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ON A GENERALIZATION OF LAPLACE INTEGRALS
TAKASHI ONO

Introduction

Let R™ be the Euclidean space of dimension n > 1 with the standard
inner product {x,y) = > x,y; and the norm |x| = {(x, x)?, S*-! be the
unit sphere {xeR";|x|=1} and dw,_, be the volume element of S»-!
such that S™-*' gets the volume 1. Let £ be an open set of R* containing
S~-! and let f: 2 — R™ be a smooth map. With each integer v > 0, we
shall associate a form f, of degree v on R™ defined by

©.) £O= [ &f@ydo,,, ter.

We then consider the number ¢,(f) which is the mean value of the form
f, on the sphere S™-':

©.2) o) = [ f@don,, vez..

When f is an affine map: R" — R™, the function f, is substantially
the Legendre polynomial of order v and (0.1) is the Laplace integral for
itY. Therefore it is natural to ask questions about forms f, associated
with more general map f.

In this paper, we shall focus our attention on the determination of
the number o¢,(f) for any smooth map f. It will turn out that the main
ingredient of the number ¢,(f) is the number:

©3) N = [, f@Fdo,., =20

Since N,(f) =1 whenever f maps S"! into S™-!, we see that all these
“spherical” maps share the same numbers ¢,(f) for all v e Z, ; hence these
numbers measure a deviation of f from being spherical. We shall consider

Received August 23, 1982,
1) See Appendix for a detailed discussion on this matter.
2) As is easily seen, ¢.(f) =0 if v is odd.
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examples of a family of maps {f,},cx for which {f.,} are Hopf maps and
show that the number N(f,) can be written as a hypergeometric poly-
nomial.

The author would like to mention here that the idea of associating
the number like ¢,(f) with a map f came from his earlier work [7] on
functions over finite fields.

Notation and conventions

The symbols Z, @, R, C denote the set of integers, rational numbers,
real numbers and complex numbers. The set of non-negative real num-
bers is denoted by R.. Weput Z, =ZN R,, Q. = Q N R,. The set of

all multi-indices a = («,, - -+, @,) is Z". We denote by 1, the multi-index
@Q,---,1)ez%. Fore,peZandx=(x, -, X)ER, |a|=0a, + -+ + a,
al=a! - a,), ma=(ma, -, ma,),meZ, ,x*=x...x"a< <

B 1< i< n. For an integer m, « = 0 (m) & « = mB for some p. When
B < a we put

5 =(5) 3

For ae C, ne Z, we use Appell’s notation (¢, n) =ala +1)---(a + n — 1)
for n>1 and (e,0) = 1. For a,b,ceC, the hypergeometric series is
defined by

F(a, b;c; 2) = iiﬁﬂ’_ﬁl EA
n=0 (¢, n) n!

For a smooth function f on an open set of R", we put

gradf= (20, ) = Ty O

ox, = ox, 9x? ox: -

We shall use the following formulas freely:

'
0.4 (% + - +x,) = Z”—“x“, veZ,, x=(x, -, %)ER",
lal=v (X.

when |«a| = 2y, we have ﬁxj — (2ﬁ)!
(0.5) 0=

if @ =28 =0if a0 (2.
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§1. Numbers 5,(4; 2)
Let v >0, £ =1 be integers and let 2 = (4, ---, 4,) € R*. We assume
that dv is even: fv = 2k, ke Z,. We define a number 6,(4;2) €@, by

! (22)!
L1 b(4;2) = v o et
(L.1) {45 2) k! Jiz al(2a/6)!

If, in particular, £ = 2, then k2 = v and

(1.2) b2:) = 3 (2“>xa.
lal=v \ (X

If, 2=1, in (1.2), we have

(1.3) b1 = 3 (*).
lal=v \ &

Using the equality
¢, b = k! (%)

which one verifies easily, we get the following equality as formal power
series in ¢

(1.4 ;(2:)& =1 —4p)”
and, by (1.2), (1.4), we get

(1.5) i; by(2; Dt = n (1 — 42,8)-7 )
In particular, we have

(1.6) 3 b, = (1 — 47"
and hence, by (1.3), (1.6), we get

L.7) 4v<%, V) =152 L)

§2. Review of a mean value theorem in potential theory

Let ¢(x) be a complex valued smooth function defined on an open
set 2 in R™ containing S"-'. Assume that either (i) 4"¢p = 0 for some
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m=1 or (ii) dp = 2p for a constant 2e C. In this situation, a mean
value theorem in potential theory® tells us that

@ Joson = 500

Needless to say, when ¢ is harmonic, then m =1in (i) or 2 =0 in (ii)
and (2.1) is the mean value theorem of Gauss:

[ o@do,. = 0.
By (1.7), (2.2) can also be written as:

IR0 %) (0)
@2 Ln-ﬁ(’“)d S R R L)

If ¢ is a form of even degree ¢ = 2k, then 4™p =0 for m > k and
since 4™p(0) = 0 for m < k, we get from (2.2)

-
o Jow 0= gt Gy

This shows also that

Isn—l p(x)dw,, =0

if the degree of ¢ is odd, a fact which can be proved directly. On the
other hand, in case (ii), we have

[ e@da,, = p(0 )2—————,)% D

= ¢(0) W—__—I—;%)‘?z—_z)/z— J(n-z)/z(\/ ——2)

(2.4)

where J,(2) is the v-th Bessel function.

