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On the propagation of acoustic–gravity waves
due to a slender rupture in an elastic seabed
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The propagation of waves from a vertical uplift of a slender rectangular fault in a sea
of constant depth is discussed, accounting for water compressibility, gravity and seabed
elasticity. The compressed water column results in the generation of acoustic–gravity
waves that travel at the speed of sound in water. Acoustic–gravity waves are found to
terminate after a finite time, with the decay time most influenced by seabed rigidity,
which is in contrast to the rigid stationary-phase model where signals persist indefinitely.
At certain frequencies acoustic–gravity waves couple with the elastic seabed and travel
at the shear velocity (speed of sound in an elastic solid). Improved estimates of the
critical frequencies are derived. Moreover, besides the usual tsunami, a second – very
small amplitude – surface wave mode travelling at the speed of sound arises under certain
frequencies. We derive the cut-off frequency for this mode. The acoustic modes possess
a frequency spectrum which depends on the time evolution and spatial properties of the
rupture. We find that appropriate filtering of the acoustic–gravity wave signal can reveal
characteristic peaks that encode information on the fault’s geometry and dynamics.
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1. Introduction

Tsunamis are long-wavelength surface–gravity waves that can cause significant loss of life
and damage to property. Recent examples include 2011 Tohoku Oki; 2018 Sulawesi; Palu,
Tonga 2022; and the deadliest event so far recorded, the 2004 Sumatra tsunami. Given
that tsunamigenic events cannot yet be predicted ahead of time, present-day efforts are
directed towards providing early warning systems to mitigate the worst consequences of
facing an oncoming tsunami. Existing early warning systems make use of data received
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from DART (deep ocean assessment and reporting of tsunamis) buoys and seismic
measurements. The DART buoys are capable of assessing a tsunami threat, but under
standard circumstances, may not leave much time for early warning. Seismic sources
can provide information on earthquake size, epicentre etc., but do not comment on
possible tsunami characteristics. Tsunamis can be generated by any process that displaces
a large volume of water such as volcanic activity, landslides, meteorite strikes and
undersea earthquakes. Taking the undersea earthquake as an example, the vertical uplift
in the seabed (rupture) elevates and slightly compresses the water column above the
rupture zone. Under the restoring force of gravity, fast-moving surface–gravity waves, the
tsunami, propagate away from the epicentre at relatively high speed, e.g. � 200 m s−1

in 4000 m deep water. The compression of the water column above the rupture zone
generates low-frequency sound waves, known as acoustic–gravity waves, that propagate
at much higher speed (� 1450 m s−1) and are able to outrun the tsunami in the far field.
Acoustic–gravity waves can couple to the elastic seabed and double their speed (Kadri
2019) and in the solid medium of the seabed compression P waves and shear S waves
can propagate at speeds of � 6800 m s−1 and � 3550 m s−1, respectively (Dziewonshi &
Anderson 1981). However the acoustic–gravity waves in the liquid layer are directly linked
to the effective uplift of the rupture zone and thus encode information regarding the rupture
geometry and dynamics. In this way the acoustic–gravity waves not only provide a possible
means of early detection, but also are a reliable source of information. This information
can be extracted, and utilised via an inverse process to determine rupture characteristics
(Mei & Kadri 2018; Gomez & Kadri 2021).

Previous work studied the possibility of using acoustic–gravity waves as early warning
signals (Yamamoto 1982; Nosov 1999; Stiassnie 2010; Renzi & Dias 2014; Kadri 2015,
2016). In these studies the rupture zone has been modelled in a variety of ways (infinite
strip, oscillating block, cylinder) and the seabed is normally considered rigid. However, for
those cases where the shape of the rupture can be modelled as a rectangular slender body
(table 1 of Mei & Kadri 2018) multiple-scales analysis can be applied to take advantage of
the differing length scales of the fault. Within Mei & Kadri (2018) the primary focus was
on pure acoustic waves, ignoring gravitational effects, whereas a later work (Williams,
Kadri & Abdolali 2021) extended the derivations to include gravity and therefore captured
the behaviour of the surface–gravity waves in addition to the acoustic–gravity waves.
Moreover, the slender-fault model was applied to more complex, multi-fault scenarios,
such as the 2016 Kaikoura earthquake (Hamling et al. 2016), via linear superposition
– but still with a rigid seabed. However, the elastic properties of the solid medium
should not always be ignored (Abdolali, Kadri & Kirby 2019; Kadri 2019) since the water
compressibility and seabed elasticity affect the phase speed of surface waves, and thus the
arrival times of transoceanic tsunamis (Abdolali et al. 2019). A complementary work by
Eyov et al. (2013) investigated the consequences of imposing an elastic seabed as support
for a liquid layer residing in a gravitational field upon the form of the dispersion relation.
The inclusion of an elastic seabed allows acoustic–gravity waves propagating in shallower
water before dissipating into the elastic medium. In stark contrast to the rigid-seabed case
the first acoustic mode is able to propagate as a Scholte wave to the shore, where it turns
into a Rayleigh wave (Eyov et al. 2013). Note that no rupture was considered in Eyov
et al. (2013). The primary objective of this paper is to combine the ground movement
of rectangular slender faults with an elastic seabed, in order to study the contribution of
elasticity to the propagation of both acoustic–gravity waves and surface waves. The results
of this paper should help fill a gap in the literature identified within Renzi (2017) in which
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Acoustic–gravity waves from slender rupture in elastic seabed

the authors claim solutions for acoustic–gravity waves produced by disturbances over an
elastic seabed in three dimensions are missing from the literature.

Another difference encountered when studying the elastic case is that rather than the
single surface–gravity wave (found in rigid seabed analysis) there is now the possibility
of two surface–gravity waves (Eyov 2013). There is the usual tsunami (referred to there
as mode 01), and another mode of much smaller amplitude which does not propagate for
all frequencies (referred to here as mode 00 (Eyov 2013)). Other secondary objectives
include deriving improved estimates for the acoustic–gravity wave critical frequencies,
estimating the cut-off frequency for the second surface wave (mode 00), and presentation
of a method for rapid calculation of approximate phase velocity curves. We ignore terms
of second order and higher (i.e. nonlinear terms) since the free-surface displacements are
small in comparison with the water depth (Yoon 2002), and also small in comparison with
the wavelengths considered (Michele & Renzi 2020). In addition the gravity term that is
present in the full wave equation is omitted because its contribution is small (see figure 2
of Abdolali et al. 2019).

This paper comprises seven main sections. The mathematical formulation combining
ground movement with elasticity is found in § 2, with its solution in § 3. Section 4
presents improved approximations for the acoustic–gravity wave cut-off frequencies, and
an estimate of the cut-off frequency for the mode 00 surface wave. Section 5 proposes
a method for fast calculation of approximate phase velocity curves which does not
necessitate solution of the dispersion relation at each data point. Section 6 links the
developed theory to numerical results obtained from both synthetic stimulus and real data
from hydrophones and DART buoys. The paper concludes with a discussion/summary in
§ 7.

2. Formulation

The water layer is considered inviscid, homogeneous, of constant depth h, residing in a
gravitational field of constant acceleration g = 9.81 m s−1. The water layer is assumed
unbounded in x and y and is supported by an infinitely deep elastic half-space. The origin
of coordinates is taken at the unperturbed free surface directly above the centroid of the
slender fault, with the z axis pointing vertically upwards. Assuming irrotational flow, the
problem is expressed in terms of a velocity potential function for the liquid φl, along with
a dilation potential φs and rotation potential Ψ for the solid layer (the subscript s is omitted
from Ψ since it only exists in the solid). As in Eyov et al. (2013) we make use of linearised,
irrotational flow for the liquid and linear elasticity for the solid. A representation of the
flow domain is given in figure 1(a) with a top view of the slender fault in figure 1(b). With
i, j,k as unit vectors the velocity in the liquid is given by

U̇ l = −∇φl = u̇li + v̇lj + ẇlk = −∂φl

∂x
i − ∂φl

∂y
j − ∂φl

∂z
k. (2.1)

The solid displacements are then

U s = ∇φs + ∇ × Ψ = usi + vsj + wsk, (2.2)

us = ∂φs

∂x
+
(
∂ψz

∂y
− ∂ψy

∂z

)
, vs = ∂φs

∂y
+
(
∂ψx

∂z
− ∂ψz

∂x

)
, ws = ∂φs

∂z
+
(
∂ψy

∂x
− ∂ψx

∂y

)
.

(2.3a–c)
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The potentials are governed by three wave equations. In the liquid region:

∂2φl

∂x2 + ∂2φl

∂y2 + ∂2φl

∂z2 = 1
C2

l

∂2φl

∂t2
, −h ≤ z ≤ 0, (2.4)

where Cl is the speed of sound in water. In the solid region:

∂2φs

∂x2 + ∂2φs

∂y2 + ∂2φs

∂z2 = 1
C2

p

∂2φs

∂t2
, z ≤ −h, (2.5)

∂2Ψ

∂x2 + ∂2Ψ

∂y2 + ∂2Ψ

∂z2 = 1
C2

s

∂2Ψ

∂t2
, z ≤ −h, (2.6)

where Cp and Cs are the pressure and shear wave velocities respectively:

Cp =
√

1
ρs
(λ+ 2μ), Cs =

√
μ

ρs
, (2.7a,b)

where λ, μ are Lamé constants and ρs is the density of the solid. At the free surface we
have the combined kinematic and dynamic boundary condition:

∂2φl

∂t2
+ g

∂φl

∂z
= 0, z = 0. (2.8)

In addition, there are four boundary conditions for the seabed. The first of these ensures
the vertical component of velocity in the liquid matches that of the solid. The component
ws is the vertical component of the seabed motion when there is no rupture (as studied
in Eyov et al. (2013)) and as such is small (however, ∂ws/∂t may not be). The magnitude
of ws ranges from 10−6 m for microseisms to 10−2 m for severe earthquakes (Eyov et al.
2013).

ẇl = ∂ws

∂t
+ W(x, y, t), z = −h. (2.9)

The definition of W(x, y, t) closely follows that in (3.2a,b) of Mei & Kadri (2018) and
describes the motion of the rupture:

W(x, y, t) = R(x, y)τ (t), z = −h, (2.10)

R(x, y) =
{

W0 = const. |x| < b, |Y| < £
0 elsewhere,

τ (t) =
{

1 −T < t < T
0 |t| > T,

£ = εL.

