a
model in the Alfvén-enabling state for the velocity-dependent pitch-angle scattering
rate of particles with speeds of the order of the thermal speed. This allows us to
construct a simple ‘effective firehose collision operator’, given by

Cf[ f ] = 1
2

∂

∂ξ

{
(1 − ξ 2)νeff,pl(vξ)

[
∂ f

∂ξ
− 2w̃ṽwv,pl(vξ) fM

]
+ (1 − ξ 2)νeff,ob(vξ)

∂ f

∂ξ

}
,

(6.1)
where

νeff,pl(v‖) = 0.15vthi

|v‖|
β

1/4
i Ω

3/4
i

τ
1/4
exp

exp

[
−0.31(τexpΩi)

1/2

(
vthi

|v‖| − 1.2
)2
]

+ 0.09H(k‖ρi − 1.2)(τΩi)
−1/2(k‖ρi)

−2.7, (6.2a)

vwv,pl(v‖) = sgn(v‖)
vthi

βi

(
4.9 − 2.9

|v‖|
vthi

)
, (6.2b)

νeff,ob(v‖) = 1.4vthi

|v‖|
βi

τexp
exp

[
−13

(
vthi

|v‖| − 0.75
)2
]
, (6.2c)

where H(x) denotes the Heaviside step function. We then compare the predicted
properties of this collision operator with two different numerical diagnostics applied
to our simulations, and confirm that the model collision operator accounts for both
the characteristic anisotropy of the ion distribution function and the root mean
square of the firehose fluctuations’ magnetic-field strength. In turn, this collision
operator allows us to advance our qualitative understanding of the anomalous scaling
of the perturbed magnetic energy in Alfvén-enabling states discussed in § 5.4.

6.2. An effective firehose collision operator
Beyond accounting for the saturated amplitude of firehose-unstable modes, there

are two other motivations for investigating the velocity-dependent collisionality asso-
ciated with firehose fluctuations. Firstly, it is the velocity dependence of effective
collisions that determines the ion distribution function’s anisotropy, and thereby
the specific saturation value of the pressure anisotropy at which further growth of
firehose-unstable modes is inhibited. As discussed in § 2, long-wavelength firehose
modes are insensitive to the form of the ion distribution function’s anisotropy, but
kinetic-scale firehose modes are sensitive to it. Because it is these kinetic-scale modes
that have the least stringent threshold for instability, the specific form of anisotropy
is pertinent. Secondly, for certain other problems in astrophysical plasmas such as
modelling cosmic-ray transport, understanding the effective collisionality of particles
with specific velocities due to firehose fluctuations is a crucial component of the
problem’s solution.
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In general, characterising the effective collision operator associated with arbitrary
electromagnetic fluctuations, which could cause slowing, parallel diffusion, and/or
perpendicular diffusion of particles, is quite challenging. However, in the specific
case of the effective collision operator associated with firehose fluctuations, various
simplifying assumptions can be reasonably adopted. Based on the small amplitude of
firehose fluctuations realised in the Alfvén-enabling state (figure 8b implies that the
total magnetic energy of fluctuations satisfies δB2

f /B2
0 	 β−0.6

‖i 	 1) and their broad
spectra (see figure 9), we assume that the collision operator can be described by
quasi-linear theory. Furthermore, we neglect the electric fields associated with the
firehose fluctuations on the grounds that the electric contribution to the total Lorentz
force is subdominant to the magnetic force; it follows from Faraday’s law that,
for firehose fluctuations, cδE/|v × δB| ∼ ω/kvthi ∼ 1/βi 	 1. Finally, we assume
(based on our simulation results) that the magnetic-field perturbations caused by the
firehose instability satisfy δB ≈ δB⊥. Taking these assumptions together, the quasi-
linear collision operator arising from magnetic fluctuations is simply a resonant
pitch-angle-scattering operator that isotropises the distribution function in the frame
moving at the (parallel) phase velocity vwv = vthi ṽwv of the firehose modes (the wave
frame) at a velocity-dependent scattering rate νeff(v

′
‖, v⊥) given by (e.g. Kulsrud &

Pearce 1969)

νeff(v
′
‖, v⊥) = π

Ω2
i

v′
‖

ẼB

(
Ωi/v

′
‖
)

B2
0/8π

, ẼB(k‖) ≡
∑
n �=0

n2

∫
d2k⊥ EB(nk‖, k⊥)

[Jn(k⊥v⊥/Ωi)]2

k2
⊥v2

⊥/Ω2
i

,

(6.3)

where the primes denote parallel velocities evaluated in the wave frame and Jn(x) is
the nth-order Bessel function of the first kind.

If we also assume that both the anisotropy of the distribution function and vwv are
small – more precisely, that (∂ fi/∂ξ)/ fM ∼ ṽwv ∼ 1/βi 	 1 – it can be shown (see
e.g. Yerger et al. 2025) that the quasi-linear pitch-angle operator in the plasma’s rest
frame has the following form:

C[ f ] = 1
2

∂

∂ξ

{
(1 − ξ 2)νeff(v, ξ)

[
∂ f

∂ξ
− 2w̃ṽwv(v, ξ) fM

]}
, (6.4)

where we remind the reader that ξ = v‖/v is the pitch angle, v ≡
√

v2
‖ + v2

⊥ is the
particle speed and ṽwv(v, ξ) is the parallel phase velocity of the firehose modes with
which specific particles having peculiar velocity (v, ξ ) are resonant. Note that if there
are separate populations of modes with different characteristics that are responsible
for scattering – as is the case in firehose-infested plasma in an Alfvén-enabling state,
in which there are both oblique firehose and secondary parallel firehose modes – a
collision operator associated with both populations is required.

Finally, to be able to write down simple expressions for νeff(v, ξ) and ṽwv(v, ξ),
we make one final assumption: that the fluctuations can be treated as being
quasi-parallel in the sense that, for most particles, v2

⊥ 	 Ω2
i /k2

⊥. The assumption
simplifies the sum in (6.3): all terms with |n| > 1 are then negligible, and the
Bessel functions in the n = ±1 terms can be simplified using the identity J±1(x) ≈
±(x/2)(1 − x2/8 + . . .) for x 	 1. Under this final assumption, the effective pitch-
angle scattering operator C[ f ] associated with firehose modes in the Alfvén-enabling
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regime simplifies to

C[ f ] = 1
2

∂

∂ξ

{
(1 − ξ 2)νeff,pl(vξ)

[
∂ f

∂ξ
− 2ṽṽwv,pl(vξ) fM

]
+ (1 − ξ 2)νeff,ob(vξ)

∂ f

∂ξ

}
,

(6.5)

where the velocity-dependent pitch-angle scattering rates νeff,pl and νeff,ob associated
with the secondary parallel firehose modes and the oblique firehose modes, respec-
tively, are now only functions of the parallel particle velocity v‖ = vξ ; they are
directly related to the magnetic-energy spectra of the two firehose populations by

νeff,pl(v‖) � π

2
Ω2

i

v‖

EB,pl

(
Ωi/v‖

)
B2

0/8π
, (6.6a)

νeff,ob(v‖) � π

2
Ω2

i

v‖

EB,ob

(
Ωi/v‖

)
B2

0/8π
. (6.6b)

Here, EB,pl(k‖) and EB,ob(k‖) are the one-dimensional parallel magnetic-energy spec-
tra of the secondary parallel and oblique firehose fluctuations, respectively, while

ṽwv,pl(v‖) = vwv,pl(v‖)
vthi

� �
(
Ωi/v‖

) v‖
vthi

(6.7)

is an approximation (to leading order in the small parameter 1/βi ) of the parallel
phase velocity of the modes with which particles having parallel velocity v‖ are res-
onant. Because the oblique firehose modes do not have a parallel phase velocity,
the pitch-angle scattering operator associated with them is already in the plasma
rest frame. The quasi-parallel assumption is reasonable for the secondary parallel
firehose modes, but is less clearly appropriate for the oblique firehose modes. For
the latter case, we estimate the error introduced in this approximation by using the
numerical result that, in the saturated state of the firehose instability, k⊥ � 0.5ρ−1

i .
It follows that the magnitude of the first-order term in the Bessel function expan-
sion is k2v2

⊥/8Ω2
i ≈ v2

⊥/16v2
thi . For particles with v⊥ � 2vthi (the majority of thermal

particles), the error introduced by the approximation is therefore 25 % or less.
Thus we have constructed a simple model for the effective firehose collision oper-

ator that takes as its inputs two velocity-dependent scattering rates (νeff,pl(v‖) and
νeff,ob(v‖)) and the parallel phase velocity vwv,pl(v‖) of the secondary firehose modes.
The scattering rates are given directly by the one-dimensional parallel magnetic-
energy spectra of oblique and secondary parallel firehose modes EB,ob(k‖) and
EB,pl(k‖), respectively, while vwv,pl(v‖) depends on the real frequency �(k‖) of the
secondary firehose modes. Therefore, to compute the effective firehose collision
operator, all that remains is to determine EB,ob(k‖), EB,pl(k‖) and �(k‖). We com-
pute these functions numerically for all of the expanding-box simulations that we
have conducted that attain Alfvén-enabling states. In order to obtain a time-averaged
collision operator, for each simulation we choose a time interval during which the
firehose instability has saturated, and then calculate averaged values of the oblique
and parallel magnetic-energy spectra and the secondary firehose mode frequencies.

10

10
A time-averaged collision operator is arguably of most relevance for astrophysical applications, because the

time-dependent evolution of the collisionality – first, the progression to a saturated state, then fluctuations around
the average saturated state – occurs over time scales that are much shorter than the time scale over which the
collisionality affects the plasma’s evolution.
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(a) (b) (c)

FIGURE 18. (a) One-dimensional (parallel) magnetic-energy spectrum EB(k‖) of all firehose
fluctuations in the saturated, Alfvén-enabling state of run CV (solid red line). Also plotted
are the magnetic-energy spectra of non-quasi-parallel fluctuations (blue solid line) and quasi-
parallel ones (black solid line), as well as fits for these spectra discussed in the main text (dashed
lines; (6.8b)). (b) Same as (a), but for run DVI. (c) Same as (a), but for run BIV.

To calculate EB,pl(k‖), we first apply a mask to the total (time-averaged) magnetic-
energy spectrum EB(k‖, k⊥) to isolate the secondary parallel firehose modes; this
mask covers the same region of (k‖, k⊥) space as that circumscribed by the white
dashed line in figure 9. We then integrate the masked spectra over all perpendic-
ular wavenumbers to obtain EB,pl(k‖). Then EB,ob(k‖) is calculated by subtracting
EB,pl(k‖) from the total parallel one-dimensional magnetic-energy spectrum EB(k‖) ≡∫

dk⊥ EB(k‖, k⊥). We show EB,pl(k‖), EB,ob(k‖) and EB(k‖) from three representative
simulations in Alfvén-enabling states in figure 18(a–c), respectively.

Having calculated EB,pl(k‖) and EB,ob(k‖) numerically, we then fit both spectra
with simple analytical functions of the form

EB,pl

(
k‖
)� B2

0

8π

{
ĒB,pl√

π�k‖,plρi
exp

[
−(k‖ − k‖, pl)2

�k2
‖,pl

]
+ H(k‖ − k‖, pl)

ĒB,tail

(k‖ρi)ptail

}
,

(6.8a)

EB,ob

(
k‖
)� B2

0

8π

ĒB,ob√
π�k‖,obρi

exp

[
−(k‖ − k‖, ob)2

�k2
‖,ob

]
, (6.8b)

where k‖,pl (k‖,ob) is the wavenumber at which EB,pl(k‖) (EB,ob(k‖)) attains its maxi-
mum, �k‖,pl (�k‖,ob) is the characteristic width of the k‖ interval over which EB,pl(k‖)
(EB,ob(k‖)) extends and ĒB,pl (ĒB,ob) is the total energy in the secondary paral-
lel (oblique) firehose fluctuations. We also find it necessary to model the high-k‖
wavenumber of the distribution of secondary parallel firehose modes with a power-
law tail (of amplitude ĒB,tail, and power-law index ptail); although the magnetic energy
associated with modes of such high wavenumbers is much smaller than modes with
k‖ρi ∼ 1, such modes nonetheless play a key role in determining the anisotropy of
the ion distribution function in Alfvén-enabling states (see § 6.3.1), and so cannot be
disregarded.

These particular functional fits are not derived analytically, but we find empiri-
cally that they describe the numerical spectra well. Practically, we first determine
ĒB,pl and ĒB,ob by integrating each spectra, and then determine best-fit values to the
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other parameters, weighting the estimates by EB,pl(k‖) and EB,ob(k‖), respectively.
For determining the fits for the oblique firehose spectrum, we exclude all parallel
wavenumbers k‖ < 0.4ρ−1

i , because the spectrum of these longer-wavelength fluctu-
ations is not well described by an analytic fit of the form (6.8b), and such modes
do not affect the anisotropy of thermal ions. We fit the power-law tail of the spec-
trum of parallel modes by first fitting the latter’s peak with the Gaussian analytic
form, then subtracting this fit and the spectrum of the noise from the total spectrum,
and fitting the power law to what remains. In figure 18(a,b), the good agreement
between our fits of the form (6.8b) to the one-dimensional magnetic-energy spectra
of two representative simulations is illustrated.