§3. Mean value of quadratic forms

Let
3.1) o(x) = ;5;Z=;k cpxf

be a form of even degree 2k. By (0.5), (2.3), we have

3) See Courant-Hilbert [3], pp. 2568-261.
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Ak 2 cu(@)l/al)
b«(2; 1,)

3.2 Isn_l o(x)dw,., =

Consider now a diagonal form f(x) = 2x! + -+ + 2,x and put ¢(x)
= f(x)* with /v = 2k. Since we have

!
o) = ¥ Lra= % et
| .

l=» @ 1812k
where
!
(3.3) cp= 211 i p=do, =0if =0 (),
a!
by (3.2), (3.3), we have

1/R)) In%‘,k a2 (Qa)! al)

3.4 J' 'd ey = ta=to
@4 PRICAS b(2; 1,)
From (1.1), (8.4), it follows that
4 . YAV — bu(g; X)_ —
(3.5) f oy Gt Aydo, = PORD Ly = 2k

If, in particular, £ = 2, then v = k£ and we have

b,(2; 2)
b.(2;1,)

(3.6) f A2 + o + A x)de, , =
Sn—1
Consider a quadratic form g(x) on R" and the integral

(37 [, aGrdo,...

Since the change of variable x — sx, s € O(R"), the orthogonal group, does
not change the integral (8.7) and q(x) can be brought to a diagonal form
%% 4+ ... + 4,22 by such a change of variable, (3.6) implies that

do, . — D
(38) [ a@rdon = 2050, vez,,

where 4= (2, ---,4,) denotes arbitrarily ordered eigenvalues of q(x)*.
From (3.8), we get the following equality of formal power series

4) Note that b.(2;2) is a symmetric function of 4;’s.
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(3.9) [ S ee1a@rde, = 3;b.@: e
Sn=1y=0 v=0
Replacing ¢ by ¢/4 in (3.9) and using (1.5), (1.6), we obtain an interesting
equality
(3.10) [ 0 —ta@)rde,., = [T - 28
sn—1 i=1

which makes sense if |¢| is sufficiently small.

§4. f(&) and o,(f)

As in Introduction, let £ be an open set of R” containing S*-! and
let f: 2 — R™ be a smooth map. With each v >0, we associate a form
(&) on R™ of degree » by

(1) 1O =& f@ydo,.,.
We shall denote by o,(f) the mean value of f,(§):
(42) olf) = [ 1@do,.,.

To study the numbers o,(f) simultaneously for all ve Z,, we introduce
the generating function

4.9 of; ) = o

As is easily seen, the series (4.3) converges for any e C and we have
do,.. [ <& f@ydo,.,

] -1 Sr—1

=5t de | <af@ydo..,
»=0 Y. Sn—1 Sm—1

4.4) -y
= [, dou [ 55 0 feyydon,

1,=0

We are thus reduced to compute the integral

(45) [ o@don, with (@) = exp (K& =)
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A simple computation shows that

o

) dp =3, 28 = Ity
Since ¢(0) = 1 and 1 = #*|f(x)} is a constant for the variable & we have,
by (2.4),

5 f®PF

J g PO = 7, o2 1,
and so
(4.7) ofi ) = 3 v(kﬁf;’kg ) e
with
(48) N = [ 1@ do,.,.
Finally, by (4.3), (4.7), we have
(%)

(4.9) o(f) = me(f) s keZ, .

We can also write (4.9) as

_ b(2;1)
(4-10) o(f) = E(z; 1m)Nk(f) s keZ, .

We shall call a map f:2 - R™ spherical if f(S*-') c S™-'. Since
{f(x)]=1, xe 8™, for a spherical map f, we have N(f) = 1 and so

04(2;1)
b(2; 1,)

(4.11) au(f) = -
when f is spherical.

§5. Examples

ExampLE 1. Let f,,pe R, be the map R*— R* defined by f,(x) =
(2} — 23, 2px,x,). When p = +1, f, sends S' onto S'; when p=1, f, is
the map 2 — 2* of C = R* onto itself and when p = —1, f, is the map
z—32:. Now,
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(4@ = [ awrde,

with q(x) = (&, f.(x)) = ‘xA,x where

4=(3 %)

whose eigenvalues are 1, = +/& + o€, 1, = — V& + p%. Therefore, by

Since we have

ﬁ(l — A0 = (1 — Aad) AL + 43D = (1 — 162) 17
-gon e,
we get, by (1.5),
bu(2; ) = BB (e gy

Or we have

(@ = [ awrdo, = &P @+ ey

and

oulf)) = <2’k) [ @+ revrdo,.