(2.11a,b)

The duration of the rupture is 2T , the slender fault half-width is b and the slender fault
half-length is L. The slenderness parameter is then ε = b/L � 1 (see figure 1b). Note
that if there is no rupture, i.e. W(x, y, t) = 0, then the boundary condition (2.9) reduces
to that of (8a) of Eyov et al. (2013), ẇl = ∂ws/∂t. On the other hand, when the seabed is
rigid, ws = 0, and we recover the bottom boundary condition (2.3) of Mei & Kadri (2018),
ẇl = W(x, y, t) = −∂φl/∂z, but this time with a minus sign due to this paper following
the sign choices in (1a) and (1b) of Eyov et al. (2013).
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Acoustic–gravity waves from slender rupture in elastic seabed

h

z

x
y

x

Fault

2b

2b

2L

Slender fault

Solid medium, elastic half-space, ρs Φδ Ψ

Liquid medium, ρl Φl

η(x, y, t)

z = 0

z = −h

z → −∞

(a) (b)

Figure 1. Representation of the flow domain. (a) Cross-section through the x, z plane. Water depth is h, surface
elevation is η(x, y, t), liquid velocity potential is φl, solid dilation potential is φs and solid rotation potential
is Ψ . Densities in the liquid and solid medium are ρl and ρs respectively. (b) Top view of slender fault.

The next boundary condition states that the axial stress σzz is equal in magnitude but of
opposite direction to the liquid pressure at the seabed:

σzz = −Pl, z = −h, (2.12)

σzz = λ
(
∂us

∂x
+ ∂vs

∂y
+ ∂ws

∂z

)
+ 2μ

∂ws

∂z
= −Pl, z = −h. (2.13)

The remaining two boundary conditions define no shear on the seabed:

σxz = 0, σyz = 0, z = −h, (2.14a,b)

so that

σxz = μ

(
∂us

∂z
+ ∂ws

∂x

)
= 0, σyz = μ

(
∂vs

∂z
+ ∂ws

∂y

)
= 0, z = −h. (2.15a,b)

The dynamic pressure and surface elevation are obtained from

Pl = ρl
∂φl

∂t
, η = 1

g
∂φl

∂t
. (2.16a,b)

We also require φl, φs,Ψ and all derivatives to decay to zero as x, y, t → ±∞, z → −∞.

3. Solution

We introduce multiple-scale coordinates following Mei & Kadri (2018):

x, z, t; X = ε2x, Y = εy. (3.1)

The wave equations (2.4)–(2.6) can then be written as

∂2φl

∂x2 + 2ε2 ∂
2φl

∂x∂X
+ ε2 ∂

2φl

∂Y2 + ∂2φl

∂z2 = 1
C2

l

∂2φl

∂t2
, −h ≤ z ≤ 0, (3.2)

∂2φs

∂x2 + 2ε2 ∂
2φs

∂x∂X
+ ε2 ∂

2φs

∂Y2 + ∂2φs

∂z2 = 1
C2

p

∂2φs

∂t2
, −∞ ≤ z ≤ −h, (3.3)

∂2Ψ

∂x2 + 2ε2 ∂
2Ψ

∂x∂X
+ ε2 ∂

2Ψ

∂Y2 + ∂2Ψ

∂z2 = 1
C2

s

∂2Ψ

∂t2
, −∞ ≤ z ≤ −h. (3.4)
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Let φl = φl0(x,X, Y, z, t)+ ε2φl2(x,X, Y, z, t), with similar expressions for φs and Ψ .
Then the perturbation equations at O(ε0) describe the two-dimensional problem of an
infinitely long slender fault:

∂2φl0

∂x2 + ∂2φl0

∂z2 − 1
C2

l

∂2φl0

∂t2
= 0, −h ≤ z ≤ 0, (3.5)

∂2φs0

∂x2 + ∂2φs0

∂z2 − 1
C2

p

∂2φs0

∂t2
= 0, −∞ < z ≤ −h, (3.6)

∂2Ψ 0

∂x2 + ∂2Ψ 0

∂z2 − 1
C2

s

∂2Ψ 0

∂t2
= 0, −∞ < z ≤ −h. (3.7)

At O(ε2),

∂2φl2

∂x2 + ∂2φl2

∂z2 − 1
C2

l

∂2φl2

∂t2
= −
{
∂2φl0

∂Y2 + 2
∂2φl0

∂x∂X

}
, −h ≤ z ≤ 0, (3.8)

∂2φs2

∂x2 + ∂2φs2

∂z2 − 1
C2

p

∂2φs2

∂t2
= −
{
∂2φs0

∂Y2 + 2
∂2φs0

∂x∂X

}
, −∞ ≤ z ≤ −h, (3.9)

∂2Ψ 2

∂x2 + ∂2Ψ 2

∂z2 − 1
C2

s

∂2Ψ 2

∂t2
= −
{
∂2Ψ 0

∂Y2 + 2
∂2Ψ 0

∂x∂X

}
, −∞ ≤ z ≤ −h. (3.10)

The fault motion, elastic properties and elastic dispersion relation are all captured at O(ε0).
Thus, the O(ε2) boundary conditions for the liquid layer are those for rigid seabed and no
fault motion:

∂2φl2

∂t2
+ g

∂φl2

∂z
= 0, z = 0, (3.11)

∂φl2

∂z
= 0, z = −h. (3.12)

3.1. Leading-order potential

By the double Fourier transforms F̄ = ∫∞
−∞ F eiωtdt, ¯̄F = ∫∞

−∞ F̄ e−ikxdx, with ω the
angular velocity and k the wavenumber, equations (3.5), (3.6) and (3.7) become

∂2 ¯̄φl0

∂z2 +
(
ω2

C2
l

− k2
)

¯̄φl0 = 0, (3.13)

∂2 ¯̄φs0

∂z2 +
(
ω2

C2
p

− k2
)

¯̄φs0 = 0, (3.14)

∂2 ¯̄Ψ 0

∂z2 +
(
ω2

C2
s

− k2
)

¯̄Ψ 0 = 0. (3.15)

Let E1,E2,D1,D2 be unknowns to be solved for. Then the choice exists either to select
r2 = (ω2/C2

l − k2), with r ∈ R, leading to a trial solution for ¯̄φl0 in (3.13) of the form
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Acoustic–gravity waves from slender rupture in elastic seabed

¯̄φl0(z) = E1 cos(rz)+ E2 sin(rz), or to select r2 = (k2 − ω2/C2
l ), leading to a trial solution

of the form ¯̄φl0(z) = E1 cos(irz)+ E2 sin(irz), as in (12c) of Eyov et al. (2013). To
maintain compatibility with Eyov et al. (2013) we choose r2 = (k2 − ω2/C2

l ). For (3.14)
and (3.15) we take q2 = (k2 − ω2/C2

p) and s2 = (k2 − ω2/C2
s ). As in Eyov et al. (2013),

r, q and s are wavenumbers.
To arrive at a trial solution for (3.14) we choose ¯̄φs0(z) = D1 eqz, because ¯̄φs0(z) → 0 as

z → −∞ implies no terms involving e−qz. By a similar argument ¯̄Ψ 0(z) = D2 eszj.
Applying the double Fourier transforms to the boundary condition at z = 0

(leading-order term):

∂2φl0

∂t2
+ g

∂φl0

∂z
= 0, z = 0. (3.16)

After both Fourier transforms equation (3.16) becomes

− ω2 ¯̄φl0 + g
∂ ¯̄φl0

∂z
= 0, z = 0. (3.17)

Applying Fourier transforms to the first boundary condition at z = −h (2.9), leading-order
terms become

ws0 = ∂φs0

∂z
+ ∂ψ0y

∂x
and ẇl0 = −∂φl0

∂z
, (3.18a,b)

−∂φl0

∂z
= ∂2φs0

∂t∂z
+ ∂2ψ0y

∂t∂x
+ W(x, y, t). (3.19)

It is only necessary to apply the relevant transforms to the first three terms of (3.19)
– the required transforms for W(x, y, t) are already known from Mei & Kadri (2018).
Assembling terms gives

− ∂ ¯̄φl0

∂z
= −iω

∂ ¯̄φs0

∂z
+ ωk ¯̄ψ0y + 4W0 sin(kb) sin(ωT)

kω
, z = −h. (3.20)

The second boundary condition at z = −h is σzz = −Pl:

σzz = λ
(
∂us0

∂x
+ ∂ws0

∂z

)
+ 2μ

∂ws0

∂z
= −Pl0 = −ρl

∂φl0

∂t
, (3.21)

with

us0 = ∂φs0

∂x
− ∂ψ0y

∂z
, ws0 = ∂φs0

∂z
+ ∂ψ0y

∂x
. (3.22a,b)

After application of both Fourier transforms we have

λ

(
−k2 ¯̄φs0 + ∂2 ¯̄φs0

∂z2

)
+ 2μ

(
∂2 ¯̄φs0

∂z2 + ik
∂ ¯̄ψ0y

∂z

)
= iρlω

¯̄φl0, z = −h. (3.23)

The third boundary condition at z = −h is σxz = 0 ⇒
∂us0

∂z
+ ∂ws0

∂x
= 0. (3.24)
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After application of both Fourier transforms we have

2 ik
∂ ¯̄φs0

∂z
− k2 ¯̄ψ0y − ∂2 ¯̄ψ0y

∂z2 = 0, z = −h. (3.25)

Finally the fourth boundary condition at z = −h is σyz = 0 ⇒
∂vs0

∂z
+ ∂ws0

∂y
= 0, (3.26)

with

vs0 = 0 and ws0 = ∂φs0

∂z
+ ∂ψ0y

∂x
. (3.27a,b)

Again, after application of both Fourier transforms we arrive at

∂2 ¯̄φs0

∂z∂y
+ ik

∂ ¯̄ψ0y

∂y
= 0, z = −h. (3.28)

3.2. Transformed governing equations
We assemble terms and drop the zero subscript for ease of notation (but remembering
these are leading-order terms). Also, we drop the double overbar, again remembering that
these are the terms after the double Fourier transforms:

Φs = ¯̄φs0, Φl = ¯̄φl0, ψy = ¯̄ψ0y, Ψ = ¯̄Ψ, (3.29a–d)

∂2Φl

∂z2 +
(
ω2

C2
l

− k2
)
Φl = 0,

∂2Φs

∂z2 +
(
ω2

C2
p

− k2
)
Φs = 0,

∂2Ψ

∂z2 +
(
ω2

C2
s

− k2
)

Ψ = 0.