The wavenumber parameters of our best-quality fits for all of our simulations of
Alfvén-enabling states as functions of τexpΩi and βi are presented in figure 19. We
find that all of the wavenumber parameters are approximately independent of both
τexpΩi and βi , save for �k‖,plρi , which has a weak dependence on τexpΩi :

11

k‖,plρi ≈ 1.2, k‖,obρi ≈ 0.75, �k‖,plρi ≈ 1.3
(τexpΩi)0.25

, �k‖,obρi ≈ 0.19. (6.9)

By contrast, both ĒB,ob and ĒB,pl do depend on τexpΩi and βi , with those
relationships being well approximated by the following scalings:

ĒB,pl ≈ 0.3
β0.25

i

(τexpΩi)0.5
, ĒB,ob ≈ 0.7

βi

τexpΩi
. (6.10)

Finally, for the high-wavenumber component of the secondary parallel firehose
modes, we find that the power-law index is approximately independent of both
τexpΩi and βi , but its amplitude has a comparable scaling to the peak amplitude
of the secondary parallel firehose modes:

ptail ≈ 2.7, ĒB,tail ≈ 0.09
(τexpΩi)0.5

. (6.11)

We discuss possible theoretical justifications for these scalings in § 6.4.
To calculate the dispersion relation �(k‖) of the secondary firehose modes

in our simulation, as well as to confirm that the oblique firehose modes are
non-propagating, we compute the frequency-dependent magnetic-energy spectra
EB(k‖, k⊥, �) of the firehose fluctuations in saturation of our simulations of Alfvén-
enabling states. Figure 20(a) shows EB(k‖, k⊥, �) computed for a representative
simulation at two fixed values of k⊥: for purely parallel modes (k⊥ = 0) and for
oblique modes with k⊥ comparable to that of the oblique firehose modes.

For the parallel modes (k⊥ρi = 0; figure 20a, left panel), three distinct wave
populations can be identified: at small wavenumbers (k‖ρi < 0.4), both left- and right-
handed Alfvén modes, while at ion-Larmor scales, secondary parallel firehose modes.
As expected, the latter do indeed have a non-zero real frequency. For the oblique
modes (k⊥ρi = 0.4; figure 20a, right panel), we also observe three distinct popula-
tions: at long-wavelengths (k‖ρi < 0.4), shear Alfvén modes; just above ion-Larmor

11
To avoid advocating for spuriously precise power-law fits based on our simulation dataset, which, due to

computational constraints, only consists of ten different runs in the Alfvén-enabling regime, we choose to specify
power laws to the nearest quarter; this level of precision is chosen based on the size of the 95 % confidence intervals
for the power-law indices of our fits, which is of characteristic magnitude ∼0.1–0.2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825100731
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 02 Oct 2025 at 07:21:37, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825100731
https://www.cambridge.org/core


46 A.F.A. Bott, M.W. Kunz, E. Quataert, J. Squire and L. Arzamasskiy

(a) (b)

(c) (d)

(e) (f)

FIGURE 19. (a) Best-fit estimates for wavenumber parameters introduced in (6.6b) for all of
our Alfvén-enabling simulations as a function of the expansion time. (b) Same as (a), but as a
function of βi . (c) Best-fit estimates for spectral amplitude parameters introduced in (6.6b) for
all of our Alfvén-enabling simulations as a function of the expansion time. (d) Same as (c), but
as a function of βi . (e) Best-fit estimates for high-wavenumber tail of parallel modes introduced
in (6.6b) for all of our Alfvén-enabling simulations as a function of the expansion time. ( f )
Same as (e), but as a function of βi .
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FIGURE 20. (a) Slice plots at fixed k⊥ of the frequency-dependent magnetic-energy spectrum
EB(k‖, k⊥, �) of the firehose fluctuations in run CV, averaged over the saturated state. (b)
Fluctuation-energy-weighted average value of real frequency �sim of the firehose fluctuations
as a function of k‖ρi for several different runs that attain Alfvén-enabling states. The black line
denotes the approximate fit (6.13).

scales (k‖ρi ∈ [0.4, 0.9]), zero-frequency oblique firehose modes; and a weak popula-
tion of (propagating) oblique secondary parallel firehose modes for k‖ρi > 0.9. The
presence of the long-wavelength modes in addition to the secondary parallel firehose
and oblique firehose modes is perhaps surprising, because such long-wavelength
modes are linearly damped at these levels of pressure anisotropy; we postulate that
it is nonlinear coupling between secondary parallel firehose and oblique firehose
modes that gives rise to them.

From EB(k‖, k⊥, �), we can then obtain a numerical estimate of the dispersion
relation of the parallel secondary firehose modes as a function of k‖ by taking a
weighted mean:

〈� 〉(k‖) ≡
∫ k⊥,max

0 dk⊥
∫ �max

0 d� � EB(k‖, k⊥, �)∫ k⊥,max
0 dk⊥

∫ �max

0 d� EB(k‖, k⊥, �)
. (6.12)

Because the parallel secondary firehose modes are the dominant ones at k‖ρi >
0.9, the dependence of 〈� 〉 on k‖ will correspond to their dispersion relation. This
numerical estimate for several representative simulations is shown in figure 20(b).
We find that, for k‖ρi ∈ [0.7, 1.7], 〈� 〉(k‖) is well approximated by the fit

〈� 〉(k‖) ≈ Ωi

βi
(4.9k‖ρi − 2.9). (6.13)

The relatively narrow range of wavenumbers over which the spectrum of secondary
parallel firehose modes exists means that the clearly unphysical parts of this fit to
the dispersion relation (i.e. k‖ρi 	 1, where � goes negative) are never used.

6.3. Testing the model collision operator
Having proposed an effective collision operator associated with firehose fluctua-

tions in an Alfvén-enabling state, we now test whether this operator is consistent
with two observables from our simulations: firstly, the velocity-dependent anisotropy
of the distribution function for particles with speeds comparable to the thermal
speed; secondly, Fokker–Planck coefficients calculated directly from the evolution
of a subpopulation of tracked (macro)particles.
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6.3.1. Velocity-dependent anisotropy of the distribution function
Because collision operators describe how specific collisional processes affect the dis-
tribution function, confirming that our proposed firehose collision operator accounts
for the observed distribution function’s anisotropy is a natural test of our model. In
the case of an expanding, high-βi plasma in an Alfvén-enabling state whose con-
stituent particles have an effective collision rate νeff that satisfies τ−1

exp 	 νeff 	 Ωi ,
the relationship between the anisotropy of the distribution function and the collision
operator takes a simple form. This condition is expected to hold for most particles in
firehose-susceptible plasmas that attain Alfvén-enabling states, because the velocity-
averaged collisionality 〈νeff〉 of particles satisfies 〈νeff〉 ∼ βi/τexp � 1/τexp, while the
pitch-angle scattering rate of even the most frequently scattered particles obeys the
bound νeff 	 Ωi .

To establish a relationship between the distribution function’s anisotropy and the
effective collision operator, we employ a modified version of a mathematical tech-
nique used in classical transport theory of plasmas: the Chapman–Enskog expansion
(e.g. Yerger et al. 2025). This technique assumes that, in plasmas where the collision
rate greatly exceeds the macroscopic evolution rate, the distribution function in the
expanding plasma can be expanded in the form

fi = f0i + f1i + · · · , (6.14)

where the first-order correction f1i ∼ f0i(νeffτexp)
−1 is asymptotically small compared

with the leading-order term f0i . Simultaneously, the condition that νeff 	 Ωi means
that, over the evolution time scales of interest, fi is approximately gyrotropic. If the
gyroaveraged kinetic equation satisfied by the distribution function is also expanded
in the small parameter (νeffτexp)

−1, we find that, to leading order, f0i must satisfy
Cf[ f0i ] = 0. Adopting our model firehose collision operator, and taking into account
the Maxwellian initial condition of the distribution function in our simulations, this
equation has the unique solution f0i = fMi .

12
Considering the equation that arises to

next order from the gyroaveraged kinetic equation, it follows that

Cf[ f1i ] =
[(

b̂b̂ − 1
3
I
)

: Wi

]
ṽ2 P2(ξ) fMi , (6.15)

where Wi is the (traceless, symmetric) rate-of-strain tensor of the ion bulk flow,
P2(ξ) is the Legendre polynomial of second degree and we remind the reader that
ṽ ≡ v/vthi . In the case of plasma that is linearly expanding on a time scale τexp in
one direction that is perpendicular to the background magnetic field, Wi = 2∇u =
−(2/τexp)x̂ x̂, and so (6.15) becomes

Cf[ f1i ] = − 2
3τexp

ṽ2 P2(ξ) fMi . (6.16)

Now assuming that Cf[ f1i ] = Cf[ fi ] takes the form given by (6.5), and integrating
(6.16) from ξ = −1 to ξ0 → ξ , we deduce that

1
2ṽ

∂ fi

∂ξ
≈ fMi(v)

{
νeff,pl(ṽ‖)ṽwv(ṽ‖)

νeff,pl(ṽ‖) + νeff,ob(ṽ‖)
+ ṽ‖

3τexp[νeff,pl(ṽ‖) + νeff,ob(ṽ‖)]
}
. (6.17)

12
In general, our model firehose collision operator vanishes for any isotropic function f0i (v) = f0i (v).

However, because the distribution function begins as Maxwellian in our simulations, and our collision operator does
not directly generate a significant non-thermal population of particles, the zeroth-order solution remains Maxwellian.
Our solution for the distribution function should be relevant to realistic plasmas, provided there is some process
that pushes the plasma towards thermodynamic equilibrium – for example, Coulomb collisions.
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FIGURE 21. (a) Slice plot of the pitch-angle gradient of the ‘saturated’ ion distribution function
fi,sat divided by 2ṽ fM in an Alfvén-enabling state (run CV). Here, fi,sat is the domain-averaged
ion distribution function f (v‖, v⊥) time-averaged over the saturated period of the firehose insta-
bility. (b) The same quantity as (a), but averaged over v⊥ (solid red line); the average excludes
the shaded region shown in (a) which is negatively influenced by poor particle statistics. This is
plotted with the theoretical prediction (6.17) for this quantity arising from our proposed collision
operator (dashed line), and in the absence of any collisions (dotted line). The dark blue (grey)
line shows the solutions of (6.19) at t = 0.34τexp, including (excluding) the high-wavenumber
power-law tail of secondary parallel firehose modes. Inset: complex frequency ω plotted against
parallel wavenumber for linear low-frequency modes arising in a plasma with ion distribution
function fi,sat. The real frequency � (growth rate γ ) is shown in red (blue). Also plotted is the
observed real frequency �sim of firehose fluctuations in the same run (red dashed).

Thus, we have established a simple relationship between the pitch-angle gradient
of the distribution function and the functions νeff,pl(ṽ‖), νeff,ob(ṽ‖) and ṽwv(ṽ‖) that
characterise our model firehose collision operator.

Figure 21 provides a test of this relationship in the case of our asymptotic Alfvén-
enabling run in its saturated phase. Firstly, figure 21(a) illustrates a key feature of
(6.17): that (∂ fi/∂ξ)(1/ṽ fMi) is approximately independent of v⊥, and primarily a
function of v‖. Secondly, figure 21(b) compares the time- and v⊥-averaged value of
(∂ fi/∂ξ)(1/2ṽ fMi) (solid line) with the right-hand side of (6.17) (dashed line), where
we first compute νeff,pl(ṽ‖), νeff,ob(ṽ‖) and ṽwv(ṽ‖) assuming our quasi-linear model
applies instantaneously, and then time-average the entire expression. The agreement
is very strong, save for |ṽ‖| 	 0.5, supporting the claim that our model collision
operator is appropriate for |ṽ‖|� 0.5.

To explain why reasonable agreement is not attained for comparatively small val-
ues of ṽ‖, we note that, in deriving (6.17), we have implicitly assumed that the
rate of anomalous scattering is large enough that, at the specified time t at which
the comparison is made, either νeff,plt � 1 or νeff,obt � 1. As ṽ‖ is decreased from
order-unity values to smaller ones, the amplitude of the increasingly high wavenum-
ber firehose modes with which such particles are resonant decreases, leading to
an ever-smaller scattering rate. Eventually, the collision rate decreases enough that
νeff,obt 	 νeff,plt � 1, at which point there is no expectation for (6.17) to hold. Indeed,
if νeff,plt 	 1, one should expect the distribution function’s anisotropy to be consistent
with continued double-adiabatic evolution; that is, in the absence of any collisions,
the non-Maxwellian component of the distribution function should be given by

f1i ≈ 2t

3τexp
ṽ2 P2(ξ) fMi ,

1
2ṽ

∂ fi

∂ξ
≈ ṽ‖

t

τexp
fMi . (6.18)
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This expression is plotted in figure 21(b) (dotted line) using the mean time of the
‘saturated’ interval over which fi is averaged; good agreement is found for ṽ‖ � 0.2.
This implies that scattering of particles with small values of v‖ compared with the ion
thermal speed is indeed too infrequent to impact the distribution function anisotropy
at such velocities.