Since & 4 & =1 on S!, we have

oulfy = BB @+ (0 — Do,

— _(?];_!kl b)) ( k )(p2 — L grdo, |

As for the last integral, since the eigenvalues of the quadratic form &
are 4 = (0, 1), we have, by (1.7), (3.8),

[ erde,— 5=BOD) _ b0
st b.(2; 1, 4m
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Since we have

[0 - 4207 = (- 497 = 55 6, m &0

we get, by (1.5),

m&&m:@m%

and
olf,) = (2>k) mzj( )(2,7")(2__ ™
(2’;‘k) F( k’2’1 1_‘P)
because

()= cr

Finally, from (4.10) we get
(5.1) N(f) = F(=k, §;1;1 — o) .

ExampLE 2. Let f,,pe R, be the map R'— R* defined by f,(x) =
(2} + x5 — a3 — 2, 20(%x;, — x,x,), 20(xx; + x,x,)). When p = +1, f is the
classical Hopf map sending S* onto S? (see Hopf [5]). Now,

(F) = [ atxrdo,

with g(x) = (&, f,(x)) = ‘xA,x where

3 0 P‘Sa “Psz
A, = 0 & & &
‘0’53 ‘052 “51 0

—sz PES 0 —§

whose eigenvalues are
21 = 22 = Vgiq‘?(gﬁ?g) ) 23 = 24 = _ng"?’z@"‘)ég) .
Therefore, by (1.7), (3.8), we have

i — 025 b(2; 1)
f o AEdoy = B2;1) 20+ D
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Since we have

ﬁl A — 4277 = (1 — 441 + 448" = (1 — 162!
| =14 168 + 1623 + - -,
we get, by (L5),
bu(2; ) = 16%(& + o4& + )" .

Or we have

(Rl = [ alwy*do, = (6 + 016 +

and
oulf) = o [ @+ i@ + )rda,.
T %k 4+ 1 s ?

Since & + & + & =1 on 8%, we have

= 1 2 — 2 2\\k
oull) = gt [ A+ @ = DE + Brdo,
— 1 k k . . , .
= g1 5 (e - o[ @+ erdo..

As for the last integral, since the eigenvalues of the quadratic form
& 4 & are 1= (0,1, 1), we have, by (1.7), (3.8)

2 2\m bm<2; (09 19 1)) m! .
2 d 2 = = m\&, \Us 1, .
Lﬂ & + &) do b2 1) . m) b.(2; (0, 1, 1))

Since we have
ﬁ Q-4 =0—4)"'=1+ 4+ 42+ ...,
i=1

we get, by (1.5), b,(2;(0,1, 1)) = 4™ and

A 1 i ( k ) m!

2k +1 a0\ m /) (3, m)
1
ok + 1 ( 2 ( 09)
Finally, from (4.10) we get
(5.2) N(f,) = F(—k, 1;5; (1 — p%) .
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Appendix. On Legendre polynomials

Let f: R* — R™ be an affine map given by f(x) = Ax 4+ b where A is
an (m X n)-matrix with real coefficients a,;, 1<i<m,1<j<n, and b
is a real m-vector written vertically. Put a, = (a,, - - -, @;,,), the i-th row
of A = (a;;), M = ({a;, a;)), an (m X m)-symmetric real matrix, and Q(£)
= '¢ME, the corresponding quadratic form. We can verify easily that
A= t'Q(&) satisfies dp = Ap for ¢ = exp (&, f(x))). Hence, by (2.4), we

have

SOL = e@do,,

V=0 v! Sn—1
<a'1) o kg2k

= exp (8, b)) 3} 1 AL
and so
A v! .

(a.2) (& = 2. Q(E)F(E, by .

= 4%k (n/2, k) — 2k)!
Denote by H the algebraic set in R™ defined by

H={{eR"; Q) =<0y -1}
and put z = (§, b). Then, for & H, we have

G v
O = % Fri@miz Be — 20!
L (2 LB (21
=R ()

__v._ + }_ ; _ri ; _32_:1‘>

(22 _ 1)1:2”» 2k

(a.3) = z”F<~

where the equality between two hypergeometric series follows from a
formula of quadratic transformations® and the last eguality is a well-
known relation of the Legendre polynomial for R*-! of order v and the
hypergeometric series®. On equating the first and the last terms of (a.3),
we get

. 5) See Ma;;gnus-Oberhettinger-Soni [61, p. 50, line 3 from the bottom.
6) See Hochstadt [4], p. 183, line 8.
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(a4 P& 5) = [ <6 Ax+ bydo,,, ¢eH,

which is substantially the Laplace integral for the Legendre polynomials.
If, in particular, m =n + 1,

0 0---0 1
1 0---0 0
A= . , b=1.
lo 0..:1J 0
and & = --- =§,,, =0, then & — £ =1 for £ H and we get

P»,n+1($l) = fSn_l (51 + \/é?:vi x1)vdwn—1 s
the Laplace integral in its original form?.
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