(3.30a–c)

At z = 0 we have the (transformed) boundary condition for the liquid surface:

− ω2Φl + g
∂Φl

∂z
= 0. (3.31)

Then, at z = −h we have four (transformed) boundary conditions for the seabed:

−∂Φl

∂z
= −iω

∂Φs

∂z
+ ωkψy + 4W0 sin(kb) sin(ωT)

kω
, (3.32)

λ

(
−k2Φs + ∂2Φs

∂z2

)
+ 2μ

(
∂2Φs

∂z2 + ik
∂ψy

∂z

)
= iρlωΦl, (3.33)

2 ik
∂Φs

∂z
− k2ψy − ∂2ψy

∂z2 = 0, (3.34)

∂2Φs

∂z∂y
+ ik

∂ψy

∂y
= 0. (3.35)

With the requirement that Φl, Φs and Ψ , along with all their derivatives, decay to zero as
y → ±∞, z → −∞.
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Acoustic–gravity waves from slender rupture in elastic seabed

3.3. Form for potentials
Taking Φl(z) = E1 cos(irz)+ E2 sin(irz), we substitute into the boundary condition at z =
0 to arrive at

E2 = − iω2

gr
E1, (3.36)

in agreement with (14a) of Eyov et al. (2013). Also, we take Φs(z) = D1 eqz + D̂1 e−qz

and Ψ (z) = ψy j with ψy = D2 esz + D̂2 e−sz, but note that, in order to obtain physical
solutions in which solid displacements decrease with depth, we must have D̂1 = D̂2 = 0
and s, q ∈ R≥0. If this were not the case then displacements would oscillate or increase
with depth (Eyov 2013).

Applying boundary condition σxz = 0 (3.34) at z = −h:

D2 = 2 ikq
k2 + s2 eh(s−q)D1. (3.37)

Applying boundary condition (3.32) at z = −h:

− E1r sinh(rh)+ ω2E1

g
cosh(rh)− iωqD1 e−qh

+ 2 iωk2q eh(s−q)D1 e−sh

k2 + s2 + 4W0 sin(kb) sin(ωT)
ωk

= 0. (3.38)

Applying boundary condition (3.33) at z = −h:

λ(−k2D1 e−qh + D1q2 e−qh)+ 2μ
(

D1q2 e−qh − 2k2D1q e−qhs
k2 + s2

)
− iρlω

(
E1 cosh(rh)− ω2E1

gr
sinh(rh)

)
= 0. (3.39)

Since (3.38) and (3.39) are essentially a pair of simultaneous equations in unknowns E1
and D1 they can be solved in this case, resulting in

E1 = − H1

ωkH2
, D1 = H3

kH2
, (3.40a,b)

with

H1 = 4grW0 sin(kb) sin(ωT) e−qh
[
−2k2μqs + (k2 + s2)

[(
μ+ λ

2

)
q2 − λk

2

2

]]
(3.41)

and

H2 =
(

−2qk2ω2r
(
μs + ρlg

2

)
+ (k2 + s2)ω2r

(
q2
(
μ+ λ

2

)
+ ρlgq

2
− k2λ

2

))
e−qh cosh(rh)+

(
2qk2
(
μgr2s + ρlω

4

2

)
− (k2 + s2)

(
gr2
(
μ+ λ

2

)
q2 + ρlω

4q
2

− gr2k2λ

2

))
e−qh sinh(rh), (3.42)

H3 = 2iρlW0(k2 + s2)(ω2 sinh(rh)− gr cosh(rh)) sin(kb) sin(ωT). (3.43)
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B. Williams and U. Kadri

Setting H2 = 0 and rearranging yields

tanh(rh) =
ω2

r

{
ρlq

(k2 − s2)

(k2 + s2)
+ 1

g

[
4k2qsμ
(k2 + s2)

− ((λ+ 2μ)q2 − λk2)

]}
ω4qρl

gr2
(k2 − s2)

(k2 + s2)
+
[

4k2qsμ
(k2 + s2)

− ((λ+ 2μ)q2 − λk2)

] , (3.44)

which is the dispersion relation (17) of Eyov et al. (2013). The zeros of H2 (i.e. dispersion
relation solutions) locate the poles for the residue calculations that come later. Therefore,
we have

Φl(z) = − H1

ωkH2

(
cos(irz)− iω2

gr
sin(irz)

)
, (3.45)

Φs(z) = H3

kH2
eqz, Ψ = 2 iq

k2 + s2
H3

H2
eh(s−q)+szj. (3.46a,b)

Setting q = s = 0 reduces to the rigid case where (3.1) of Williams et al. (2021) is
recovered. Then H1 and H2 reduce to

H1 = −2W0grλk4 sin(kb) sin(ωT), (3.47)

H2 = −1
2 rλk4(ω2 cosh(rh)− gr sinh(rh)). (3.48)

In this case, Φl(z) becomes

Φl(z) = −4W0 sin(kb) sin(ωT)
μkω

{
μg cos(μz)+ ω2 sin(μz)
ω2 cos(μh)+ μg sin(μh)

}
, (3.49)

which is in agreement with (3.1) of Williams et al. (2021) (note that the sign difference is
due to the definition of the velocity potential).

3.4. Inverse Fourier transforms
The leading-order potentials are retrieved by applying the inverse Fourier transforms as

φl0 = 1
2π

∫ ∞

−∞
i dω e−iωtI1, φs0 = 1

2π

∫ ∞

−∞
i dω e−iωtI2, ψ0y = 1

2π

∫ ∞

−∞
i dω e−iωtI3,

(3.50a–c)

where I1, I2, I3 are the k integrals:

I1 = 1
2πi

∫ ∞

−∞
dk eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
, I2 = 1

2πi

∫ ∞

−∞
dk eikx H3

kH2
eqz,

(3.51a,b)

I3 = 1
2πi

∫ ∞

−∞
dk eikx 2 iq

k2 + s2
H3

H2
eh(s−q)+sz. (3.52)

In each case the integrand has poles at the zeros of H2, i.e. whenever the dispersion
relation (3.44) is satisfied. We substitute out r, q and s to make H2 purely a function of k.
Then values for I1, I2, I3 can be calculated from the residues.

Figure 2 shows the various zones where r, q and s take on real and imaginary
values. There are zones corresponding to surface waves and acoustic–gravity waves.
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Acoustic–gravity waves from slender rupture in elastic seabed
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Figure 2. Zones possible according to r, q, s being real or imaginary for the case ω = 2π,

Cl = 1450 m s−1,Cs = 3550 m s−1,Cp = 6300 m s−1. Zone 1 (orange) has r, q, s ∈ R and corresponds to
surface–gravity waves. Zone 2 (green) has r ∈ iR,with q, s ∈ R and corresponds to acoustic–gravity waves.
The remaining zones near k = 0 (grey) are not physical solutions. The points where r, s, q transition real �
imaginary are designated ±kr = ±0.00433 (black circles), ±ks = ±0.00177 (red circles) and ±kq = ±0.00099
(blue circles) respectively.

The remaining zones close to k = 0 are not physical solutions, since imaginary values
taken on by q and/or s would imply oscillations at infinite depth in the elastic medium.
Moreover, q and s have to be real and non-negative, otherwise oscillations would increase
with increasing depth into the elastic medium. Examination of I1, I2, I3 indicates that
possible poles might also exist at k = 0 and when k2 + s2 = 0. When k = 0 the sin(kb)
term in the numerator (from H1 and H3) ensures a factor of b is reached in the limit
k → 0, so k = 0 is a removable singularity. For the case k2 + s2 = 0 there is a possible
pole when k = ω/

√
2Cs, but this pole lies in the unphysical zone of figure 2. From Eyov

et al. (2013) we have that s = 0 (at ks) represents a point where the energy spreads out
over the whole solid depth. At that point the wave amplitude vanishes and so propagation
ceases.

When r ⇒ r0m with m = 0, 1,

r =
√

k2 − ω2/C2
l , =⇒ k0m =

√
ω2

C2
l

+ r2
0m, (3.53a,b)

which corresponds to surface waves. There are two possible modes for surface waves.
Mode 00 can propagate if ω > ω00 – the cut-off frequency for this mode. Mode 01 is the
usual tsunami. If instead r ⇒ irn, then acoustic–gravity waves are possible, and

kn =
√
ω2

C2
l

− r2
n, (3.54)
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up to a maximum value of n = N, after which the evanescent waves exist with wavenumber
Λn:

kn = iΛn = i

√
r2

n − ω2

C2
l

=
√
ω2

C2
l

− r2
n. (3.55)

Solutions to the dispersion relation involving acoustic–gravity waves for the case ω = 2π
occur between ks = 0.00177 and kr = 0.00433. They are marked with blue diamonds
in figure 3. Considering the liquid terms first, we break φl0 into the different regions
according to varying ω. For r ∈ iR:

φl0 = 1
2π

∫ −ωn

−∞
i dω e−iωt 1

2πi

∫ ∞

−∞
dk eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
+ 1

2π

∫ ωn

−ωn

i dω e−iωt 1
2πi

∫ ∞

−∞
dk eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
+ 1

2π

∫ ∞

ωn

i dω e−iωt 1
2πi

∫ ∞

−∞
dk eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
, (3.56)

whereas for r ∈ R:

φl0 = 1
2π

∫ 0

−∞
i dω e−iωt 1

2πi

∫ ∞

−∞
dk eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
+ 1

2π

∫ ∞

0
i dω e−iωt 1

2πi

∫ ∞

−∞
dk eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
+ 1

2π

∫ −ω00

−∞
i dω e−iωt 1

2πi

∫ ∞

−∞
dk eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
+ 1

2π

∫ ∞

ω00

i dω e−iωt 1
2πi

∫ ∞

−∞
dk eikx −H1

ωkH2

[
cos(irz)− iω2

gr
sin(irz)

]
. (3.57)

Application of the Rayleigh damping method and contour integration using the residue
theorem around a positively oriented simple closed curve as per Mei & Kadri (2018) results
in

φl0 = 1
2π

∫ −ωn

−∞
i dω e−iωt

N∑
n=1

−H1|k=−kn

−ωkn∂kH2|k=−kn

[
cos(irz)− iω2

gr
sin(irz)

]
e−iknx

+ 1
2π

∫ ωn

−ωn

i dω e−iωt
∞∑

n=N+1

−H1|k=iΛn

ωiΛn∂kH2|k=iΛn

[
cos(irz)− iω2

gr
sin(irz)

]
e−Λnx

+ 1
2π

∫ ∞

ωn

i dω e−iωt
N∑

n=1

−H1|k=kn

ωkn∂kH2|k=kn

[
cos(irz)− iω2

gr
sin(irz)

]
eiknx, (3.58)
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Acoustic–gravity waves from slender rupture in elastic seabed
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Figure 3. Acoustic–gravity wave solutions to the dispersion relation are located at the intersections of dashed
and solid curves (blue diamonds) for ω = 2π and depth h = 4000 m. Dashed curve is left-hand side (LHS) of
(3.44) and solid curve is right-hand side (RHS) of (3.44) when r ∈ iR.

with r = irn ∈ iR, ∂k = ∂/∂k,

H1|k=kn = 4igrnW0 sin(knb) sin(ωT) e−qnh
[
−2k2

nμqnsn

+ (k2
n + s2

n)

[(
μ+ λ

2

)
q2

n − λk
2
n

2

]]
, (3.59)

H1|k=−kn = −H1|k=kn, (3.60)

H1|k=iΛn = 4igrnW0 sin(iΛnb) sin(ωT) e−qnh
[

2Λ2
nμqnsn

+ (s2
n −Λ2

n)

[(
μ+ λ

2

)
q2

n + λΛ
2
n

2

]]
. (3.61)

The derivative terms are given in Appendix A.
In support of the validity of the integration process figure 4 shows a plot of 1/|H2|

in the complex plane when H2 = H2(k) and k is allowed to take on complex values.
Cross-sections through the real and imaginary axes appear in figures 5(a) and 5(b)
respectively. The poles of the function lie on the real axis, whereas the zeros lie on the
imaginary axis. If the range of the plots were to be extended then the function decays
to zero everywhere. As empirical evidence for the validity of the integration, when the
calculations are complete, we find good agreement with existing synthetic and real data
plots for both acoustic–gravity waves and surface waves (e.g. see figures 13 and 17).