We can further test this hypothesis by considering the evolution equation of the
first-order correction f1i under the ordering t ∼ τexp/βi ∼ 〈νeff〉−1:

∂ f1i

∂t
− Cf[ f1i ] = 2

3τexp
ṽ2 P2(ξ) fMi . (6.19)

It is clear that, taking the subsidiary limit t〈νeff〉 � 1 recovers the steady-state solu-
tion (6.16), while the opposite limit t〈νeff〉 	 1 returns adiabatic evolution, with
f1i given by (6.18). We then solve (6.19) numerically, with the effective collision
operator given by (6.1) and (6.2c) when �i < −1.35/βi (i.e. when the oblique fire-
hose is first destabilised). We integrate forward in time for the same duration as
in our Pegasus++ runs and compute the pitch-angle gradients. An illustrative
comparison of the two results (dark blue versus red line) for run CV is shown in
figure 21(b); in this (and other simulations) we find quantitative agreement,
supporting our hypothesis.

We can also use numerical solutions of (6.19) to investigate the importance (or
possible lack thereof) of the high-wavenumber power-law tail of secondary parallel
firehose modes. If we remove the contribution of these modes from (6.2a), and re-
run our numerical solution of (6.19), we obtain the grey line in figure 21(b). The
resulting pitch-angle derivative of fi, sat matches the Pegasus++ results well for
|v‖|� 0.6vthi and for |v‖|� 0.2vthi . For intermediate values of v‖, the numerical solu-
tion implies (erroneously) that the pitch-angle gradient of the distribution function
should, for such values of v‖, be given by the double-adiabatic result (6.18). The
reason that the double-adiabatic prediction is incorrect is simply that, if the high-
wavenumber power-law tail of secondary parallel firehose modes is not modelled,
then the scattering rate due to modes with k‖ρi � 2 implied by (6.2c) is insufficient
for the distribution function’s anisotropy to have been regulated in any meaningful
way. We conclude that the high-wavenumber secondary firehose modes – which,
as we argue in § 6.4.3, should be present physically – play a non-trivial role in
determining the velocity-dependent anisotropy of the ion distribution function in
saturation.

6.3.2. Increment method
Another approach for testing our proposed model for the firehose collision operator
is to try to characterise drag and diffusion of particles in our simulation directly, and
compare such measurements with predictions from our model. Under two quite gen-
eral assumptions – specifically, that collisions are a near-Markovian process and that
individual scattering events do not lead to large-angle scattering – it can be shown
that any operator characterising those collisions must be to a good approximation a
Fokker–Planck operator:

C[ f ] ≈ − ∂

∂v
· (A f ) + 1

2
∂

∂v

∂

∂v
: (B f ) . (6.20)
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Here, the (vector) drag coefficient A and the (rank-two tensor) diffusion coefficient
B are given by

A ≡ lim
�t→‘0’

〈�v〉
�t

, B ≡ lim
�t→‘0’

〈�v�v〉
�t

, (6.21)

where 〈�v〉 and 〈�v�v〉 are the first- and second-order jump moments and the
limit �t → ‘0’ is to be interpreted as a time interval �t that satisfies 2πΩ−1

i 	
�t 	 2πν−1

c (where νc is rate of scattering). This result gives us a general approach
for estimating drag and diffusion due to a collisional process occurring in a PIC
simulation: consider a time increment �tinc satisfying 2πΩ−1

i 	 �tinc 	 2πν−1
c , cal-

culate the jump moments associated with that time interval and then estimate A and
B via

A ≈ 〈�v〉(�tinc)

�tinc
, B ≈ 〈�v�v〉(�tinc)

�tinc
. (6.22)

If the estimate is a good one, then different increment sizes satisfying 2πΩ−1
i 	

�tinc 	 2πν−1
c should give similar results. For simplicity’s sake, we assume that the

effective firehose collision operator is a function of pitch angle only, and is therefore
given by

Cf[ f ] = − ∂

∂ξ
[A(v, ξ) f ] + 1

2
∂2

∂ξ 2
[B(v, ξ) f ] , (6.23)

where

A(v, ξ) ≡ lim
�t→‘0’

〈�ξ 〉
�t

and B(v, ξ) ≡ lim
�t→‘0’

〈�ξ 2〉 − 〈�ξ 〉2

�t
(6.24)

are the scalar pitch-angle drag and diffusion coefficients, respectively.
Figure 22 presents the A and B coefficients calculated using tracked-particle

data from our asymptotic Alfvén-enabling simulation (run CV, which has 〈νeff〉 �
0.21β‖i/τexp � 1.1 × 10−4Ωi ). We use two different increments: �t = 4πΩ−1

i (left-
hand column) and 8πΩ−1

i (middle column). The right-hand column displays the
coefficients associated with our model collision operator (6.2c). The comparison
demonstrates reasonable qualitative agreement between the two models. Coefficients
A(v, ξ) and B(v, ξ) do not vary significantly along the resonant contours wξ =
const. for both values of �tinc, which implies that they are primarily functions of
v‖ only. Further, the drag coefficient changes sign in the same manner at a partic-
ular parallel velocity v‖ � vthi , and the magnitudes of both the drag and diffusion
coefficients peak in the vicinity of this value of v‖.

However, the quantitative agreement is less convincing: compared with our quasi-
linear model, the peak values of A and B inferred using the increment method are
reduced and features are noticeably broadened. Investigating the cause of this dis-
crepancy, we find that one of the key assumptions underlying the increment method
– that particles undergo local jumps in phase space – is violated by our data. Particles
starting with pitch angles corresponding to regions of (v, ξ) space in which there is
strong scattering quickly move to other regions in which νeff,pl(v, ξ) is smaller, and
so sample a range of scattering rates during the chosen time increment. By contrast,
the increment method assumes that just the initial scattering rate is sampled. This
can be seen numerically by examining the root-mean-square change in pitch angle
over the chosen increment; we find that even for �tinc = 4πΩ−1

i = 1.3 × 10−3〈νeff〉−1,
particles starting near v‖ ∼ vthi experience changes �ξ to their pitch angle of order
�ξ ∼ 0.1–0.2 (not shown). While these changes can be attributed partially to the
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FIGURE 22. Fokker–Planck coefficients A(v, ξ) (top row) and B(v, ξ) (bottom row) obtained
two different ways: using tracked-particle data from run CV to calculate the jump moments
(6.22) assuming either �t = 4πΩ−1

i (left-hand column) or �t = 8πΩ−1
i (middle column);

and comparing our quasi-linear pitch-angle scattering operator (6.2c) with (6.23) to read off
A and B (right-hand column). The coefficients are normalised such that order-unity values are
comparable to the velocity-averaged scattering rate.

direct effect of scattering, they are also due to fluctuations in the pitch angle of
particles with v‖ ∼ vthi on time scales ∼Ω−1

i that naturally arise as the particles
traverse larger-scale oblique firehose fluctuations. This implies that the results of
the increment method should not be regarded as being quantitative; indeed, the
fact that caution is warranted is also evidenced by the discrepant results obtained
using different increment sizes (see figure 22). That being said, the broadening of
resonances by both scattering and via non-resonant interactions is a physical effect,
and one that is not currently accounted for in our quasi-linear model. An extended
discussion of this phenomenon – considered when constructing a collision operator
for the whistler heat-flux instability – is given by Yerger et al. (2025, § 6.4).

6.4. The perturbed magnetic energy of firehose fluctuations in saturation: part II
In this section, we consider the parameter dependence of the functions νeff,ob and

νeff,pl that we have deduced numerically, and offer possible explanations for them.
The essence of these explanations is that these functions take the observed time-
averaged forms in order to maintain a state of marginal linear stability with respect
to both the oblique firehose and parallel secondary firehose instability. However,
because these arguments are somewhat speculative, yet technical, the impatient
reader may wish to pass over them and move straight on to our conclusions in § 7.

6.4.1. A qualitative theory of scattering by oblique firehose fluctuations
When constructing our model collision operator, we assumed that a (resonant)
quasi-linear scattering operator was a reasonable simplification to adopt. For this
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assumption to be a logically consistent one, we must also assume that the growth
rate of oblique firehose modes remains accurately modelled by linear kinetic the-
ory in the saturated state of the instability. If this is to be the case, the growth
rate γob must satisfy γob ∼ τ−1

exp 	 Ωi/βi , and therefore we require that the oblique
firehose instability is approximately marginalised (in a time-averaged sense) over
all wavevectors at which oblique firehose modes are detected in our simulations.
Because the oblique firehose threshold is sensitive to the anisotropy of the distribu-
tion function, this requirement provides a significant constraint on the magnitude of
the distribution function’s anisotropy.

While we are unable to write down a simple mathematical expression for the
threshold condition of oblique firehose modes at arbitrary wavevectors, it is shown
in Appendix A.3 that the threshold of quasi-parallel (k⊥ 	 k‖) oblique firehoses with
wavelengths that are not too small (k‖ρi � 0.5) – a subset of the unstable oblique
firehose modes – is given by (cf. (A.62))

π

ni0
P
∫ ∞

−∞
dṽ‖

ṽ‖
1 − k2

‖ρ
2
i ṽ

2
‖

∫ ∞

0
dṽi⊥ ṽ3

i⊥
1
ṽ

∂ fi0

∂ξ
≈ 1

β‖i
. (6.25)

Now substituting in (6.17) for the distribution function anisotropy, and assum-
ing that the contribution to the principal value integral is dominated by parallel
wavenumbers near those of the oblique firehose modes themselves, we deduce that

1
3
√

π
P
∫ ∞

−∞
dṽ‖

ṽ2
‖

1 − k2
‖ ρ̃

2
i ṽ

2
‖

1
νeff,ob(ṽ‖)

exp (−ṽ2
‖) ≈ τexp

β‖i
. (6.26)

If the integral equation (6.26) is to hold over a range of different values of k‖ρi ,
it follows that νeff,ob ∼ βi/τexp, and so ĒB,ob ∼ βi/τexpΩi , as we have indeed observed
numerically (cf. (6.10)). Beyond that, there is no obvious dependence of νeff,ob(v‖i) on
any other parameters – which is consistent with the numerical observation (cf. (6.9))
that the fitting parameters k‖,ob and �k‖,ob that characterise the mean and spread of
parallel wavenumbers, respectively, are numbers, and not dependent on any other
parameters. Equation (6.26) presumably also places a constraint on the functional
form of νeff,ob(v‖); however, because inverting (6.26) is a non-trivial mathematical
problem whose well-posedness is unclear, we do not attempt to pursue this further.

6.4.2. A qualitative theory of scattering of thermal particles by parallel secondary firehose
fluctuations

For the secondary parallel firehose modes that emerge in the Alfvén-enabling state,
the saturation mechanism cannot be the same as that for the oblique firehose
modes, because the secondary parallel firehose modes are propagating. This means
that (quasi-linear) pitch-angle scattering regulates the ion distribution function’s
anisotropy towards isotropy in the wave frame that is co-moving with the secondary
parallel firehose modes. It can, in fact, be shown that the gradient of fi with respect
to the pitch angle ξ ′ in the wave frame is related to ∂ f̃i/∂ξ and the parallel phase
velocity vwv of the waves by

∂ fi

∂ξ ′

∣∣∣∣
v′

= ∂ fi

∂ξ

∣∣∣∣
v

− 2vwvv

v2
thi

fM, (6.27)

where v′ is the speed of particles in the wave frame (Yerger et al. 2025). Assuming
that the amplitude of the secondary parallel firehose modes is sufficiently small
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that their growth rate γpl can still be modelled by (5.3b), the magnitude of ∂ f̃i/∂ξ ′
around the parallel velocities |v‖| ∼ vthi that are associated with cyclotron resonance
is related to γpl by (cf. (5.6))

∂ fi

∂ξ ′

∣∣∣∣
v‖=v‖,res

∼ vI± ∼ γpl

Ωi
fM. (6.28)

Such an assumption also implies that the effective rate νeff,pl of pitch-angle scattering
by the secondary parallel firehose modes is related to their characteristic saturation
amplitude δBpl/B0 by νeff,pl ∼ ΩiδB2

pl/B2
0 . Next, in saturation, the rate of change

of the equilibrium distribution in saturation must balance the rate at which the
secondary parallel firehose fluctuations cause pitch-angle diffusion of the distribution
function:

νeff,pl
∂ fi

∂ξ ′

∣∣∣∣
v‖=v‖,res

∼ 1
τexp

fM ∼ νeff,pl
γpl

Ωi
fM. (6.29)

It therefore follows that
δB2

pl

B2
0

∼ νeff,pl

Ωi
∼ 1

γplτexp
. (6.30)

This scaling has one particularly notable consequence. In the saturated state, the
growth rate of the secondary parallel firehose modes must be much smaller than
their real frequency. If this were not the case – that is, if unstable secondary par-
allel firehose modes grew at the same rate at which they propagated – then their
growth rate would be comparable to their phase speed, which is generally much
faster than the macroscopic evolution rate. It follows from this that γpl 	 Ωi/βi , and
so the amplitude of the saturated secondary modes, δB2

pl/B2
0 , must greatly exceed the

value ∼ βi/τexpΩi that might be inferred from a naive quasi-linear scattering model
(cf. (5.12)). A simple physical explanation of this phenomenon is that particle scat-
tering by secondary firehose modes acts to isotropise the distribution in the wave
frame, not the laboratory frame. As a result, these modes must attain a larger-
than-anticipated amplitude for this particle scattering to regulate the macroscopic
generation of anisotropy.

Determining a correct estimate of γpl, and thereby δB2
pl/B2

0 and νeff,pl, is a more
challenging question. Making the naive presumption that, in order for saturation
to occur, γpl ∼ 1/τexp, it follows from (6.30) that δB2

pl/B2
0 ∼ 1. This is inconsistent

with the measured amplitude of parallel secondary firehose modes in our simu-
lations (cf. (6.10)), implying that a different mechanism must cause saturation to
occur more efficiently. The condition that scattering of resonant particles by the sec-
ondary parallel firehose modes should not exceed the rate at which those modes grow
(i.e. νeff,pl � γpl) places a more stringent condition on δB2

pl/B2
0 , with the predicted

saturation amplitude being

δB2
pl

B2
0

∼ 1
νeff,plτexp

∼ 1(
τexpΩi

)1/2 , (6.31)

and νeff,pl ∼ Ω
1/2
i τ−1/2

exp . The scaling (6.31) of δB2
pl/B2

0 is almost consistent with (6.10),
save for the β

1/4
i dependence. Where this βi dependence arises from – as well as the

weak dependence of the breadth of the k‖ interval over which firehose modes are
detected on (τexpΩi)

1/4 – remains unclear to the authors, but could indicate that other
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possible saturation mechanisms (e.g. wave–wave interactions) could play some role.
Establishing the precise mechanism of saturation would require the development
of additional tools for analysing our simulation results – in particular, a full quasi-
linear code that solves for the evolution of the distribution function and the magnetic
perturbations self-consistently – so we defer this to future study.

6.4.3. A theory of scattering of subthermal particles by sub-ion-Larmor-scale secondary
parallel firehose fluctuations

Finally, we motivate the inclusion of a high-wavenumber power-law tail in our model
of the magnetic-energy spectrum of secondary parallel firehose modes.

As shown in § 5.2, the secondary parallel firehose modes that are initially desta-
bilised have a characteristic number that is smaller than the reciprocal of the
ion-Larmor radius (k‖ρi ≈ 0.7), and modes with k‖ρi � 1 are not destabilised.
However, as the expansion proceeds, subthermal particles whose parallel velocity is
initially too small to interact resonantly with the secondary parallel firehose modes
continue to evolve according to the double-adiabatic conservation laws. As a result,
the pitch-angle anisotropy of the distribution function at parallel velocities satisfying
|v‖|� 0.5vthi continues to grow. This has the consequence that, as the expansion
proceeds, secondary parallel firehose modes with increasingly large wavenumbers
become destabilised.

This claim can be proven explicitly for modes with wavelengths that are much
smaller than ρi (or, equivalently, k‖ρi � 1). In this limit, the real frequency (5.3a) of
modes is given approximately by � ≈ ±k2

‖d2
i Ωi , and their growth rate (5.3b) is

13

γ ≈ ±Ωi
π 2

ni0

∫ ∞

0
dv⊥v3

⊥

(
1
w

∂ fi0

∂ξ
− 2vwv

v2
thi

fM

) ∣∣∣∣∣
v‖=±vthi /k‖ρi

. (6.32)

Then, assuming that the evolution of the ion distribution function’s anisotropy is
given by (6.18) (i.e. it is approximately double-adiabatic), the growth rate (6.32) can
be evaluated, giving

γ = √
π

(
1

k‖ρi

t

2τexp
− k‖ρi

βi

)
Ωi . (6.33)

Thus, modes with k‖ρi < (tβi/2τexp)
1/2 are unstable at time t . Note that, for this

calculation to be self-consistent, it must be the case that t � τexp/βi , which implies
that these sub-ion-Larmor-scale modes will only be destabilised at times much later
than the onset time of both oblique firehose modes and ion-Larmor-scale secondary
parallel firehose modes.

Once these sub-ion-Larmor-scale modes are destabilised, it is reasonable to
propose that they will grow until they too scatter the particles with which they are res-
onant, regulating the anisotropy of particles with v‖ ≈ vthi/k‖ρi 	 vthi . Irrespective of
the precise saturation mechanism, this regulation generically gives rise to magnetic-
energy spectra at k‖ρi � 1 that satisfy a power law. To show this, we posit that, in
saturation, the distribution function’s anisotropy evaluated at such v‖ would satisfy
(6.17) if scattering were to regulate the distribution function’s anisotropy. Assuming

13
These modes are, in fact, just whistler waves – such modes are the only parallel-propagating modes at

sub-ion-Larmor scales that satisfy the ordering ω/k‖vthi ∼ β−1
i .
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that there are no non-propagating sub-ion-Larmor-scale oblique firehose modes, this
implies that

1
2ṽ

∂ fi

∂ξ
≈ fMi(v)

[
ṽwv(ṽ‖) + ṽ‖

3τexpνeff,pl(ṽ‖)

]
. (6.34)

Further assuming that the behaviour of these modes is correctly described by quasi-
linear theory, even in the saturated state, their growth rate will still be given by
(6.32). Substituting (6.34) gives that the growth rate γ (k‖ρi) of modes with parallel
wavenumber k‖ is

γ (k‖ρi) = 2
√

π

3
1

k‖ρi

1
τexpνeff,pl(1/k‖ρi)

Ωi . (6.35)

It follows from the relation (6.6a) between the magnetic-energy spectrum EB,pl(k‖ρi)
of parallel modes and νeff,pl that

EB,pl

(
k‖ρi

)≈ B2
0

8π

4
3
√

π

1
(k‖ρi)2

1
τexpγ (k‖ρi)

. (6.36)

Thus, if γ (k‖ρi) ∝ kα
‖ , for some index α (as would be expected due to scale invariance

of sub-ion-Larmor-scale modes), then EB,pl(k‖ρi) ∝ k−α−2
‖ .

It is clear that the specific index of the power law depends on exactly why
the sub-ion-Larmor-scale secondary parallel firehose modes saturate – the anal-
ogous question that we discussed in § 6.4.2 for the ion-Larmor-scale modes. If,
for example, γ (k‖ρi) ∼ 1/τexp at all wavenumbers in saturation, then it would
follow that EB,pl(k‖ρi) ∼ (B2

0/8π)(k‖ρi)
−2; if, instead, γ (k‖ρi) ∼ νeff,pl(1/k‖ρi), then

EB,pl(k‖ρi) ∼ (B2
0/8π)(τexpΩi)

−1/2(k‖ρi)
−1.5. Comparing to our numerical results (cf.

(6.11)), we find that the scaling of the amplitude of the power law with τexpΩi is
consistent with this latter result. However, the slope of the power law we observe
is significantly more negative. One plausible explanation for this discrepancy is
the comparatively large amplitude of the spectrum of the noise in our simula-
tions (EB,noise(k‖) ∼ 2 × 10−5(B2

0/8π)) compared with the measured amplitude of the
power-law tail (EB(k‖) ∼ 2–5 × 10−5(B2

0/8π) at k‖ρi ≈ 3). It may therefore be the
case that the effect of numerical collisionality on subthermal particles steepens the
observed spectral slope of the magnetic field compared with what might be observed
if the numerical collisionality were lower, because grid-scale electric fields supplant
sub-ion-Larmor-scale magnetic perturbations in their role of scattering sub-thermal
particles. Unfortunately, due to the high computational cost of running simulations
with an even larger number of particles per cell, we are unable to explore this
possibility further at this time.

7. Discussion and applications

Our theory of firehose-instability saturation and its effect on thermodynamics and
collisionality has implications both for prior simulation studies and for astrophysi-
cal applications. In the former arena, our theory explains the apparent differences
between the value �i � −2/β‖i of the pressure anisotropy that was obtained in the
saturated state of previous high-β shearing-box simulations of firehose-susceptible
plasmas (Kunz et al. 2014a), and the value �i � −1.4/β‖i obtained in β � 1
expanding-box simulations (Hellinger & Trávníček 2008, 2015; Hellinger et al. 2019;
Bott et al. 2021). Specifically, in the shearing-box simulations, βi � 200, and the
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simulation with the longest characteristic shearing time τsh satisfied τshΩi � 104, so
τshΩi/β

1.6
i � 2. Taking numerical prefactors into account, all of these simulations can

be described as being in the Alfvén-inhibiting state. By contrast, previous expanding-
box simulations of the firehose instability all have βi � 8, and τexpΩi � 103, so
τexpΩi/β

1.6
i � 36; these simulations therefore describe plasmas in the Alfvén-enabling

state.
Having characterised three possible states, one obvious question to ask is whether

the collisionless astrophysical plasmas in which the firehose instability is thought to
operate (e.g. the ICM, black hole accretion flows, the near-Earth solar wind) end
up in ultra-high-beta, Alfvén-inhibiting or Alfvén-enabling states. Generically, one of
the key features of these astrophysical systems is that they exhibit huge scale separa-
tions between the time scales τ on which they evolve macroscopically, and plasma
time scales such as the ion-Larmor period 2πΩ−1

i . We illustrate this by calculating
Ω−1

i using characteristic values of B in three specific environments, and compar-
ing it with their macroscopic evolution time scale τ : the ICM at the cooling radius
(B ∼ 1 μG, τ ∼ 1014 s, τΩi ∼ 1012), Sgr A∗ at the Bondi radius (B ∼ 1 mG, τ ∼ 106 s,
τΩi ∼ 107) and the solar wind at one astronomical unit (B ∼ 30 μG, τ ∼ 105 s,
τΩi ∼ 4 × 105). Another key feature of these three particular systems is that their
characteristic values of βi are larger than unity, but not by many orders of magni-
tude: for the ICM, βi ∼ 102−3; for Sgr A∗, βi ∼ 10; for the near-Earth solar wind,
βi ∼ 1. Considering these two features together, we find that τΩi/β

1.6
i � 1 in all

three of these systems (for the ICM, τΩi/β
1.6
i ∼ 109; for Sgr A∗, τΩi/β

1.6
i ∼ 105; for

the solar wind, τΩi/β
1.6
i ∼ 4 × 105). In short, these three examples of astrophysical

firehose-susceptible plasmas should all saturate in Alfvén-enabling states.
Given the relevance of our findings to the solar wind, it is pertinent to compare

our results with various theoretical and numerical studies of expanding plasmas com-
pleted in that context (Matteini et al. 2006; Hellinger & Trávníček 2008; Hellinger
2017). These studies have tended to focus on plasma with βi ∼ 1, and employed
a spherical (rather than unidirectional) expansion; however, some have considered
larger values of βi up to βi ≈ 10, which overlaps with the lowest βi that we have
simulated, and there are areas of significant commonality. One such example is
the quasi-periodic (as opposed to quasi-static) nature of the ‘saturated’ state in
the Alfvén-enabling regime. Such behaviour has also been seen in numerous two-
dimensional simulations of expanding solar wind (Hellinger & Trávníček 2008;
Hellinger 2017), and has been attributed to the tendency of the oblique firehose insta-
bility to be ‘self-destructive’. Another commonality concerns the interplay between
oblique firehose modes and a second population of parallel firehose modes. For
our run with the largest value of τΩi/β

1.6
i (run CV; τΩi = 5 × 104, βi0 = 25) –

i.e. our ‘asymptotic’ Alfvén-enabling run – the evolution of the perturbed magnetic
energy in parallel and oblique modes (cf. Figure 10) is quite similar to the results
of two-dimensional simulations using a spherical expansion with τexpΩi0 = 104 and
βi0 = 0.5 (Hellinger & Trávníček 2008, figure 5). On this point, the inverse relation-
ship between δB2

f /B2
0 and τexp presented in figure 9 is consistent with the findings

of Matteini et al. (2006, figure 6). Finally, the departure from a bi-Maxwellian dis-
tribution caused by the interaction of thermal particles with firehose modes in our
simulations is consistent with the butterfly-shaped contours of the ion distribution
function routinely observed in prior simulations in the solar wind context (Matteini
et al. 2006; Hellinger & Trávníček 2008, 2015; Hellinger et al. 2019).

That being said, there are some differences worth noting. Firstly, there is a small
difference between the particular value of �i � −1.4/β‖i obtained in the saturated
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state of these previous expanding-box simulations and the value �i � −1.6/β‖i that
we observed in our ‘asymptotic’ Alfvén-enabling runs. The most plausible explana-
tion for this difference is the larger values of βi that were used in our expanding-box
simulations compared with the previous ones. We believe that, because of differences
in the linear physics of the firehose instability when βi � 1 and βi � 1 – specifically,
the resonant parallel firehose instability can no longer be disregarded when βi � 1 –
it is likely that the secondary parallel firehose instability does not emerge in the
same way when βi � 1 as when βi � 1. Because these modes push the ion distribu-
tion function away from a bi-Maxwellian form, thereby altering the linear stability
threshold of the oblique firehose instability, it is likely that this could affect the pre-
cise saturated value of the pressure anisotropy. This difference in the linear physics
also presents itself in the comparative evolution of the perturbed magnetic energy in
parallel and oblique firehose fluctuations; for example, in the βi ∼ 1 simulations of
Hellinger & Trávníček (2008), the energy in oblique firehose modes is always sub-
dominant to that in (primary) resonant parallel firehose modes, whereas, initially,
the opposite holds for our simulations of the Alfvén-enabling regime. Finally, we do
not find evidence of significant interactions with suprathermal particles in our simu-
lations of expanding high-βi plasmas, contrasting with the power-law tails observed
by Matteini et al. (2006).