In the case where r ⇒ r0m, k ⇒ k0m with r0m a real number and m = 0, 1 then there
may exist two possibilities for surface waves:

φl0 = 1
2π

∫ 0

−∞
i dω e−iωt −H1|k=−k01

−ωk01∂kH2|k=−k01

[
cos(irz)− iω2

gr01
sin(irz)

]
e−ik01x
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Figure 4. Plot of 1/|H2| in the complex plane when H2 = H2(k) and k is allowed to take on complex values.
The angular frequency in this case is ω = 2π as in figure 3.
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Figure 5. (a) Cross-section of figure 4 through the real axis showing locations of the poles when ω = 2π.
(b) Cross-section of figure 4 through the imaginary axis showing locations of the zeros when ω = 2π.

+ 1
2π

∫ ∞

0
i dω e−iωt −H1|k=k01

ωk01∂kH2|k=k01

[
cos(irz)− iω2

gr01
sin(irz)

]
eik01x

+ 1
2π

∫ −ω00

−∞
i dω e−iωt −H1|k=−k00

−ωk00∂kH2|k=−k00

[
cos(irz)− iω2

gr00
sin(irz)

]
e−ik00x

+ 1
2π

∫ ∞

ω00

i dω e−iωt −H1|k=k00

ωk00∂kH2|k=k00

[
cos(irz)− iω2

gr00
sin(irz)

]
eik00x, (3.62)

with

H1|k=k0m = 4gr0mW0 sin(k0mb) sin(ωT) e−q0mh

(
−2k2

0mμq0ms0m

+ (k2
0m + s2

0m)

(
q2

0m

(
μ+ λ

2

)
− λk

2
0m
2

))
, (3.63)
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Acoustic–gravity waves from slender rupture in elastic seabed

H1|k=−k0m = −H1|k=k0m . (3.64)

The derivative term is again to be found in Appendix A. Using the substitutions

k =
√

r2 + ω2

C2
l
, q =

√
r2 + ω2

C2
l

− ω2

C2
p
, s =

√
r2 + ω2

C2
l

− ω2

C2
s
, (3.65a–c)

the dispersion relation (3.44) can be written in terms of r and ω alone, and in this case the
condition for the existence of the 00th mode for a particular ω is

d
dr

[
left-hand side of (3.44)

]
>

d
dr

[
right-hand side of (3.44)

]
. (3.66)

The expressions for the velocity potential in the liquid layer can be further reduced to

φl0 = 1
π

∫ ∞

ωn

i dω e−iωt
N∑

n=1

−H1|k=kn

ωkn∂kH2|k=kn

[
cos(irz)− iω2

gr
sin(irz)

]
eiknx

+ 1
π

∫ ∞

0
i dω e−iωt −H1|k=k01

ωk01∂kH2|k=k01

[
cos(irz)− iω2

gr
sin(irz)

]
eik01x

+ 1
π

∫ ∞

ω00

i dω e−iωt −H1|k=k00

ωk00∂kH2|k=k00

[
cos(irz)− iω2

gr
sin(irz)

]
eik00x

+ 1
π

∫ ωn

0
i dω e−iωt

∞∑
n=n+1

−H1|k=iΛn

ωiΛn∂kH2|k=iΛn

[
cos(irz)− iω2

gr
sin(irz)

]
e−Λnx.

(3.67)

Returning to the expression for the displacement potential in the solid given by

φs0 = 1
2π

∫ ∞

−∞
i dω e−iωt 1

2πi

∫ ∞

−∞
dk eikx H3

kH2
eqz, (3.68)

and following a similar procedure to that of the liquid velocity potential case, we arrive at

φs0 = 1
π

∫ ∞

ωn

i dωe−iωt
N∑

n=1

H3|k=kn

kn∂kH2|k=kn

eqnz eiknx

+ 1
π

∫ ∞

0
i dω e−iωt H3|k=k01

k01∂kH2|k=k01

eq01z eik01x

+ 1
π

∫ ∞

ω00

i dω e−iωt H3|k=k00

k00∂kH2|k=k00

eq00z eik00x

+ 1
π

∫ ωn

0
i dω e−iωt

∞∑
n=N+1

H3|k=iΛn

iΛn∂kH2|k=iΛn

eqnz−Λnx, (3.69)

with

H3|k=kn = −2ρlW0(k2
n + s2

n) sin(knb) sin(ωT)(ω2 sin(rnh)− grn cos(rnh)),

H3|k=k0m = 2iρlW0(k2
0m + s2

0m) sin(k0mb) sin(ωT)(ω2 sinh(r0mh)− gr0m cosh(r0mh)),

H3|k=iΛn = 2iρlW0(s2
n −Λ2

n) sinh(Λnb) sin(ωT)(ω2 sin(rnh)− grn cos(rnh)).

⎫⎪⎬⎪⎭
(3.70)
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The derivative terms evaluated at k = kn, k = iΛn and k = k0m remain as before. In a
similar way the rotation potential can be written as

ψ0y = 1
2π

∫ ∞

−∞
i dω e−iωt 1

2πi

∫ ∞

−∞
dk eikx 2 iq

k2 + s2
H3

H2
eh(s−q)+sz, (3.71)

which becomes

ψ0y = 1
π

∫ ∞

ωn

i dω e−iωt
N∑

n=1

2 iqn

k2
n + s2

n

H3|k=kn

∂kH2|k=kn

eh(sn−qn)+snz eiknx

+ 1
π

∫ ∞

0
i dω e−iωt 2 iq01

k2
01 + s2

01

H3|k=k01

∂kH2|k=k01

eh(s01−q01)+s01z eik01x

+ 1
π

∫ ∞

ω00

i dω e−iωt 2 iq00

k2
00 + s2

00

H3|k=k00

∂kH2|k=k00

eh(s00−q00)+s00z eik00x

+ 1
π

∫ ωn

0
i dω e−iωt

∞∑
n=N+1

2 iqn

s2
n −Λ2

n

H3|k=iΛn

∂kH2|k=iΛn

eh(sn−qn)+snz−Λnx. (3.72)

3.5. Long-range modulation: liquid layer
We introduce unknown envelope factors for the liquid layer A±

n (X, Y) and A±
0m(X, Y):

φl0 = 1
2π

∫ ∞

ωn

i dω e−iωt
N∑

n=1

A+
n

−H1|k=kn

ωkn∂kH2|k=kn

[
cos(irz)− iω2

grn
sin(irz)

]
eiknx

+ 1
2π

∫ ∞

0
i dω e−iωtA+

01
−H1|k=k01

ωk01∂kH2|k=k01

[
cos(irz)− iω2

gr
sin(irz)

]
eik01x

+ 1
2π

∫ ∞

ω00

i dω e−iωtA+
00

−H1|k=k00

ωk00∂kH2|k=k00

[
cos(irz)− iω2

gr
sin(irz)

]
eik00x

+ 1
2π

∫ −ωn

−∞
i dω e−iωt

N∑
n=1

A−
n

−H1|k=−kn

−ωkn∂kH2|k=−kn

[
cos(irz)− iω2

gr
sin(irz)

]
e−iknx

+ 1
2π

∫ 0

−∞
i dω e−iωtA−

01
−H1|k=−k01

−ωk01∂kH2|k=−k01

[
cos(irz)− iω2

gr
sin(irz)

]
e−ik01x

+ 1
2π

∫ −ω00

−∞
i dω e−iωtA−

00
−H1|k=−k00

−ωk00∂kH2|k=−k00

[
cos(irz)− iω2

gr
sin(irz)

]
e−ik00x

+ 1
2π

[∫ 0

−ωn

+
∫ ωn

0

]
i dω e−iωt

∞∑
n=N+1

−H1|k=iΛn

ωiΛn∂kH2|k=iΛn

[
cos(irz)− iω2

gr
sin(irz)

]
e−Λnx.

(3.73)

The initial conditions are given by

A±
n =
{

1 |Y| < £ = εL
0 |Y| > £ = εL,

A±
0m =

{
1 Y| < £ = εL
0 Y| > £ = εL,

X = ε2x → 0. (3.74a,b)
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The waves are required to vanish far away from, and be symmetric about, the central axis
(Mei & Kadri 2018):

A±
n = A±

0m = 0, |Y| → ∞,
∂A±

n

∂Y
= ∂A±

0m
∂Y

= 0, Y = 0. (3.75)

Proceeding with acoustic modes, taking the time Fourier transform of (3.8) and separating
φ̄l2 into three ranges yields

φ̄l2 =

⎧⎪⎪⎨⎪⎪⎩
φ̄+

l2 ωn < ω < ∞
φ̄e

l2 −ωn < ω < ωn

φ̄−
l2 −∞ < ω < −ωn.