The conclusion that the firehose-unstable collisionless plasma present in astro-
physical systems is typically in an Alfvén-enabling state has several important
consequences for various physical phenomena. The first of these concerns the
behaviour of Alfvén waves, and in particular the phenomenon of Alfvén-wave inter-
ruption. It was recently shown that, in collisionless plasma, long-wavelength, linearly
polarised, parallel-propagating Alfvén waves – that is, modes with k‖Aρi 	 1 – with
a sufficiently large amplitude (δB⊥/B0 � 2β

−1/2
i ) could generate sufficient pressure

anisotropy to remove the Alfvénic restoring force on the wave and to trigger the
firehose instability in local regions of plasma, leading to efficient damping of the
wave (Squire et al. 2016, 2017). The implication of this work initially seemed to
be that collisionless plasmas could not support Alfvénic perturbations above a criti-
cal amplitude that decreased with increasing βi . However, this conclusion implicitly
assumed that the regions of plasma in which firehose modes were produced attain an
Alfvén-inhibiting state; this is, in fact, only the case whenever Ωi/β

1.6
i �ωA, where

ωA ≡ k‖AvA is the frequency of the long-wavelength Alfvén wave. This can be rear-
ranged to give a lower bound on the parallel wavenumber at which the assumption
holds: k‖Aρi � β−1.1

i . The simulations with the largest scale separation reported in
Squire et al. (2017) have βi = 100 and k‖Aρi = 2π/1000 ≈ β−1.1

i , which was con-
sistent with expectations. If, however, k‖Aρi 	 β−1.1

i while δB⊥/B0 � 2β
−1/2
i , regions

driven unstable to the firehose instability would instead attain Alfvén-enabling states,
and so would not lead to the Alfvén wave’s interruption (because the Alfvénic
restoring force would not be completely negated). This has the implication that
only mesoscale Alfvén waves with amplitudes δB⊥/B0 � 2β

−1/2
i will experience inter-

ruption, while macroscale ones will not. Generating mesoscale Alfvén waves with
such large amplitudes in astrophysical environments requires highly localised, intense
energy injection; mesoscale waves generated in less extreme ways – such as those
forming a turbulent Alfvénic cascade – will typically have much smaller amplitudes.

The tendency of collisionless astrophysical plasma to arrive at an Alfvén-enabling
state when the firehose instability is triggered also has significant ramifications
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for the nature of magnetised turbulence in plasma that, on account of its macro-
scopic evolution (e.g. global expansion), acquires a background negative pressure
anisotropy. Specifically, it causes such turbulence to be similar to magnetohydrody-
namical (MHD) turbulence. MHD turbulence with a strong guide magnetic field B0

has two key features. Firstly, at length scales well below the outer scale L at which the
turbulence is driven but well above the ion-Larmor scale, a conservative cascade of
Alfvénic fluctuations (with amplitude δB⊥ 	 B0) is established via localised nonlin-
ear interactions. Secondly, the fluctuations themselves are spatially anisotropic, with
that anisotropy being determined by critical balance: τA ∼ l‖/vA ∼ τnl ∼ l⊥/u⊥, where
l⊥ and l‖ are the characteristic scales of Alfvénic fluctuations in the directions paral-
lel and perpendicular to the local background magnetic field, τA is the fluctuation’s
characteristic linear evolution period, τnl is the nonlinear interaction time and u⊥ is
the fluctuation’s velocity perturbation (Goldreich & Sridhar 1995). It follows that
l⊥/ l‖ ∼ u⊥/vA ∼ δB⊥/B0 ∼ (l⊥/L)1/3 	 1. Hybrid-kinetic simulations have recently
confirmed theoretical expectations (Schekochihin et al. 2009) that pressure-isotropic
collisionless β ∼ 1 plasma would share these characteristics and be MHD-like (e.g.
Arzamasskiy et al. 2019). However, it is unclear, a priori, whether this resem-
blance persists in high-β collisionless plasmas that are simultaneously developing
a background pressure anisotropy �i0 < 0. If �i0 exceeds either the mirror or fire-
hose instability thresholds, a turbulent cascade could be bypassed by the non-local
transfer of magnetic energy from such large-scale fluctuations to small-scale ones.
Indeed, recent hybrid-kinetic simulations of high-β, large-amplitude Alfvénic turbu-
lence in collisionless plasma provide evidence of this (Arzamasskiy et al. 2023).
In addition to non-locality, the negation of Alfvénic restoring forces in plasma with
�i0 �−2/β‖i and v2

A,eff � 0 would prevent critical balance from being established and
thereby render the turbulence quasi-hydrodynamic. However, if the plasma attains
an Alfvén-enabling state, then vA,eff is simply a finite fraction of vA, and so should be
qualitatively the same. Bott et al. (2021) found the latter outcome in hybrid-kinetic
simulations of βi � 1 Alfvénic turbulence in a collisionless plasma that generated a
negative value of �i0 via a macroscopic expansion. A developed cascade of MHD-
like Alfvénic turbulence – from inertial-range scales down through the ion-Larmor
scale – coexisted with firehose fluctuations that supported an Alfvén-enabling state,
with critical balance being maintained via adaptation of the nonlinear turbulent
decorrelation time to the modified linear time scale of the Alfvénic fluctuations. The
existence of saturation in the Alfvén-enabling regime is, therefore, crucial to such
a system being able to support a standard Alfvénic turbulent cascade (albeit with a
modified wave speed).

By contrast, for astrophysical plasmas in which pressure anisotropies are gener-
ated by the Alfvénic fluctuations themselves, the fact that such plasmas tend to attain
Alfvén-enabling states is of less importance for determining the nature of the turbu-
lence itself. That is not to say that turbulent Alfvénic fluctuations in such systems
will generate Alfvén-inhibiting regions of plasma. Indeed, the condition τAΩi � β1.6

i
required for Alfvén-inhibiting regions to be created implies an upper bound on the
perpendicular scale l⊥ of fluctuations required for those fluctuations to give rise to
Alfvén-inhibiting regions that is seldom attained: assuming the Goldreich–Sridhar
scaling l‖ ∼ l2/3

⊥ L1/3 for the anisotropy of the turbulent fluctuations (Goldreich &
Sridhar 1995), it follows that this bound on l⊥ is l⊥/ρi � β1.65

i (ρi/L)1/2. For all astro-
physical systems (except those having exceptionally high βi ), the right-hand side
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of this inequality is typically very small.
14

Instead, another recently discovered phe-
nomenon in high-β Alfvénic turbulence – magnetoimmutability (Squire et al. 2019) –
means that the volume-filling fraction of the plasma that approaches even the (less
restrictive) threshold for the oblique firehose instability is much smaller than would
be anticipated naively based on the Goldreich–Sridhar scaling. Squire et al. (2023)
and Majeski et al. (2024) showed explicitly in simulations that, as a result, it makes
little difference to the turbulence which firehose threshold is reached. The sup-
pression of pressure-anisotropy fluctuations by magnetoimmutability also renders
high-β Alfvénic turbulence MHD-like, but this conclusion is not dependent upon
microphysical changes induced by the firehose instability (or the mirror instability,
for that matter). The fundamental difference between this case, with turbulently
driven pressure anisotropy, and the case discussed above, with globally forced pres-
sure anisotropy, relates to the ability of the plasma to respond dynamically via the
pressure-anisotropy stress, which is driven by pressure-anisotropy gradients and can
be comparable to Maxwell stresses in a high-beta plasma. In the turbulent setting,
this pressure-anisotropy stress suppresses motions that generate significant pressure
anisotropies, leaving little of the plasma at the firehose (or mirror) thresholds; in a
globally forced case, this is not possible, and the whole plasma can attain a threshold
together.

A third consequence is that firehose fluctuations are unlikely to have any sig-
nificant direct effect on the acceleration and propagation of cosmic rays through
astrophysical plasmas such as the ICM. In the conventional picture, scattering
of cosmic rays is typically thought to be either due to resonant interactions with
inertial-range turbulent fluctuations or due to the excitation of MHD waves via
resonant streaming instabilities. However, it had also been argued that ion-Larmor-
scale modes excited by pressure anisotropies can give rise to particle acceleration
(Ley et al. 2019), and more recently it has been proposed that mirror fluctuations
in the ICM scatter sub-TeV cosmic rays much more efficiently than other mecha-
nisms (Ewart et al. 2024; Reichherzer et al. 2025). So, we consider here whether
the firehose fluctuations present in Alfvén-enabling firehose plasma could give rise
to non-negligible degrees of scattering in the ICM. For cosmic rays whose Larmor
radius ρCR greatly exceeds the characteristic scale ∼ρi of the firehose fluctuations,
such scattering would have to be non-resonant and quasi-unmagnetised. By anal-
ogy to the arguments presented in Reichherzer et al. (2025, § 1.1), we conclude
that the spatial diffusion coefficient κCR of such cosmic rays due to scattering by
firehoses is given by κCR ∼ c(ρ2

CR/ρi)(δBf/B0)
−2. If the plasma through which the

cosmic rays are passing is in an Alfvén-enabling state, then our theory predicts that
δB2

f /B2
0 ∼ β

1/4
i (τΩi)

−1/2, and so κCR ∼ c(ρ2
CR/ρi)β

−1/4
i (τΩi)

1/2. For TeV cosmic-ray
protons passing through the ICM, it is the case that ρCR ∼ 3 × 105ρi and τΩi ∼ 1012,
so κCR ∼ 1038 cm2 s−1. This is eight orders of magnitude larger than the spatial dif-
fusion coefficients arising due to other scattering mechanisms (Reichherzer et al.
2025), implying that scattering of cosmic rays by firehoses is a negligible effect.
We note, however, that the firehose instability could still have indirect effects on

14
The simulations described in Arzamasskiy et al. (2023) do produce local regions that are in Alfvén-inhibiting

states. In that simulation, L/ρi ≈ 120 and βi0 = 16, so according to our theoretical estimates, turbulent fluc-
tuations with perpendicular scales l⊥/ρi � β1.65

i (ρi /L)1/2 ≈ 10 might be expected to drive pressure anisotropies
�i �−2/β‖i . This is consistent (to within order-unity factors) with the scale of the Alfvén-inhibiting regions that
are observed in the simulations (see figure 6f of Arzamasskiy et al. (2023)).
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cosmic-ray dynamics. Our estimates have implicitly treated the saturation of the
cosmic-ray streaming and firehose instabilities separately, which may not be rea-
sonable. Further, cosmic-ray-streaming-instability-driven Alfvénic modes in a plasma
that has attained an Alfvén-enabling state will maintain a phase velocity that is a
finite fraction of vA, with the consequence that the classical picture of the cosmic-
ray streaming instability should still apply; this would not be the case in a plasma in
an Alfvén-inhibiting state.

Although we have argued that most astrophysical plasmas of interest will attain
Alfvén-enabling states if they become susceptible to the firehose instability, we note
that there are a few circumstances in which the Alfvén-inhibiting or ultra-high-beta
states could still be relevant. One such circumstance is plasma with very large βi .
The plasma created during the reionisation epoch, which is thought to be only very
weakly magnetised, with the ion-Larmor radius initially comparable to the mean
free path λi , is a good example of this: in such plasma, βi ∼ 1020, which would cer-
tainly be large enough to put any firehose-susceptible plasma into the ultra-high-beta
state. This conclusion implies that recent (St-Onge et al. 2020) and future studies
of the action of the fluctuation dynamo inside weakly collisional plasmas in the
early universe cannot simply assume that the plasmas they are modelling are in
Alfvén-enabling states. Another example is that of local regions of ICM plasma in
which its tangled stochastic field is reversing sign. The ICM is not observed to have
an ordered component to its magnetic field, implying that locally, the ICM will
have regions in which βi is much larger than its typical value and therefore Alfvén-
inhibiting states (or even ultra-high-beta states) could be realised locally. Finally,
collisionless or weakly collisional magnetised plasmas with much smaller separations
between macroscopic and plasma time scales require comparatively smaller values
of βi in order to attain Alfvén-inhibiting states or ultra-high-beta states. This is par-
ticularly pertinent for any future laser–plasma experiments that might investigate
the firehose instability, because state-of-the-art laboratory astrophysics experiments
that have investigated weakly collisional magnetised plasmas on the world’s highest-
energy laser facilities such as the National Ignition Facility only achieved a time-scale
separation τΩi ∼ 30 (Meinecke et al. 2022).

A natural question about this study concerns the extent to which our findings gen-
eralise beyond the specific set-up explored in this work (a unidirectional expansion
in a two-dimensional plane) to a broader set of macroscopic motions that generate
pressure anisotropy (e.g. spherical expansions or shearing motions). While there are
several physical systems of interest for which our simulations can be interpreted for-
mally as a local model, we consider understanding the extent to which our results
apply to firehose instabilities driven by arbitrary macroscopic motions to be more
pertinent. It is plausible that some aspects of firehose instability saturation may
depend on the precise details of the geometrical expansion for macroscopic evolution
times that only exceed the Larmor period by a few orders of magnitude (a condi-
tion that covers some of our simulations, particularly those in the Alfvén-inhibiting
regime). These differences could lead to, for example, distinct saturation ampli-
tudes, depending on the macroscopic motion in question; indeed, this is a plausible
explanation for why δBf/B0 is larger by an order-unity factor in our expanding-box
simulations than in the prior shearing-box simulations of Kunz et al. (2014a) and
Melville et al. (2016) at analogous values of τ (see § 3.1.2). Nevertheless, the numer-
ous areas of consistency with the previous shearing-box simulations and also other
simulations that employed a quasi-spherical expansion suggest that many features of
firehose instabilities are not sensitive to the precise nature of the macroscopic motion
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that causes their instability. Indeed, when the time scale of macroscopic evolution of
the plasma greatly exceeds the saturation time scale of the firehose instability – as
we observe at sufficiently large expansion times – we expect that the precise details
of the macroscopic evolution should become increasingly unimportant. Preliminary
results from three-dimensional simulations that we have performed recently of high-β
collisionless plasma undergoing quasi-spherical expansion support this claim; at suf-
ficiently large values of the parameter τΩi/β

1.6
i , we recover Alfvén-enabling states

with characteristics – such as magnetic-field morphology – that closely resemble
those seen in the 2.5-dimensional simulations reported here.

Another aspect of this problem that merits further study pertains to the assumption
of fluid-like, pressure-isotropic electrons in our hybrid-kinetic simulations. While this
assumption is appropriate for some astrophysical plasmas (e.g. the ICM), in other
plasma systems (e.g. black hole accretion flows) where the collisionality is sufficiently
weak, the assumption of isotropic electrons may not be a good one. Specifically, if
τνe 	 βe, where νe is the electron collision frequency and βe the electron plasma
beta, the macroscopic evolution of the plasma will naturally give rise to both ion
and electron pressure anisotropies of sufficient magnitude to drive various kinetic
instabilities. For example, electron pressure anisotropies satisfying �e �−1.4/βe

will drive electron-Larmor-scale modes unstable (see e.g. Hollweg & Völk 1970; Li
& Habbal 2000); if �e < −2/βi , ion firehose modes can be destabilised even in the
absence of ion pressure anisotropy (e.g. Kunz et al. 2018). In the case of purely
collisionless, magnetised plasma, in which both electrons and ions satisfy the CGL
equations (3.2b) and both �e and �i are generated at the same rate by the plasma’s
macroscopic evolution, we expect changes in the evolution and saturation of the ion
firehose instability as compared with its evolution with pressure-isotropic electrons.
Indeed, such differences have already been reported by Riquelme et al. (2018), who
found that the regulated ion pressure anisotropy was less negative if electron pres-
sure anisotropy was not fixed but instead allowed to evolve dynamically. While fully
kinetic simulations that resolve both ion and electron pressure anisotropies are an
important direction for future work, we note that incorporating such physics is com-
putationally demanding and would have made it significantly more difficult to isolate
the processes we have explored here. For this reason, our focus on a hybrid-kinetic
framework – in which electron pressure is assumed isotropic – is both pragmatic
and physically motivated. Even so, two conceptual aspects of our results should be
relevant to future studies of the firehose instability that incorporate electron pres-
sure anisotropy. The first is the possible existence of distinct thermodynamic states
depending on the macroscopic evolution rate, the Larmor frequencies and βi and βe;
this follows from linear theory, which suggests that firehose modes at different scales
can still have distinct thresholds (see e.g. Bott et al. 2024). Secondly, secondary fire-
hose instabilities arising from the interaction of primary firehose modes with both
electrons and ions is a plausible phenomenon worth further investigation, possi-
bly using the analytic framework developed in this work. For example, Ley et al.
(2024) report secondary ion-cyclotron and whistler instabilities driven by primary
mirror modes, suggesting that secondary kinetic instabilities could be a ubiquitous
phenomenon in high-β collisionless plasmas.

8. Summary

In this paper, we have argued that high-β, collisionless (or weakly collisional)
plasmas that become susceptible to the firehose instability due to their macroscopic
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evolution attain one of three qualitatively distinct states once the instability has sat-
urated – ultra-high-beta, Alfvén-inhibiting or Alfvén-enabling states. Which state is
realised depends on whether a critical parameter dependent on the plasma’s macro-
scopic evolution time τ , the ion-Larmor frequency Ωi and the ion plasma beta
parameter βi is large or small. For plasmas with βi 	 105, this condition takes a par-
ticularly simple form: whenever τΩi � 10β1.6

i , an Alfvén-enabling state is attained;
plasmas with βi 	 τΩi � β1.6

i will settle into Alfvén-inhibiting states; and plasmas
with τΩi � βi reside in the ultra-high-beta regime. The key macroscopic difference
between Alfvén-enabling or Alfvén-inhibiting states is the value of the steady-state
regulated pressure anisotropy �i , and thereby the effective Alfvén velocity vA,eff.
In Alfvén-inhibiting states, �i � −2/β‖i and v2

A,eff/v
2
A � 0, and so Alfvén waves are

unable to propagate; in Alfvén-enabling states, �i � −1.6/β‖i and v2
A,eff/v

2
A � 0.2,

and so Alfvén waves can propagate (albeit at a reduced phase speed). The two
states are also qualitatively distinct microphysically. The magnetic-energy spectrum
of firehose fluctuations in the Alfvén-inhibiting state is broad, including modes with
characteristic wavelengths that are much larger that the ion-Larmor radius ρi ; in the
Alfvén-enabling state, firehose fluctuations are predominantly at ion-Larmor scales,
and are of two distinct types (oblique firehose modes and the newly identified sec-
ondary parallel firehose modes) that are separable in wavenumber space. The distinct
characteristics of the firehose modes give rise to ion distribution functions with sub-
tly different characteristics: specifically, in the Alfvén-inhibiting state, the distribution
function is quasi-isotropic for particles with parallel velocities v‖ � vthi , while (at any
one time) only a subset of such particles are isotropic in the Alfvén-enabling state.
In both instances, the distribution function is not well described as a bi-Maxwellian,
with pitch-angle anisotropy being concentrated at smaller characteristic velocities.

In addition to uncovering the distinction between the Alfvén-enabling and Alfvén-
inhibiting states, we have also characterised the effective collisionality that emerges
in firehose-susceptible plasmas. We first computed the particle-averaged collision-
ality νeff, finding qualitatively that νeff ∼ βi/τ in both states (in agreement with
previous work). More quantitatively, we have proposed a precise value for the effec-
tive collisionality in firehose-unstable, high-β plasmas that attain Alfvén-enabling
(νeff ≈ 0.6βi/τ) and Alfvén-inhibiting (νeff ≈ 0.5βi/τ) states, respectively. Computing
this effective collisionality allowed us to in turn determine the effective parallel
Braginskii viscosity μB,eff in such plasmas: μB,eff ≈ 0.8(B2/4π)τ in Alfvén-enabling
states and μB,eff ≈ (B2/4π)τ in Alfvén-inhibiting states. Finally, we proposed a
quasi-linear pitch-angle scattering model (with parallel-velocity-dependent scatter-
ing rates) for the effective collision operator associated with firehose fluctuations
in Alfvén-enabling states. We found that this model was consistent with data from
two specialised simulation diagnostics including the anisotropy of the distribution
function. The scattering model proposed here may be useful for kinetic simulations
that average out cyclotron motion for computational efficiency (e.g. gyrokinetic or
drift-kinetic simulations); in this case velocity-space instabilities could be included
via an imposed collision operator such as that described here.

We hope that this work provides a helpful model for future investigations of
kinetic instabilities in collisionless (and weakly collisional) plasmas. Judicious use
of specialised numerical techniques such as the HEB method in PIC simulations
has the benefit of maximising the achievable separation between macroscopic and
microscopic scales at fixed computational cost; as we have shown here, this can
be essential for accessing the parameter regimes that are relevant to astrophysics.
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Furthermore, performing scans over key parameters (such as βi ) is often helpful
for identifying the physical mechanisms that cause the saturation of kinetic instabili-
ties. As for this paper’s key results – in particular, our computation of the effective
collisionality (νeff � 0.8βi/τ ) and parallel Braginskii viscosity (μB,eff � 0.8τ B2/4π ) in
astrophysically relevant plasma – we believe that using local kinetic simulations to
compute effective transport coefficients, which could then be subsequently imple-
mented into global fluid simulations, provides a promising route towards building
successful models of macroscopic collisionless plasma environments.
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Appendix A. Supporting linear theory for the firehose instability
In this appendix, we write out explicitly the dispersion relation of linear modes in a

hot collisionless plasma. We then use this expression for a few analytical calculations
pertaining to the linear theory of the firehose instability that support the results
outlined in the main text.

A.1. The hot-plasma dispersion relation
The hot-plasma dispersion relation is given by

Det
[

c2k2

ω2
(k̂k̂ − I) +E

]
= 0, (A.1)

where k̂ ≡ k/k is the direction of the perturbation’s wavevector,

E≡ I + 4π i
ω

σ (A.2)

is the plasma dielectric tensor and σ is the plasma conductivity tensor. The conduc-
tivity tensor is a function of the equilibrium distribution functions fi0(v‖, v⊥) and
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fe0(v‖, v⊥) of constituent ions and electrons, respectively; it is explicitly given by

σ =
∑

s

σ s = − i
4πω

∑
s

ω2
ps

[
2√
π

k‖
|k‖|

∫ ∞

−∞
dw̃‖s w̃‖s

∫ ∞

0
dṽs⊥ Λs(w̃‖s, ṽs⊥) ẑ ẑ

+ ω̃‖s
2√
π

∫
CL

dw̃‖s

∫ ∞

0
dṽs⊥ ṽ2

s⊥Ξs(w̃‖s, ṽs⊥)

∞∑
n=−∞

Rsn

ζsn − w̃‖s

]
. (A.3)

Here,
{

x̂, ŷ, ẑ
}

are the basis vectors of an orthogonal coordinate system defined in
terms of B0 and k by

ẑ ≡ B0

B0
, x̂ ≡ k⊥

k⊥
≡ k − k‖ ẑ

k⊥
, ŷ ≡ ẑ × x̂, (A.4)

where B0 ≡ |B0|, k‖ ≡ k · ẑ and k⊥ ≡ |k⊥|, qs is the charge of particles of species
s, ms their masses, ns0 their densities, Ts0 their temperatures, vths ≡ √

2Ts/ms their
thermal velocities, ṽ‖s ≡ v‖/vths , ṽ⊥s ≡ v⊥/vths , and

ωps ≡
√

4πq2
s ns0

ms
, (A.5)

w̃‖s ≡ k‖ṽ‖s

|k‖| , (A.6)

ρ̃s ≡ mscvths

qs B0
= |qs|

qs
ρs, (A.7)

ω̃‖s ≡ ω

|k‖|vths
, (A.8)

ζsn ≡ ω̃‖s − n

|k‖|ρ̃s
, (A.9)

f̃s0(ṽ‖s, ṽs⊥) ≡ π 3/2v3
ths

ns0
fs0

(
k‖
|k‖|vthsw̃‖s, vths ṽs⊥

)
, (A.10)

Λs(w̃‖s, ṽs⊥) ≡ ṽs⊥
∂ f̃s0

∂w̃‖s
− w̃‖s

∂ f̃s0

∂ṽs⊥
, (A.11)

Ξs(w̃‖s, ṽs⊥) ≡ ∂ f̃s0

∂ṽs⊥
+ Λs(w̃‖s, ṽs⊥)

ω̃‖s
, (A.12)

(Rsn)xx ≡ n2Jn(k⊥ρ̃s ṽs⊥)2

k2
⊥ρ̃2

s ṽ
2
s⊥

, (A.13a)

(Rsn)xy ≡ inJn(k⊥ρ̃s ṽs⊥)J′
n(k⊥ρ̃s ṽs⊥)

k⊥ρ̃s ṽs⊥
, (A.13b)
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(Rsn)xz ≡ n
[
Jn(k⊥ρ̃s ṽs⊥)

]2

k⊥ρ̃s ṽs⊥

k‖w̃‖s

|k‖|ṽs⊥
, (A.13c)

(Rsn)yx = −(Rsn)xy, (A.13d)

(Rsn)yy ≡ [
J′

n(k⊥ρ̃s ṽs⊥)
]2

, (A.13e)

(Rsn)yz ≡ −inJn(k⊥ρ̃s ṽs⊥)J′
n(k⊥ρ̃s ṽs⊥)

k‖w̃‖s

|k‖|ṽs⊥
, (A.13f )

(Rsn)zx = (Rsn)xz, (A.13g)

(Rsn)zy = −(Rsn)yz, (A.13h)

(Rsn)zz ≡ w̃2
‖s

ṽ2
s⊥

[
Jn(k⊥ρ̃s ṽs⊥)

]2
. (A.13i)

For bi-Maxwellian ions and Maxwellian electrons,

fi0(v‖, v⊥) = ni0

π 3/2vth‖iv
2
th⊥i

exp

(
− v2

‖
v2

th‖i

− v2
⊥

v2
th⊥i

)
, (A.14a)

fe0(v‖, v⊥) = ne0

π 3/2v3
the

exp
(

− v2

v2
the

)
, (A.14b)

where vth‖i ≡√
2T‖i/mi is the parallel thermal ion velocity, vth⊥i ≡ √

2T⊥i/mi the
perpendicular thermal ion velocity and ne0 = ni0 the electron number density. The
integrals in (A.3) can be evaluated in terms of the plasma dispersion function and
modified Bessel functions (Davidson 1983).