(3.76)

In the range ωn < ω < ∞,

∂2φ̄+
l2

∂x2 + ∂2φ̄+
l2

∂z2 + ω2

C2
l
φ̄+

l2= − ∂2φ̄l0

∂Y2 − 2
∂2φ̄l0

∂x∂X
. (3.77)

From this point the solution proceeds in an analogous way to that derived by Mei & Kadri
(2018):

∂2φ̄+
l2

∂x2 + ∂2φ̄+
l2

∂z2 + ω2

C2
l
φ̄+

l2= − i
N∑

n=1

[
∂2A+

n

∂Y2 + 2 ikn
∂A+

n

∂X

]
−H1|k=kn

ωkn∂kH2|k=kn

[
cos(irz)− iω2

gr
sin(irz)

]
eiknx. (3.78)

Assuming φ̄+
l2 has solutions in the form

∑N
n=1 ξ

+
n (ω, z) eiknx, then substituting into (3.78)

gives

−
N∑

n=1

ξ+
n k2

n eiknx +
N∑

n=1

∂2ξ+
n

∂z2 eiknx + ω2

C2
l

N∑
n=1

ξ+
n eiknx

= −i
N∑

n=1

[
∂2A+

n

∂Y2 + 2 ikn
∂A+

n

∂X

] −H1|k=kn

ωkn∂kH2|k=kn

Fn(z) eiknx. (3.79)

Equating coefficients gives

∂2ξ+
n

∂z2 +
(
ω2

C2
l

− k2
n

)
ξ+

n = − i
[
∂2A+

n

∂Y2 + 2 ikn
∂A+

n

∂X

] −H1|k=kn

ωkn∂kH2|k=kn

Fn(z), (3.80)

where

r2 = k2 − ω2

C2
l

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r = r0m,

ω2

C2
l

− k2
0m = −r2

0m, surface waves,

r = irn,
ω2

C2
l

− k2
n = +r2

n, acoustic–gravity waves,

(3.81)
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resulting in

∂2ξ+
n

∂z2 + r2
nξ

+
n = − i

[
∂2A+

n

∂Y2 + 2 ikn
∂A+

n

∂X

] −H1|k=kn

ωkn∂kH2|k=kn

Fn(z), (3.82)

where

Fn(z) = cos(rnz)+ ω2

grn
sin(rnz). (3.83)

The ground motion is captured at O(ε0), so the boundary conditions on φ̄+
l2 (and therefore

ξ+
n ) at O(ε2) are

−ω2φ̄+
l2+g

∂φ̄+
l2
∂z

= 0, z = 0, (3.84)

∂φ̄+
l2
∂z

= 0, z = −h. (3.85)

Here Fn(z) is a solution to the boundary value problem:

∂2Fn

∂z2 + r2
nFn = 0, (3.86)

Fn = 1,
∂Fn

∂z
= ω2

g
, z = 0, (3.87)

Fn = cos(rnh)− ω2

grn
sin(rnh),

∂Fn

∂z
= rn sin(rnh)+ ω2

g
cos(rnh), z = −h. (3.88)

A similar process could be carried out for surface waves.
The next step is to extract the Schrödinger equation from (3.82) by applying the

following Green’s identity over the range −h ≤ z ≤ 0:

∫ 0

−h

[
Fn

(
∂2ξ+

n

∂z2 + r2
nξ

+
n

)
− ξ+

n

(
∂2Fn

∂z2 + r2
nFn

)]
dz =

[
Fn
∂ξ+

n

∂z
− ξ+

n
∂Fn

∂z

]0

−h
. (3.89)

As in Mei & Kadri (2018), the result is the Schrödinger equation for the two-dimensional
evolution of the envelope factors:

∂2A+
n

∂Y2 + 2 ikn
∂A+

n

∂X
= 0, r ∈ iR. (3.90)

Having obtained the Schrödinger equation (3.90) for the acoustic–gravity wave case in the
liquid layer the solution is analogous to that found in Mei & Kadri (2018), but with mode
properties now incorporating elasticity, via kn. The envelope solution is therefore stated

956 A6-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
91

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1091


Acoustic–gravity waves from slender rupture in elastic seabed

here as

An = 1 − i
2

{
C

(√
2

πχn
Y+

)
+ C

(√
2

πχn
Y−

)}

+ 1 + i
2

{
S

(√
2

πχn
Y+

)
+ S

(√
2

πχn
Y−

)}
, χn = X

2kn
, Y± = £ ± Y

2
,

(3.91)

where C(z) and S(z) are Fresnel integrals. A similar process beginning at (3.76) can be
applied to derive the expressions for the surface wave mode 01 and mode 00. Finally,
the pressure obtained from the velocity potential (3.67) in the liquid (propagating parts)
inclusive of envelope factors is given by

P = ρl

π

∫ ∞

ωn

dω
N∑

n=1

−H1|k=knAn

kn∂kH2|k=kn

[
cos(rz)+ ω2

gr
sin(rz)

]
ei(knx−ωt)

+ ρl

π

∫ ∞

0
dω

−H1|k=k01A01

k01∂kH2|k=k01

[
cosh(rz)+ ω2

gr
sinh(rz)

]
ei(k01x−ωt)

+ ρl

π

∫ ∞

ω00

dω
−H1|k=k00A00

k00∂kH2|k=k00

[
cosh(rz)+ ω2

gr
sinh(rz)

]
ei(k00x−ωt). (3.92)

Similarly the surface elevation is given by

η = 1
gπ

∫ ∞

ωn

dω
N∑

n=1

−H1|k=knAn

kn∂kH2|k=kn

ei(knx−ωt) + 1
gπ

∫ ∞

0
dω

−H1|k=k01A01

k01∂kH2|k=k01

ei(k01x−ωt)

+ 1
gπ

∫ ∞

ω00

dω
−H1|k=k00A00

k00∂kH2|k=k00

ei(k00x−ωt). (3.93)

4. Improved critical frequency approximations

In a practical application of (3.92) and (3.93) numerical solutions approximate the
integrals over a finite range, and so knowledge of the critical frequencies ωn and ω00
is essential. The critical frequencies ωn represent the cut-off for acoustic–gravity wave
mode numbers n ≥ 2, and ω00 is the cut-off for the surface wave mode 00. The first
acoustic–gravity wave mode does not have a cut-off frequency (see figure 6b). An
approximation for ωn exists in the form of (4.1) (Eyov et al. 2013), but this approximation
is based upon the location of the vertical asymptotes found in the dispersion relation plots,
an example of which is shown in figure 6(a). This approximation – although compact
and easy to use – is not as accurate as it might be. The following subsections construct
a more accurate approximation for ωn (albeit more complicated) and an approximation to
the cut-off frequency of surface wave mode 00 based on the gradient condition (3.66).

4.1. Acoustic–gravity waves
When the acoustic–gravity wave propagating modes (n = 2, 3, . . .) terminate, the phase
velocity becomes equal to Cs and s = √k2 − ω2/C2

s = 0 (Eyov et al. 2013). The first
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Figure 6. Approximate critical values from (4.1) (red circles) and actual critical values (blue circles).
(a) Dispersion relation plot for h = 4000 m. Red circle marks vertical asymptote. Blue circle marks r2, the
actual cut-off for mode 2. Dashed trace, left-hand side (LHS) of equation (3.44); solid trace, right-hand side
(RHS) of equation (3.44). (b) Phase velocity curves for first four modes at constant depth of h = 4000 m.
Dotted line is Cs = 3550 m s−1.

progressive mode (n = 1) for an elastic seabed is a Scholte wave, which propagates all
the way to the shore, where it turns into a Rayleigh wave. From (30) of Eyov et al. (2013),
the critical frequency for a particular depth is given by

ωen =
(

n − 3
2

)
π

ClCs

hen

√
C2

s − C2
l

n = 2, 3, . . . , (4.1)

which is a good approximation to the actual critical frequency, though it is based on the
location of the vertical asymptotes in the dispersion relation plot – location of red circle
in figure 6(a). For accuracy, we require a better approximation to the actual intersection of
the two curves in the dispersion relation plot – blue circle in figure 6(a). We begin with
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Acoustic–gravity waves from slender rupture in elastic seabed

the dimensionless form of the dispersion relation (3.44):

tanh(r̃) =
ω̃2

r̃
(ε2 + ε1)

ω̃4

r̃2 ε2 + ε1

, ε1 = 4k̃2q̃s̃μ̃

k̃2 + s̃2
+ λ̃k̃2 − (λ̃+ 2μ̃)q̃2, ε2 = q̃

(
k̃2 − s̃2

k̃2 + s̃2

)
,

(4.2)
with r, k, q, s, ω, λ, μ,Cl,Cs,Cp made dimensionless according to

r̃ = hr, k̃ = hk, q̃ = hq, s̃ = hs, ω̃ =
√

h
g
ω, λ̃ = λ

ρlgh
, μ̃ = μ

ρlgh
,

C̃l = Cl√
gh
, C̃s = Cs√

gh
, C̃p = Cp√

gh
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(4.3)

We substitute

k̃ =
√

r̃2 + ω̃2

C̃l
2 , q̃ =

√
r̃2 + ω̃2

C̃l
2 − ω̃2

C̃p
2 , s̃ =

√
r̃2 + ω̃2

C̃l
2 − ω̃2

C̃s
2 (4.4a–c)

into (4.2) to obtain a function of r̃ alone, followed by another substitution r̃ ⇒ ir̃ to retrieve
the acoustic–gravity wave solutions.

Let ω̃ = r̃C̃sC̃l/

√
C̃s

2 − C̃l
2, which is the s̃ = 0 condition for the termination of

progressive modes, and then let r̃ = (n − 3
2 )π + δ(n), where δ(n) represents a small

(mode-dependent) positive offset away from the vertical asymptotes located at r̃ = (n −
3
2 )π. So the desired δ(n) is the r̃ separation between the blue and red circles in figure 6(a).
Ignoring terms of O(δ(n)2) an approximation of the dispersion relation (see Appendix B)
can be written as

− cot(δ(n)) = an + bnδ(n)
cn + dnδ(n)

, (4.5)

where the coefficients an, bn, cn, dn are given in Appendix C. Then using the
approximation − cot(δ(n)) � −1/δ(n) for small δ(n), (4.5) can be put into quadratic form:

bnδ(n)2 + (an + dn)δ(n)+ cn = 0. (4.6)

This can be solved for δ(n), and then the value of r̃n and the critical frequency ωn can be
obtained from

r̃n =
(

n − 3
2

)
π + δ(n). (4.7)

To determine how well δ(n) predicts the offset a comparison was made between the
approximate value of ωn calculated using (4.7) and that found by using the dispersion
relation

error [%] =
∣∣∣∣ωn(approx)− ωn(dispersion)

ωn(dispersion)
× 100

∣∣∣∣ . (4.8)

The comparison was carried out for depths ranging from 500 to 8000 m and all available
modes. The maximum error occurred in the second mode at a depth of 8000 m, but was
still less than 0.1 % (see figure 7). In § 5 the results for r̃n and δ(n) are used to construct
approximate phase velocity curves.
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Figure 7. Percentage error for approximate critical frequencies ωn from (4.7). Depths range between 500 m
(lower error bound) and 8000 m (upper error bound) – all available modes.

4.2. Surface wave
The surface gravity mode 00 does not exist for all frequencies in the elastic seabed case
and never exists for a rigid seabed. The cut-off condition for mode 00 is given by (3.66)
which can be solved numerically for a given depth. Alternatively a good approximation
can be obtained by seeking the frequency at which the gradient of the left-hand side of
the dimensionless dispersion relation in (4.2) is equal to the gradient of the right-hand
side. This occurs for small (ultimately zero) r̃. In this case we make the approximation
tanh(r̃) � r̃. Now we differentiate (4.2) with respect to r̃. Then we express the result as a
series in r̃2 to arrive at

1 = 1
ω̃2 + A

ω̃
+ O(r̃2). (4.9)

In the limit r̃ → 0, (4.9) can be written as the quadratic ω̃2 − Aω̃ − 1 = 0, with

A = 2

[(
μ̃+ λ̃

2

)
C̃2

l − μ̃C̃2
p

]
(2C̃2

s − C̃2
l )

√
C̃2

s − C̃2
l + 2C̃pC̃sμ̃

√
C̃2

p − C̃2
l (C̃

2
s − C̃2

l )

C̃3
l C̃p

√
C̃2

p − C̃2
l

√
C̃2

s − C̃2
l

.

(4.10)

Taking the positive root of the quadratic gives the approximate cut-off frequency which

we name Ω̃00. The dimensional form can be recovered fromΩ00 = Ω̃00

√
g/h. A workable

approximation to the cut-off frequency can be obtained by taking A. We call this
approximation A00. Table 1 gives values for ω00 found using a numeric solver and
compares with the approximations Ω00 and A00 indicating errors for various depths. The
error values were calculated from

error [%] =
∣∣∣∣Ω00(or A00)− ω00

ω00
× 100

∣∣∣∣ . (4.11)
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h (m) ω00 (rad s−1) Ω00 (rad s−1) error (%) A00 (rad s−1) error (%)

1000 27.79791617 27.79788874 0.0000986765 27.79753583 0.001368232
2000 13.89917645 13.89912044 0.000402974 13.89876753 0.002942045
3000 9.266281835 9.266198102 0.000903631 9.265845209 0.00471198
4000 6.949848492 6.949736802 0.001607085 6.949383913 0.006684736
5000 5.559999661 5.559859937 0.002513022 5.559507051 0.008859893
6000 4.633443082 4.633275403 0.003618886 4.632922521 0.011234863
7000 3.971624933 3.971429412 0.004922947 3.971076536 0.013807875
8000 3.475268301 3.475044738 0.006432971 3.474691865 0.016586806
9000 3.089219349 3.088967935 0.008138431 3.088615067 0.019560994
10 000 2.78038577 2.780106363 0.010049217 2.779753499 0.022740406
11 000 2.527708826 2.52740152 0.012157492 2.527048661 0.02611713

Table 1. Comparison of cut-off frequencies obtained from numeric solver (ω00) with approximations from
quadratic solution (Ω00) and coarse approximation (A00) for various depths h.

5. Approximate phase velocity curves: shearing method

When plotting phase velocity curves it is typical to choose one or other of the following
scenarios: either (i) fix constant frequency ω and plot phase velocity versus depth h as
in Eyov et al. (2013) (figure 2a) or (ii) fix a constant depth and plot phase velocity
versus frequency (as in this paper). In either case for each data point on every curve the
dispersion relation has to be solved numerically which can be time-consuming. Also, care
has to be taken to ensure solutions are valid. Here we present an alternative method for
quickly plotting an approximate version of the elastic seabed phase velocity curves. In the
following, variables with a tilde are made dimensionless according to (4.3). The method
is based around the tanh−1 function which is manipulated in the following ways.

• Scale along the horizontal r̃ axis (the independent variable) so as to fit the range
(n − 3

2 )π . . . (n − 1
2 )π, with n being the mode number:

− tanh−1
[

2
π
(r̃ − (n − 1)π)

]
. (5.1)

• Shift up the vertical axis so that at centre range r̃ = (n − 1)π the value is αCs,
i.e. the Rayleigh wave phase velocity where the first acoustic mode intersects the
vertical axis (see figure 6b). The value of α = 0.922231 is taken from (5.22) of
Eyov (2013):

αCs − tanh−1
[

2
π
(r̃ − (n − 1)π)

]
. (5.2)

• Next stretch the plot along the vertical axis by a factor κ̃(n) so that the curve meets
the shear velocity Cs at the critical value r̃n determined from (4.7):

αCs − κ̃(n) tanh−1
[

2
π
(r̃ − (n − 1)π)

]
, (5.3)

where

κ̃(n) = C̃s(α − 1)

tanh−1
[

2
π

(
−π

2
+ δ(n)

)] (5.4)

and δ(n) is the critical offset calculated via the procedure described in § 4.
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• Include a multiplicative factor Ỹ(r̃, n) to ensure that the curve has its region of
rapid descent shifted away from the (n − 1

2)π asymptote to better align with the
‘reference’ phase velocity curves derived from the dispersion relation, and so help
minimise errors. The function ṽ(r̃, n) so obtained is the generating function from
which all the phase velocity curves are derived:

ṽ(r̃, n) = αCs − Ỹ(r̃, n)κ̃(n) tanh−1
[

2
π
(r̃ − (n − 1)π)

]
, (5.5)

where

Ỹ(r̃, n) =

(
n − 1

2

)
π − r̃√[(

n − 1
2

)
π − r̃

]2

−
( π

18

)2
. (5.6)

The resulting curve for the case n = 1 is shown in figure 8. Curves for higher
modes are obtained by shifting the n = 1 case by appropriate multiples of π along
the positive r̃ axis. The variable r̃ ranges over the interval r̃n ≤ r̃ ≤ (r̃∗ − ε) with
0 < ε � 1, defined by (n − 3

2 )π < r̃n ≤ r̃ ≤ (r̃∗ − ε) < (n − 1
2 )π and r̃∗ is such

that ṽ(r̃∗, n) = C̃l. This represents the phase velocity asymptotically approaching
Cl with increasing frequency (all modes).

• Take the generating function for each mode and translate, so that the known point
(ω̃n, C̃s) → (0, 0). This is the black curve t̃(r̃, n) in figure 9:

t̃(r̃, n) = r̃
C̃sC̃l√

C̃2
s − C̃2

l

+ iṽ − z̃n, z̃n = r̃n
C̃sC̃l√

C̃2
s − C̃2

l

+ iC̃s, r̃n =
(

n − 3
2

)
π + δ(n),

(5.7)

where z̃n is a fixed complex number representing the known cut-off point (ω̃n, C̃s).
• Apply the shearing function S̃(ã, n) to distort the black curve into the appropriate

shape for the mode considered – the coloured curves z̃tn in figure 9:

z̃tn = [Re(t̃)− S̃ Im(t̃)] + i Im(t̃), (5.8)

S̃(ã, n) = 1
ã

[w̃(ã, n)− w̃(0, n)]. (5.9)

A plot of S̃(ã, n) is shown in figure 10(b). The function w̃(ã, n) is derived from the
phase velocity curves for the rigid seabed case (figure 10a) by inverting (5.10) to
give ω̃ in terms of rigid seabed phase velocity ṽr:

ṽr = ω̃

k̃n
, k̃n =

√
ω̃2

C̃2
l

− ω̃2
rn

C̃2
l

, ω̃rn =
(

n − 1
2

)
πC̃l. (5.10)

The expressions for k̃n and ω̃rn appearing in (5.10) are from (3.9) and (3.10) of Mei
& Kadri (2018) here made dimensionless. After performing the inversion

ω̃ = ṽrω̃rn√
ṽ2

r − C̃2
l

= ṽr√
ṽ2 − C̃2

l

(
n − 1

2

)
πC̃l, (5.11)
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Figure 8. Generating function ṽ(r̃, n) for first acoustic–gravity mode (n = 1) with depth h = 2000 m. Other
modes are derived by shifting the horizontal axis through (n − 1)π and using the appropriate values for r̃n
and r̃∗.

make the change of variable ṽr = C̃s − ã, and rename ω̃ to w̃ to arrive at

w̃(ã, n) = C̃s − ã√
(C̃s − ã)2 − C̃2

l

(
n − 1

2

)
πC̃l. (5.12)

The function ã is a measure of the vertical drop from the constant line C̃s down
to the phase velocity curves ṽr (see figure 10a). In order to apply S̃(ã, n) to the
generating function define ã = Cs − ṽ(r̃, n) so now ã represents the vertical drop
from the constant line C̃s down to the phase velocity curves ṽ(r̃, n) (see figure 8).

• Add z̃n to translate back:

z̃ = z̃tn + z̃n = [Re(t̃)− S̃ Im(t̃)] + iIm(t̃)+ z̃n. (5.13)

• Finally re-scale to obtain the desired phase velocity curves – solid black trace in
figure 11:

ω + ive = ω̃

√
g
h

+ iṽe
√

gh = Re(z̃)
√

g
h

+ i Im(z̃)
√

gh. (5.14)

The solid black trace of figure 11 is a complex plot with real part representing
the angular frequency ω and imaginary part representing the elastic seabed phase
velocity ve. The dashed curves of figure 11 are those obtained by numerically
solving the dispersion relation (3.44). To quantify the errors between the phase
velocity obtained using the shearing method and that obtained by solving the
dispersion relation, use

error [%] =
∣∣∣∣ve(shear)− ve(dispersion)

ve(dispersion)
× 100

∣∣∣∣ . (5.15)

The maximum error occurs for the first mode and errors decrease with increasing
frequency and increasing mode number (figure 12). There is some freedom in
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Figure 9. The black trace t̃ is sheared by the action of S̃ into each of the coloured curves for each mode. Depth
in this case is 2000 m, first eight modes shown. Then the result is translated and scaled to give the final phase
velocity curves.
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Figure 10. Rigid seabed phase velocity curves along with shearing function. (a) Rigid seabed phase velocity
Ṽr versus ω̃. Depth h = 2000 m. First eight modes. (b) Plot of shear function S̃ versus ã. Depth h = 2000 m.
First eight modes.
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Figure 11. Overlay of phase velocity curves for depth of h = 4000 m. Solid black lines are the approximate
curves, dashed are those obtained from solving the dispersion relation.
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Figure 12. Percentage error for first 16 modes. Depth h = 4000 m.

the expression for Ỹ(r̃, n) which could potentially reduce the errors a little by
carefully replacing the π/18 term with an alternative value derived from some error
minimisation technique (e.g. minimax approximation (Powell 1996)), which we did
not pursue further here.

6. Numerical results

6.1. Acoustic–gravity waves
Figure 13 compares the first acoustic mode for the elastic case (3.92) and rigid case ((3.22)
of Williams et al. (2021)). As in Eyov et al. (2013) the values used for ρl, ρs,Cl,Cs and
Cp are average values taken from Dziewonshi & Anderson (1981). One stark difference
between the two cases is that the signal terminates after some time in the elastic case,
whereas it continues indefinitely in the rigid case. Another difference is the presence of
signal at times earlier than the main pulse in the elastic case, but no signal at all in the rigid
stationary phase model. The phase velocity curves for the elastic case (figure 11) indicate
that frequencies close to the critical frequency for each mode receive a boost in phase
velocity enabling signals to propagate faster. For these frequencies speeds close to Cs are
achievable. The rigid seabed stationary phase model produces complex numbers for times
earlier than x/Cl due to a singularity induced by the stationary phase method (Stiassnie
2010). The pressure amplitudes are similar.