A.2. The growth rate of the resonant parallel firehose instability in βi � 1 plasma with
a weak anisotropy

Next, we derive an analytic expression for the linear growth rate of resonant
parallel firehose modes in magnetised, βi � 1 plasma. As discussed in the main text,
these modes are hydromagnetic waves that become resonantly unstable in a plasma
with a bi-Maxwellian ion distribution (and Maxwellian electron distribution) whose
parallel ion temperature is greater than its perpendicular temperature. We focus on
modes whose wavevector is exactly parallel to the background magnetic field B0,
which previous numerical work indicates are the fastest growing resonant parallel
firehose modes (Gary et al. 1998). Also motivated by the findings of this prior
research, we assume that the real frequency � of these modes is much greater than
the growth rate γ (an assumption we confirm a posteriori). Consistent with previous
analytic results (Sagdeev & Shafranov 1960), we find that right-handed, circularly
polarised modes are unstable at arbitrarily small negative pressure anisotropy �i .
However, for plasmas in which �i ∼ −1/βi 	 1, we find that the fastest-growing
resonant parallel firehose modes have a characteristic scale that is much larger than
the ion-Larmor scale (k‖ρi ∼ �

1/2
i 	 1), and a growth rate that is exponentially small

in |�i | 	 1.
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A.2.1. Dispersion relation
We start from the hot-plasma dispersion relation for parallel modes in a bi-
Maxwellian, non-relativistic plasma (Davidson 1983):

c2k2
‖

ω2
− 1 =

∑
s

ω2
ps

ω2

{
ω

k‖vths‖
Z(ξ±

s ) + �s

[
1 + ξ±

s Z(ξ±
s )
]}

, (A.15)

where we remind the reader that ω ≡ � + iγ is the complex frequency, Z(x) the
plasma dispersion function (Fried and Conte 1960),

ξ±
s = ω ± Ωs

k‖vths‖
(A.16)

and Ωs ≡ qs B0/msc is the Larmor frequency of species s; the sum is taken
over all particle species in the plasma. For forward-propagating modes (k‖ > 0),
right-/left-handed circularly polarised modes are described by the +/− branch of
(A.15), respectively.

To characterise resonant parallel firehose modes, we specialise to the + branch,
and then assume a two-species plasma with Maxwellian electrons. Equation (A.15)
then simplifies to

c2k2
‖ = ω2 + ω2

pi

ω

k‖vthi‖
Z(ξ+

i ) + ω2
pi�i

[
1 + ξ+

i Z(ξ+
i )
]+ ω2

pe

ω

k‖vthe
Z(ξ+

e ). (A.17)

To proceed further analytically, we must adopt an ordering.

A.2.2. Ordering and simplifications
In order to characterise near-marginal modes, we assume that � � γ , and

�

Ωi
∼ |�i | ∼ 1

β‖i
∼ k2

‖ρ
2
i 	 1. (A.18)

This ordering implicitly assumes that the wavelength of the resonant parallel firehose
modes is much longer than the ion-Larmor scale (an assumption that we verify a
posteriori). Under this ordering, we can neglect the displacement current term on
the left-hand side of (A.17), because ω2/c2k2

‖ ∼ β−1
i v2

thi‖/c2 	 1. We also have that

ξ+
s ≈ Ωs

k‖vths‖
= 1

k‖ρ‖s
� 1 (A.19)

for both species, where ρ‖s ≡ vths‖/Ωs (note that, due to our assumed ordering,
|ρ‖s/ρs − 1| 	 1). We can therefore use the large-argument expansion of the plasma
dispersion function:

Z(ξ+
s ) =

[
− 1

ξ+
s

− 1
2(ξ+

s )3
+O

(
k5/2

‖ |ρ‖s|5/2
)]

+ i
√

π exp
[−(ξ+

s )2
]
. (A.20)

To expand in γ /� 	 1, we use

1
(ξ+

s )n
= (k‖ρ‖s)

n

[
1 − nω

Ωs
+O

(
� 2

Ω2
s

)]
. (A.21)
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Then, it can be shown that

ω

k‖vths‖
Z(ξ+

s ) =
[
− �

Ωs
+ � 2

Ω2
s

− 1
2

k2
‖ρ

2
‖s

�

Ωs
+O

(
� 3

Ω3
s

)]
+ i

{
γ

Ωs

(
2�

Ωs
− 1

)
+ �

Ωs

√
π

k‖ρ‖s
exp

[
−(1 − �/Ωs)

2

k2
‖ρ

2
‖s

]}
, (A.22)

1 + ξ+
s Z(ξ+

s ) =
[
−1

2
k2

‖ρ
2
‖s +O (

k4
‖|ρs|4

)]+ i
√

π

k‖ρ‖s
exp

[
−(1 − �/Ωs)

2

k2
‖ρ

2
‖s

]
. (A.23)

A.2.3. Real frequency
Assuming that Te = T‖i , the final term in (A.17) associated with the electrons
becomes

ω2
pe

ω

k‖vthe
Z(ξ+

e ) = ω2
pi

�

Ωi

[
1 +O

(
me

mi

)]
. (A.24)

The real part of the dispersion relation (A.17) then gives (to leading order in �i 	 1)

k2
‖ρ

2
i

β‖i
≈ � 2

Ω2
i

− 1
2

k2
‖ρ

2
i

�

Ωi
− 1

2
�i k

2
‖ρ

2
i , (A.25)

where we have used the result ρi = β
1/2
‖i di to relate the ion-Larmor radius to the ion

skin depth di = c/ωpi . The (positive) roots of (A.25) are given by

�

Ωi
≈ 1

4
k2

‖ρ
2
i +

√
1
16

k4
‖ρ

4
i +

(
1
β‖i

+ �i

2

)
k2

‖ρ
2
i . (A.26)

A.2.4. Growth rate
The imaginary part of (A.17) is

2γ�

Ω2
i

+ �

Ωi

√
π

k‖ρ‖i
exp

[
−(1 − �/Ωi)

2

k2
‖ρ

2
‖i

]
+

√
π

k‖ρ‖i
�i exp

[
−(1 − �/Ωi)

2

k2
‖ρ

2
‖i

]
= 0,

(A.27)
which can be rearranged to give

γ

Ωi
≈

√
π

2k‖ρ‖i

(
−1 − �i

�/Ωi

)
exp

[
−(1 − �/Ωi)

2

k2
‖ρ

2
‖i

]
. (A.28)

It is clear from (A.28) that right-handed modes can be unstable for �i < 0 if

�

Ωi
< |�i |. (A.29)

Substituting (A.26) in for �/Ωi , the inequality (A.29) is equivalent to

k‖ρ‖i < |�i |β1/2
‖i . (A.30)

Thus, for �i arbitrarily small, right-handed modes are unstable at sufficiently large
parallel wavelengths; for |�i | ∼ β−1

‖i , we have kρ‖i ∼ |�i |1/2 	 1.
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It can be shown by considering the magnitude of the neglected higher-order terms
in the expansion of ω/Ωi in |�i | ∼ β−1

‖i 	 1 that the growth rate γpeak of the fastest-
growing modes satisfies the asymptotic scaling

γpeak ∼ |�i |1/2 exp
(

− 1
|�i |

)
Ωi ∼ β

−1/2
‖i exp

(−β‖i

)
Ωi , (A.31)

at the wavenumber
(k‖ρ‖i)peak ≈ |�i |β1/2

‖i − α�
3/2
i , (A.32)

where α is some order-unity, positive number. The associated real frequency is
given by

�

Ωi
≈ |�i | +O (

�2
i

)
, (A.33)

which validates our assumption that � � γ . Equation (A.31) is the main result of
this section, which is used in § 2.5 of the main text. Determining exact expressions
requires going to next order in the expansion (an algebraically involved exercise,
which we leave to the reader).

A.3. Calculating the threshold of the oblique firehose instability
Numerical calculations for a plasma with bi-Maxwellian ions and Maxwellian

electrons indicate that the resonant oblique firehose instability is non-propagating.
Therefore, we assume that at the threshold for the instability, ω = 0. Under this
assumption, the threshold for the resonant oblique firehose instability with arbitrary
ion and electron distribution functions follows from (A.1):

Det
{

k2ρ2
i

βi

(
k̂k̂ − I

)
+ σ̃ 0

}
= 0, (A.34)

where

σ̃ 0 =
∑

s

ω2
ps

ω2
pe

[
2√
π

k‖
|k‖|

∫ ∞

−∞
dw̃‖s w̃‖s

∫ ∞

0
dṽs⊥ Λs(w̃‖s, ṽs⊥) ẑ ẑ

− 2√
π

∫
CL

dw̃‖s

∫ ∞

0
dṽs⊥ ṽ2

s⊥Λs(w̃‖s, ṽs⊥)

∞∑
n=−∞

Rsn

n/|k‖|ρ̃s + w̃‖s

]
. (A.35)

For any species with an isotropic distribution function, Λs = 0; so only anisotropic
species provide a non-zero contribution to σ̃ 0. It can be shown that, for any set
of distribution functions that are even in w̃‖s , there exists a solution of (A.34) with
k‖ < 0 if and only if there exists a solution with k‖ > 0; we therefore, without loss of
generality, take k‖ > 0, and so w̃‖s = ṽ‖s . For the same set of distribution functions,
the tensor σ̃ 0 has the following exact symmetries:

(σ̃ 0)xz = (σ̃ 0)zx = −k⊥
k‖

(σ̃ 0)xx , (A.36a)

(σ̃ 0)yz = −(σ̃ 0)zy = k⊥
k‖

(σ̃ 0)xy = −k⊥
k‖

(σ̃ 0)yx , (A.36b)

(σ̃ 0)zz = k2
⊥

k2
‖
(σ̃ 0)xx , (A.36c)
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where the three independent components of σ̃ 0 are

(σ̃ 0)xx ≡ − 2√
π

∑
s

ω2
ps

ω2
pe

∞∑
n=−∞

{
n2

k2
⊥ρ̃2

s

∫
CL

dṽ‖s
1

ṽ‖s + n/k‖ρ̃s

×
∫ ∞

0
dṽs⊥ Λs(ṽ‖s, ṽs⊥)

[
Jn(k⊥ρ̃s ṽs⊥)

]2

}
, (A.37a)

(σ̃ 0)xy ≡ − 2i√
π

∑
s

ω2
ps

ω2
pe

∞∑
n=−∞

[
n

k⊥ρ̃s

∫
CL

dṽ‖s
1

ṽ‖s + n/k‖ρ̃s

×
∫ ∞

0
dṽs⊥ ṽs⊥Λs(ṽ‖s, ṽs⊥)Jn(k⊥ρ̃s ṽs⊥)J′

n(k⊥ρ̃s ṽs⊥)

]
, (A.37b)

(σ̃ 0)yy ≡ − 2√
π

∑
s

ω2
ps

ω2
pe

∞∑
n=−∞

{ ∫
CL

dṽ‖s
1

ṽ‖s + n/k‖ρ̃s

×
∫ ∞

0
dṽs⊥ ṽ2

s⊥Λs(ṽ‖s, ṽs⊥)
[
J′

n(k⊥ρ̃s ṽs⊥)
]2

}
. (A.37c)

A corollary of this useful property is that σ̃ 0 is orthogonal to k̂, and can be written
in the form

σ̃ 0 = k2

k2
‖
(σ̃ 0)xx e1e1 + k

k‖
(σ̃ 0)xy (e1e2 − e2e1) + (σ̃ 0)yy e2e2, (A.38)

where {e1, e2, e3} is a coordinate basis defined by

e1 ≡ ŷ × k̂, e2 ≡ ŷ, e3 ≡ k̂. (A.39)

Because I − k̂k̂ = e1e1 + e2e2, it follows that (A.34) becomes

Det

{[
(σ̃ 0)xx − k2

‖ρ
2
e

βe

]
e1e1 + k‖

k
(σ̃ 0)xy (e1e2 − e2e1) +

[
(σ̃ 0)yy − k2ρ2

e

βe

]
e2e2

}
= 0.

(A.40)

Next, we note some identities that will prove to be useful for simplifying (A.40).
First, for any function G(ṽ‖s),

∞∑
n=−∞

n
∫

CL

dṽ‖s
1

ṽ‖s + n/k‖ρ̃s
G(ṽ‖s) = 2P

∫
dṽ‖s

∞∑
n=1

n2k‖ρ̃s

n2 − k2
‖ ρ̃2

s ṽ
2
‖s

ṽ‖sG(ṽ‖s)

− iπ
∞∑

n=−∞
nG(n/k‖ρ̃s). (A.41)

It follows that, if G(ṽ‖s) is odd in ṽ‖s , then

∞∑
n=−∞

n
∫

CL

dṽ‖s
1

ṽ‖s + n/k‖ρ̃s
G(ṽ‖s) = −iπ

∞∑
n=−∞

nG(n/k‖ρ̃s). (A.42)
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If we then choose

G(ṽ‖s) = 1
k⊥ρ̃s

∫ ∞

0
dṽs⊥ ṽs⊥Λs(ṽ‖s, ṽs⊥)Jn(k⊥ρ̃s ṽs⊥)J′

n(k⊥ρ̃s ṽs⊥), (A.43)

it follows that, if the distribution functions f̃s0 are even in ṽ‖s , then Λs is odd in ṽ‖s ,
and so

(σ̃ 0)xy = −2
√

π
∑

s

ω2
ps

ω2
pe

×
∞∑

n=−∞

n

k⊥ρ̃s

∫ ∞

0
dṽs⊥ ṽs⊥Λs(n/k‖ρ̃s, ṽs⊥)Jn(k⊥ρ̃s ṽs⊥)J′

n(k⊥ρ̃s ṽs⊥). (A.44)

It can be shown similarly that

∞∑
n=−∞

n2

∫
CL

dṽ‖s
1

ṽ‖s + n/k‖ρ̃s
G(ṽ‖s) = −2P

∫
dṽ‖s

∞∑
n=1

n2k2
‖ ρ̃

2
s

n2 − k2
‖ ρ̃2

s ṽ
2
‖s

ṽ‖sG(ṽ‖s)

+ iπ
∞∑

n=−∞
n2G(n/k‖ρ̃s), (A.45)

and so if G(ṽ‖s) is an odd function, then

∞∑
n=−∞

n2

∫
CL

dṽ‖s
1

ṽ‖s + n/k‖ρ̃s
G(ṽ‖s) = −2P

∫
dṽ‖s

∞∑
n=1

n2k2
‖ ρ̃

2
s

n2 − k2
‖ ρ̃2

s ṽ
2
‖s

ṽ‖sG(ṽ‖s).

(A.46)
Now choosing

G(ṽ‖s) = 1
k2

⊥ρ̃2
s

∫ ∞

0
dṽs⊥ Λs(ṽ‖s, ṽs⊥)

[
Jn(k⊥ρ̃s ṽs⊥)

]2
, (A.47)

and again assuming that the distribution functions f̃s0 are even in ṽ‖s , we deduce
that

(σ̃ 0)xx ≡ 4√
π

∑
s

ω2
ps

ω2
pe

∞∑
n=1

{
k2

‖ ρ̃
2
s

k2
⊥ρ̃2

s

P
∫

dṽ‖s
ṽ‖s

1 − k2
‖ ρ̃2

s ṽ
2
‖s/n2

×
∫ ∞

0
dṽs⊥ Λs(ṽ‖s, ṽs⊥)

[
Jn(k⊥ρ̃s ṽs⊥)

]2

}
. (A.48)

A.3.1. The long-wavelength, oblique (k⊥ ∼ k‖ 	 ρ−1
i ) limit

We can now carry out one possible secondary subsidiary expansion of (A.40): we
assume k‖ρ̃s ∼ k⊥ρ̃s 	 1. For a plasma with bi-Maxwellian distribution functions for
all species (or any distribution which does not have anisotropic power-law tails), then
Λs is exponentially small in k‖ρ̃s 	 1, and so therefore is (σ̃ 0)xy. It follows that, if
k‖ρ̃s 	 1, (A.40) simplifies to

Det

{[
(σ̃ 0)xx − k2

‖ρ
2
e

βe

]
e1e1 +

[
(σ̃ 0)yy − k2ρ2

e

βe

]
e2e2

}
= 0. (A.49)
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The electric-field eigenvector of oblique firehose modes is parallel to e1, so the
threshold condition for oblique firehose modes is

(σ̃ 0)xx − k2
‖ρ

2
e

βe
= 0. (A.50)

We now expand (σ̃ 0)xx in k‖ρ̃s ∼ k⊥ρ̃s 	 1 using the summation identity

1
1 − k2

‖ ρ̃2
s ṽ

2
‖s/n2

= 1 + 1
n2

k2
‖ ρ̃

2
s ṽ

2
‖s + 1

n4
k4

‖ ρ̃
4
s ṽ

4
‖s + · · ·, (A.51)

and also [
J1(k⊥ρ̃s ṽs⊥)

]2 = 1
4

k2
⊥ρ̃2

s ṽ
2
s⊥ − 1

16
k4

⊥ρ̃4
s ṽ

4
s⊥ + · · ·, (A.52a)

[
J2(k⊥ρ̃s ṽs⊥)

]2 = 1
64

k4
⊥ρ̃4

s ṽ
4
s⊥ + · · ·. (A.52b)

Equation (A.48) then becomes

(σ̃ 0)xx ≡ 1√
π

∑
s

k2
‖ ρ̃

2
s

ω2
ps

ω2
pe

[ ∫ ∞

−∞
dṽ‖s

∫ ∞

0
dṽs⊥ ṽ‖s ṽ

2
s⊥Λs(ṽ‖s, ṽs⊥)

+ k2
‖ ρ̃

2
s

∫ ∞

−∞
dṽ‖s

∫ ∞

0
dṽs⊥ ṽ3

‖s ṽ
2
s⊥Λs(ṽ‖s, ṽs⊥) (A.53)

− 3
16

k2
⊥ρ̃2

s

∫ ∞

−∞
dṽ‖s

∫ ∞

0
dṽs⊥ ṽ‖s ṽ

4
s⊥Λs(ṽ‖s, ṽs⊥) +O(

k4ρ̃4
s

)]
. (A.54)

Now we use the identities∫ ∞

−∞
dṽ‖s

∫ ∞

0
dṽs⊥ ṽ‖s ṽ

2
s⊥Λs = 2

∫ ∞

−∞
dṽ‖s

∫ ∞

0
dṽs⊥ ṽs⊥

(
ṽ2

‖s − 1
2
ṽ2

⊥s

)
f̃s0

= −
√

π

2
T‖s
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�s, (A.55a)∫ ∞

−∞
dṽ‖s

∫ ∞

0
dṽs⊥ ṽ3

‖s ṽ
2
s⊥Λs = 4

∫ ∞

−∞
dṽ‖s

∫ ∞

0
dṽs⊥ ṽs⊥ṽ2

‖s

(
ṽ2

‖s − 1
4
ṽ2

⊥s

)
f̃s0 (A.55b)

= −
√

π

2
T‖s

Ts
A4s, (A.55c)∫ ∞

−∞
dṽ‖s

∫ ∞

0
dṽs⊥ ṽ‖s ṽ

4
s⊥Λs = 2

∫ ∞

−∞
dṽ‖s

∫ ∞

0
dṽs⊥ ṽ3

s⊥

(
ṽ2

‖s − 1
2
ṽ2

⊥s

)
f̃s0 (A.55d)

= −
√

π

2
T‖s

Ts
B4s, (A.55e)
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where �s = T⊥s/T‖s − 1 is the pressure anisotropy of species s and A4s and B4s are
constants that are proportional to fourth-order non-dimensionalised moments of the
plasma’s distribution functions. We deduce that

(σ̃ 0)xx = −1
2

∑
s

k2
‖ ρ̃

2
s

ω2
ps

ω2
pe

T‖s

Ts

[
�s + k2

‖ ρ̃
2
s A4s − 3

16
k2

⊥ρ̃2
s B4s +O(

�sk
4ρ̃4

s

)]
. (A.56)

For a plasma with bi-Maxwellian distribution functions,

Λs(ṽ‖s, ṽs⊥) = −2�s ṽ‖s ṽs⊥ exp
(− ṽ2

s

)
, (A.57)

so

A4s = 3
2
�s, B4s = 2�s . (A.58)

We can now write down the threshold condition of the resonant oblique firehose
instability for the special case of a two-species plasma with isotropic electrons and
anisotropic ions:

�i + 2
β‖i

+ k2
‖ρ

2
i A4i − 3

16
k2

⊥ρ2
i B4i =O(

�i k
4ρ4

i

)
. (A.59)

For a plasma with bi-Maxwellian ions, this becomes

�i

(
1 + 3

2
k2

‖ρ
2
i − 3

8
k2

⊥ρ2
i

)
+ 2

β‖i
=O(

�i k
4ρ4

i

)
, (A.60)

reproducing (2.9).

A.3.2. The ion-Larmor-scale, quasi-parallel (k⊥ 	 k‖ � 0.5ρ−1
i ) subsidiary limit

As an alternative to the oblique, long-wavelength limit, we instead consider firehose
modes with k⊥ρi 	 k‖ρi � 0.5. In this particular subsidiary limit, we again use the
identities (A.52b) to simplify the dependence of (σ̃ 0)xx on the Bessel functions, but
now only neglect terms that are exponentially small in k‖ρi 	 1, not algebraically
small. In this case, we have from (A.54) that for distribution functions f̃s0 that are
even in v‖,

(σ̃ 0)xx ≈ 1√
π

∑
s

ω2
ps

ω2
pe

k2
‖ ρ̃

2
s P

∫ ∞

−∞
dṽ‖s

ṽ‖s

1 − k2
‖ ρ̃2

s ṽ
2
‖s

∫ ∞

0
dṽs⊥ ṽ2

s⊥Λs(ṽ‖s, ṽs⊥). (A.61)

For the special case of a two-species plasma with isotropic electrons and anisotropic
ions, the threshold condition of quasi-parallel oblique firehoses with k‖ρi � 0.5 is
given by

1√
π

P
∫ ∞

−∞
dṽ‖i

ṽ‖i

1 − k2
‖ ρ̃

2
i ṽ

2
‖i

∫ ∞

0
dṽi⊥ ṽ2

i⊥Λi(ṽ‖i , ṽi⊥) ≈ 1
β‖i

. (A.62)

This condition is used in § 6.4.1 of the main text.
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Appendix B. Numerical collisionality
As with all hybrid-kinetic PIC simulations with a finite number of particles per cell,

our Pegasus++ simulations are affected by random noise, which in turn gives rise
to an effective numerical collisionality νnum. In our simulation runs, we attempted to
mitigate this affect by using a large number of particles per cell, which reduces the
thermal noise and thereby νnum. However, due to the large scale separation in some
of our runs between the expansion time τexp and the ion-Larmor period 2πΩ−1

i , we
observed indirect evidence in some of the runs that numerical collisionality could be
playing a role: specifically, the initial evolution of the pressure anisotropy departing
from that of a purely collisionless plasma. Here, we therefore characterise the box-
averaged collisionality, demonstrate that it can account for the observed evolution of
�i and provide a simple estimate of its expected impact on key physical quantities.

To measure directly the numerical collisionality, we adopt the same approach used
to measure the box-averaged effective collisionality that was employed in § 4.4, but
now apply it at the time tc at which the oblique firehose threshold is surpassed. We
choose this specific time because measurements of νnum using this method will not be
distorted by firehose-induced collisionality, but the thermal noise will be as similar as
possible to that present during the growth and saturation of the firehoses. The results
of this analysis for all of our simulations is shown in figure 23(a). We find that for
all of our simulations, νnumτexp,eff/β‖i � 0.07, decreasing significantly below this at
smaller values of the parameter τexp,effΩi/β

1.6
‖i . Therefore, in all of our simulations,

numerical collisionality should only have a small effect on the pressure anisotropy’s
evolution; further, νnum � 0.3νeff, with the implication that the effect of numerical
collisionality on the induced-firehose collisionality should be a small correction as
opposed to an order-unity effect.

To characterise the effect of the numerical collisionality on the initial evolution of
�i more quantitatively, we construct a simple model based on the assumption that,
prior to the emergence of firehose fluctuations, the only processes that can affect
the pressure anisotropy are the expansion and numerical collisionality. Under this
assumption, �i evolves according to

d�i

dt
= d

dt
log B − 3νnum�i � − 1

τexp
− 3νnum�i , (B.1)

where the latter approximation follows whenever t 	 τexp. Solving for �i with initial
condition �i(t = 0) = 0, we find that

�i(t) = − 1
3τexpνnum

[1 − exp (−3νnumt)] � − t

τexp

(
1 − 3

2
νnumt + · · ·

)
, (B.2)

where the final result is derived in the subsidiary limit νefft 	 1. We compare the
actual evolution of �i with the model (B.2) combined with the numerical collisional-
ity in figure 23(b); reasonable agreement is obtained, implying that the discrepancy
of the evolution �i from the collisionless prediction �i = −t/τexp is most plausibly
explained by numerical collisionality.

As for how we can estimate the effect of numerical collisionality of key quantities
of interest in our simulations, we note that we can incorporate the effect of numerical
collisionality into our interpretation of our results at a fixed value of �i by revising
our definition of the expansion time:

τexp,num ≡ τexp

1 + 3τexpνnum�i
. (B.3)
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(a) (b)

FIGURE 23. (a) Values of the effective collisionality νeff measured directly in all simulations
at the time tc at which the oblique firehose threshold is reached. The dashed line indicates the
effective (time-averaged) value νeff = β‖i/6τexp,eff of the collisionality predicted in asymptotic
Alfvén-inhibiting states. (b) Time evolution of the pressure anisotropy �i for runs DIV, DV,
DVI and DVIII (βi0 = 50). The dotted lines denote the model (B.2) for the evolution of the
pressure anisotropy in the presence of the numerical collisionalities for these runs given in (a).
The dashed black line shows the evolution of the pressure anisotropy in the absence of numerical
collisionality.

In the saturated Alfvén-enabling states that we have simulated – which generi-
cally have the largest values of νnumτexp,eff/β‖i – we use �i ≈ −1.6/β‖i to estimate
that τexp,num � 1.3τexp. Thus, in short, numerical collisionality might be expected to
decrease the effective collisionality associated with the firehoses by a small but finite
factor, as well as somewhat suppress the observed values of δB2

f /B2
0 that we observed

in our Alfvén-enabling simulations.
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