A sensitivity analysis was carried out looking at the effects of six parameters on
the signal duration (see figure 14). Each parameter was varied individually away from
its reference value (table 2) while holding all other parameters at reference. Then the
percentage change in pulse duration was divided by the percentage change in the parameter
to arrive at the sensitivity value. It was found that the rigidity of the seabed most affected
the signal duration. Increasing the Lamé parameters increases Cs and Cp in accordance
with (2.7a,b); the ratio Cp/Cs was kept constant. Another difference between the elastic
seabed case and the rigid seabed case appears when a fast Fourier transform of the
signals is examined. The elastic case shows a slight upward shift in the frequency peak
(see figure 15). This is in contrast to the slight downward shift found when a viscous
compressible sediment layer is overlying the seabed as in Abdolali, Kirby & Bellotti
(2015). Whilst investigating the synthetic acoustic–gravity waves, we found that band-pass
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Figure 13. First acoustic mode (a) with elastic seabed and (b) with rigid seabed.

filtering applied to the signal generated by combining the first 10 modes (figure 16a)
revealed some interesting peaks located close to the expected arrival time for a phase
velocity of Cl (figure 16b). There are four peaks of particular interest labelled 1, 2, 3 and
4. The presence of the peaks is a consequence of the fault’s geometry and motion, and
is not related to the rigidity of the seabed, since the peaks are also present under rigid
seabed conditions, and even when the signal considered was purely acoustic, as in Mei &
Kadri (2018). The time spacing between pairs of peaks responds to changes in either fault
half-width b or rupture duration τ = 2T in a linear fashion, so that details of the fault’s
geometry and dynamics are encoded in the acoustic–gravity waves. Time �t1 between
peak numbers 1 and 2 (or 3 and 4) is exactly the rupture duration, and �t2 between peaks
1 and 3 (or 2 and 4) is linearly related to the fault half-width through �t2 = 2b/Cl. When
the slender fault begins to move, peaks 1 and 3 are generated at the edges of the slender
fault and begin to propagate. The time separation between these peaks is explained as the
time required for a wave travelling at speed Cl to cross a fault width of 2b. At the end of
the fault’s motion, after τ seconds, the second pair of peaks (2 and 4) is generated and
propagates away – also separated in time by�t2. The resultant waveform as would be seen
in the far field is a collection of four peaks. The amplitude of the peaks depends linearly
on the uplift velocity W0. The timings between peaks agree well with the values given in
table 2. Let subscripts 1, 2, 3 and 4 represent the peaks denoted by the numbers 1, 2, 3 and
4 respectively. Then, �t12 = 10.97 s, �t34 = 8.9 s, �t13 = 57.67 s and �t24 = 55.46 s.
The times �t12 and �t34 represent τ , the uplift time, which (from table 2) is actually
10 s. The times �t13 and �t24 are the transit times for an acoustic signal to cross a fault
width 2b, which, again from table 2, is actually 55.17 s. The information that could be
extracted from the timings embedded in the acoustic modes would be of interest to the
inverse process that reconstructs fault parameters from received signals (Gomez & Kadri
2021). In § 6.3 an actual hydrophone recording made during the Samoa 2009 event is
filtered to reveal the four peaks encoded within it. Nosov (1999) concludes that the acoustic
modes have a frequency spectrum which depends on the time history and spatial structure
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Figure 14. Response of signal duration when changing parameters.

Parameter Description Elastic Rigid

g Acceleration due to gravity 9.81 m s−1 9.81 m s−1

L Fault half-length 400 km 400 km
b Fault half-width 40 km 40 km
2T Rupture duration 10 s 10 s
h Water depth 4 km 4 km
ρl Water density 1020 kg m−3 1020 kg m−3

ρs Solid density 2750 kg m−3 · · ·
Cl Speed of sound in water 1450 m s−1 1450 m s−1

Cs Speed of shear waves in solid 3550 m s−1 · · ·
Cp Speed of compression waves in solid 6300 m s−1 · · ·
λ Lamé first parameter 3.9833750 × 1010 Pa · · ·
μ Lamé second parameter 3.4656875 × 1010 Pa · · ·
W0 Uplift velocity 0.1 m s−1 0.1 m s−1

Table 2. Constants and parameters used in comparison of elastic seabed with rigid seabed.

of the bottom displacement – which is referred to as the tsunami’s voice. This is exactly
what we find encoded into the characteristic (four) peaks.

6.2. Surface waves
Consider now the surface waves generated by the single slender fault with parameters
as per table 2. The equations generating the surface waves are (3.93) for the elastic case
and (3.23) of Williams et al. (2021) for the rigid case. At a depth of h = 4000 m there is
little difference between elastic and rigid cases (figure 17a), but at a depth of h = 1000 m
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Figure 15. Fast Fourier transform of first four available modes. Depth h = 4000 m.

differences are more apparent (figure 17b). In deeper water the surface wave is almost
unaffected by the elasticity of the seabed (Eyov 2013). This surface wave is the main
tsunami, i.e. mode 01.

When the seabed is elastic the possibility of a second surface wave arises. This wave
does not exist for all frequencies and never exists in the rigid case (Eyov 2013). The
gradient condition (3.66) has to be satisfied before mode 00 can propagate (see figure 18).
The mode 00 surface wave has a phase velocity Cl, and a negligible amplitude, of the
order of micrometres. A plot of mode 00 under the conditions of table 2 can be found
in figure 19. In the plot there are four distinct peaks numbered 1 to 4. These peaks in
the mode 00 surface wave correspond to the peaks numbered 1, 2, 3 and 4 found in the
acoustic signal. The assumption of a rectangular fault moving at a uniform speed results in
symmetric peaks, whereas in reality the motion is much more complicated thus upsetting
the symmetry of the peaks seen in figure 19.

6.3. Hydrophone recordings
The theory developed in this paper leading to the equations for pressure (3.92) and surface
elevation (3.93) is linear. Therefore, as in Williams et al. (2021), more complicated
multi-fault scenarios can be constructed from single slender fault solutions by linear
superposition, given that the parameters for each individual fault are known. To contrast
the case of an elastic seabed with that of a rigid seabed we revisit the Sumatra 2004
earthquake discussed in § 5.1.2 of Williams et al. (2021). The geographical area considered
here ranges over [70◦ to 100◦] E longitude and [−15◦ to 20◦] N latitude. This curved patch
on the (idealised) spherical Earth is mapped to flat x, y coordinates. The conversion factor
of metres per degree is fixed for the latitude (y) direction, but the metres per degree in
the longitudinal (x) direction varies with latitude, being maximum at the equator and

956 A6-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
91

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1091


Acoustic–gravity waves from slender rupture in elastic seabed

2.0

1.5

1.0

0.5

–0.5

–1.0

–1.5

–2.0

3000

2000

1000

–2000

–1000

–3000

0

400 600 800 1000 1200 1400

400200 600 800 1000 1200 1400

0

(×104)

10 modes unfiltered

10 modes bandpass

P 
(P

a)
P 

(P
a)

t (s)

1 3
4

2

(a)

(b)

Figure 16. Band-pass filtering applied to the 10 combined modes of the synthetic acoustic–gravity wave
generated by a single slender fault. (a) The first 10 modes combined. (b) The resulting signal after application
of band-pass filtering. The characteristic peaks are numbered 1, 2, 3 and 4.
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Figure 17. Surface elevation comparison (elastic versus rigid). Coordinates are x = 1000 km, y = 0 km.
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Figure 19. Mode 00 surface–gravity wave with envelope.

decreasing as the poles are approached. To simplify the calculations an average value for
metres per degree longitude was used and the area considered was kept reasonably small.

The fault centroids are marked by black stars in figures 20(a) and 20(b) and all faults
are contained within the masked off ‘earthquake zone’. The purpose of the earthquake
zone was to avoid pressure calculations too close to the faults. The location of hydrophone
H08N is marked with a red star. Figure 20 indicates the time evolution of the bottom
pressure signal for both rigid and elastic seabeds. The elastic seabed has pressure signals
already close to the hydrophone at t = 1000 s, whereas the rigid seabed only has pressure
signals local to the earthquake zone at this time. This is due to the twin effects of a boost
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Figure 20. For caption see next page.

in phase velocity for frequencies close to critical in the elastic case and the absence of
signal ahead of the main pulse in the rigid stationary phase model. As time proceeds
the pressure signals for the elastic case can be seen to traverse the area considered, so
that by t = 3625 s the area is largely clear of pressure oscillations. In contrast, the rigid
stationary phase model shows persistent and ever-increasing pressure oscillations around
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Figure 20 (cntd). Bottom pressure comparison between rigid and elastic seabed. The location of H08N
hydrophone is indicated by a red star at bottom left of each panel. By 3625 s, the elastic model has largely
cleared of acoustic–gravity waves whereas the rigid model still has strong oscillations around the earthquake
zone. (a) Rigid seabed, bottom pressure map calculated at nine time intervals after first fault movement.
(b) Elastic seabed, bottom pressure map calculated at the same time intervals.

the earthquake zone. The elastic seabed could therefore be considered more physically
realistic.

Figure 21 compares the predictions made by the elastic seabed model against recorded
data for the Sumatra event derived from the southern (H08S1) hydrophone and the
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Figure 21. Comparison of the current elastic model with both hydrophone and seismic data for the Sumatra
2004 event. The time axis begins at UTC 2004-12-26 00:58:53 (t = 0). The vertical red line represents the
arrival time for a propagation speed of 8000 m s−1, the vertical green line represents the arrival time for a
propagation speed of Cs = 3550 m s−1 and the vertical blue line represents the arrival time for a propagation
speed of Cl = 1450 m s−1.

seismograph at nearby Diego Garcia (DGAR). The signals recorded by the three
hydrophones at station H08S were very similar to each other, and so only that of
H08S1 is displayed in the plots (similarly for station H08N). The amplitude of the main
acoustic–gravity wave signal for the northern triad is much smaller than that of the
southern triad – possibly due to the shielding effect of the Chagos Archipelago (see
figures 22a and 23). However, the leading pulses (P-waves) are of similar amplitude.
This suggests that the detection of the P-waves by the hydrophones is largely unaffected
by the presence of the island – unlike signals that travel only through the water.
The hydrophone data were obtained from the Comprehensive Nuclear Test Ban Treaty
Organisation (CTBTO) and the seismic data from the Incorporated Research Institutions
for Seismology (IRIS). The fault configuration is that of table 3/figure 6(a) (Williams et al.
2021) and the start time given by the United States Geological Survey (USGS) website
is UTC 2004-12-26 00:58:53, which corresponds to t = 0. In the plots the blue vertical
lines correspond to the expected arrival time of acoustic–gravity waves travelling at a
phase speed of 1450 m s−1. The green vertical lines correspond to acoustic–gravity waves
travelling at a phase speed of Cs = 3550 m s−1 and the red vertical lines correspond to a
phase speed of � 8000 m s−1. The DGAR seismometer records small-amplitude P-waves
arriving at the red vertical line, which then transition to larger-amplitude S-waves at
the green line. The hydrophone H08S weakly detects the P-wave activity. The seismic
S-waves do not exist in the liquid (no shear). The main acoustic–gravity wave signal
then arrives and is detected by the hydrophone at the blue line. The re-scaled plot of
the hydrophone signal shows this behaviour more clearly. Since Cs is the speed limit for
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(a) (b)

Figure 22. (a) Locations for the H08N and H08S hydrophone triads, along with the DGAR seismograph
(yellow markers). The northern triad is shielded by the Chagos Archipelago. (b) Expanded view of island and
west coast of Sumatra. Images from Google Earth.

the acoustic–gravity waves in the elastic model, the model is unable to predict the P-wave
portion of the hydrophone signal. Modifications to the existing model or maybe a new
model would be needed to capture this behaviour. Between the green and blue lines the
elastic model predicts acoustic–gravity waves that can travel at phase speeds close to Cs for
some frequencies. The hydrophones show weak signal in this region, possibly due to the
filtering effect of the hydrophone’s response. After the blue line the elastic model predicts
a signal that is close in amplitude to that of the hydrophone recordings, but decays more
slowly – possibly due to a lack of dissipation included in the model. However, the signal
duration is at least finite in the elastic case. There are processes missing from the elastic
model (varying bathymetry, reflection, refraction, dissipation etc.) so an exact match is not
expected. Examination of figure 21 shows the arrival times for P-waves, S-waves and the
main acoustic–gravity wave pulse (travelling at a phase speed of Cl) are consistent with
our assumptions of constant water density, constant speed of sound in liquid and constant
speed of propagation in solid. The leading pulse seen in the hydrophone recordings is
primarily made up of lower-frequency components. To show this, a band-pass filter was
applied to the hydrophone recording at H08S. The filter eliminates most of the frequency
components below 3 Hz and has largely flattened the leading pulse of the H08S signal
(figure 24). In order to enhance the detection of acoustic signal between the red and blue
lines, ultralow-frequency hydrophones should be used.

To demonstrate the extraction of fault timing and geometry from acoustic–gravity wave
signals a band-pass filter was applied to the data obtained from hydrophone H11 located
at Wake Island during the Samoa 2009 event (data supplied by CTBTO). The timings for
the peaks are �t12 = 15.46, �t34 = 27.75, �t13 = 29.89 and �t24 = 42.18 s (figure 25).
Note that the time axis in figure 25 does not begin from the start of the rupture. The
time axis in this case represents an 1800 s window around the main hydrophone signal.
This is not a concern here since only time differences (�t values) are required. Unlike
in the synthetic case this event is asymmetric in the sense that the timings suggest
either a trapezoidal rupture geometry or non-uniform uplift velocity (or both). The time
�t12 = 15.46 s represents the uplift time for the leading edge of the fault. Assuming that
the front and back edges of the fault begin moving together, then�t13 = 29.89 s represents
the time for the acoustic signal to travel from the back of the fault, across the fault
width, to the front and thus indicates a fault width of 2b = Cl�t13 ≡ 43.3 km. The time
�t34 = 27.75 s represents the total time for the fault movement (the back end continues
moving after the front has stopped). These data compare quite well with those retrieved via
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Figure 23. (a,b) Overlay of elastic model prediction onto hydrophone data of north and south locations.
(c,d) North and south hydrophone data with re-scaled vertical axis. Red vertical line, arrival time for phase
speed 8000 m s−1; green vertical line, arrival time for phase speed Cs = 3550 m s−1; blue vertical line, arrival
time for phase speed Cl = 1450 m s−1.

Parameter �t1,2,3,4 Gomez (2022) USGS

τ = 2T 27.75 s 25.46 s � 25 → 35 s
2b 43.3 km 22.6 km � 30 km

Table 3. Comparison of two key fault parameters (rupture duration and width) obtained by different methods.
The second column (�t1,2,3,4) reports data obtained by filtering the H11 hydrophone signal and measuring
timings between peaks. The third column reports data obtained by the methods described within Gomez (2022).
The data in the fourth column are estimates derived from the USGS website.

inverse modelling in Gomez (2022). Also, the fault width and timing are approximately
those found in the USGS finite fault model (see figure 26) at https://earthquake.usgs.gov/
earthquakes/eventpage/usp000h1ys/executive.

6.4. The DART buoy data
For the validation of the surface wave calculations against real data we consider the Tohoku
event of March 2011 as covered in Williams et al. (2021). The parameters used in the elastic
model of this paper were changed slightly from those found in Williams et al. (2021) and
are listed in table 4. In Williams et al. (2021) the event was treated as a multi-fault event,
so as to capture the main tsunami. However, this paper uses the elastic model and the
middle term of (3.93), integrated directly to describe the tsunami (mode 01). It was not
necessary to split the fault into a number of faults. By integrating directly the tsunami
could be modelled by a single fault. The main peak of the tsunami is described quite well
by the elastic model, in terms of both timing and amplitude (see figure 27).
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Figure 25. (a) Recorded hydrophone data from H11 at Wake Island for Samoa 2009 event. Note that t = 0
does not correspond to the rupture start time. (b) Signal after application of band-pass filtering, focusing on the
time interval containing the initiation of the main pulse. Data sampling occurs at 250 Hz (one sample every
4 ms).

7. Discussion/summary

We have developed a new mathematical model which combines ground movement
of a rectangular slender fault with the properties of an elastic seabed. The model
derives expressions for the velocity potential in the liquid, along with dilation potential
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Figure 26. The USGS finite fault model dimensions and timings. (a) The USGS finite fault model for Samoa
2009 event with scale at bottom left corner. Rectangular region shown is approximately 30 km × 180 km.
(b) The USGS moment rate function for Samoa 2009 event. The main peak ends between 25 and 35 s.

Parameter Description Value

g Acceleration due to gravity 9.81 m s−2

L Fault half-length 150 km
b Fault half-width 80 km
2T Rupture duration 90 s
h Water depth 5277 m
Cl Speed of sound in water 1500 m s−1

Cs Shear speed in solid 3550 m s−1

Cp Compression speed in solid 6300 m s−1

ζ0 Uplift 6 m
r Distance from epicentre 496.6 km
θ Angle to epicentre 183.555◦
α Strike angle of fault −13◦

Table 4. Constants and parameters used in the calculation of surface elevation at DART buoy 21418 for
Tohoku 2011 event – elastic model. Also refer to Williams et al. (2021).

and rotation potential for the solid. From the liquid velocity potential, we derived
expressions for the dynamic pressure (acoustic–gravity waves) and the surface elevation.
Far-field behaviour is described by envelope functions containing Fresnel integrals.
Elasticity has been shown to be an important consideration when calculating tsunami
and acoustic–gravity wave arrival times (Abdolali et al. 2015, 2019; Kadri 2019). The
model developed in this paper demonstrates the capacity for the acoustic–gravity waves to
travel at speeds near the shear wave velocity for frequencies close to critical. Examination
of hydrophone data for the Sumatra 2004 event at H08N and H08S locations revealed
a leading acoustic signal travelling ahead of the main acoustic–gravity waves at phase
speeds in excess of the shear wave velocity Cs. The elastic model developed in Eyov et al.
(2013) and applied in this paper has Cs as the speed limit for acoustic–gravity waves,
and so does not describe the leading signal in its entirety. Future work could involve
modification to the present model, or development of a new elastic model to remedy
this.
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Figure 27. Surface elevations compared for Tohoku 2011 event at DART buoy 21418.

The tsunami profile is affected by seabed elasticity in shallower water. The inclusion
of elasticity induces a decay into the acoustic–gravity wave signals so that the signals
terminate after some finite time, unlike the rigid, stationary phase model. From the
parameters studied, we find that the signal duration is most affected by the seabed
rigidity, with duration increasing alongside rigidity until the totally rigid condition is
achieved, at which point the signals persist indefinitely. Thus the inclusion of elasticity
helps facilitate a more realistic representation of the pressure field. When the seabed is
elastic there exists the possibility of two surface waves. The first (mode 01) is the usual
tsunami, but the second (mode 00) is an interesting mode which does not propagate for
all frequencies in the elastic case, and never exists in the rigid case. Linear relationships
between mode 00 timing of signal peaks and the fault parameters b (half-width) and τ
(rupture duration) are found and explained. There is also a linear relationship between
uplift velocity and mode 00 amplitude. Information on the fault geometry and timing
is encoded into the mode 00 surface wave, and is also found to be imprinted into the
acoustic–gravity wave signals as well. With appropriate filtering it is possible to extract
this information from the acoustic–gravity wave signal (at least in some instances),
which would be helpful in solving the inverse problem of deriving fault properties from
acoustic/seismic information. Additionally, an improved estimate of the critical cut-off
frequency for acoustic modes n ≥ 2 is presented, which is then used in a new method
for calculating approximate phase velocity curves which does not rely on solving the
dispersion relation (3.44) at each point. The facility to quickly produce approximate phase
velocity curves may help in reducing the computational burden in real-time analysis. In
a side-by-side comparison of the shearing method against the dispersion solving method,
the shearing method was found to be approximately twice as fast. The comparison was
run on the same computer (Intel(R) i9 CPU, 3.60 GHz, 128 GB RAM) and used the same
software (Maple) to produce phase velocity curves for 16 modes with ω = 20 m s−1 and
depth h = 4000 m. An approximation for the mode 00 surface wave cut-off frequency is
also derived. As in many previous studies, the model developed here has a constant water
depth assumption, so while the model can determine the tsunami properties for deep water,
it may fail for varying bathymetry. It remains to develop techniques that can account for
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changes in bathymetry without computation of the entire three-dimensional domain. For
slowly varying bathymetry (i.e. mild slopes where ∇h(x, y, t) � kh) there already exist
techniques in the form of the depth-integrated equations (Sammarco et al. 2013; Abdolali
et al. 2015; Renzi 2017). In the conclusion to Renzi (2017) the authors remark that models
of tsunamigenic events over an elastic seabed do not appear in the literature to date. This
topic is addressed and solved (at least for constant depth) in § 3 of this paper.

In the study of the bottom pressure field for the Sumatra 2004 event covered in § 6,
a curved patch of the Earth’s surface was mapped to a flat x, y plane. An interesting
extension to this work could be to move the perspective of the study into a more global
viewpoint by use of spherical coordinates. In that way far-field predictions may become
more accurate.
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Appendix A. Derivative terms from § 3.4
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Appendix B. Substitutions from § 4.1
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Appendix C. Coefficients from equation (4.5)
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