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ON A GENERALIZATION OF LAPLACE INTEGRALS

TAKASHI ONO

Introduction

Let Rn be the Euclidean space of dimension n I> 1 with the standard

inner product <x, y`) = 2 Λ<yt and the norm \x\ = (x, x}1/2, S71'1 be the

unit sphere {x eRn; \x\ = 1} and dωn_x be the volume element of Sn~1

such that S71'1 gets the volume 1. Let Ω be an open set of Rn containing

S71'1 and let /: Ω -> Rm be a smooth map. With each integer v ^> 0, we

shall associate a form /„ of degree v on Rm defined by

(0.1) /„(£) = ί <f, fW f 6

We then consider the number συ(f) which is the mean value of the form
/„ on the sphere Sm-1:

(0.2) σv(f)=\

When / is an affine map: Rn—>Rm, the function fu is substantially

the Legendre polynomial of order v and (0.1) is the Laplace integral for

it^. Therefore it is natural to ask questions about forms /„ associated

with more general map /.

In this paper, we shall focus our attention on the determination of

the number σXf) for any smooth map /. It will turn out that the main

ingredient of the number σXf) is the number:

(0.3) Nk(f) = ί | /(*)Pdω n . x , v = 2k*> .

Since Nk(f) = 1 whenever / maps S"-1 into Sm~\ we see that all these

"spherical" maps share the same numbers σXf) for all v e Z+ hence these

numbers measure a deviation of / from being spherical. We shall consider

Received August 23, 1982.
1) See Appendix for a detailed discussion on this matter.
2) As is easily seen, σv(f) = 0 if u is odd.
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184 TAKASHI ONO

examples of a family of maps {fp}peR for which {/±1} are Hopf maps and

show that the number Nk(fp) can be written as a hypergeometric poly-

nomial.

The author would like to mention here that the idea of associating

the number like σv(f) with a map / came from his earlier work [7] on

functions over finite fields.

Notation and conventions

The symbols Z, Q, R, C denote the set of integers, rational numbers,

real numbers and complex numbers. The set of non-negative real num-

bers is denoted by R+. We put Z+ = Z Π R+, Q+ = Q Π Λ+. The set of

all multi-indices a = (au , an) is Z+. We denote by ln the multi-index

(1, . , 1) 6 Z% For a,βeZn

+ and x = (xl9 , xn) e Rn,\a\ = a, + + an9

aϊ = ax\ - aj, ma = (mau , man), m e Z+, xa = xl1 #;», α ^ j8 & <xt ̂

βi, 1 <I ί ^ n. For an integer m, α = 0 (m) & a — mβ for some 3̂. When

β <; α we put

/ α \ def _ _ _ θ ! = ( a Λ (an\

\β) β\(a-β)l \βj \βj

For aeC, neZ+ we use AppelΓs notation (α, 7i) = a(a + 1) (o + n — 1)

for 7i ^ 1 and (α, 0) = 1. For a, b, c e C, the hypergeometric series is

defined by

For a smooth function / on an open set of Rn, we put

A f + + .
dx\ dxl

We shall use the following formulas freely:

(0.4) ( * , + . . . + χny = 2 -^-x", v e Z+ , x = (xu • • , xn) e Rn ,

when |α | = 2v, we have ^ =
(0.5) v! β\

if α = 2j9, = 0 if α ^ 0 (2) .
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LAPLACE INTEGRALS 135

§1. Numbers bv(£;λ)

Let v ̂  0, I ^ 1 be integers and let λ = (λ19 , λn) e Rn. We assume
that lv is even: £v = 2k, keZ+. We define a number bv(S; A) e Q+ by

(1.1) K*J) = 4 Σ -

If, in particular, i = 2, then k = v and

(1.2) 6,(2; A) = Σ (

If, ^ = 1M in (1.2), we have

(1.3) 6.(2; 1 J = Σ

Using the equality

which one verifies easily, we get the following equality as formal power
series in t

(1.4) Σ (ί
*-0 \ ft

and, by (1.2), (1.4), we get

(1.5) Σ 6 , ( 2 ; λ ) ί - = Π ( l -
v=0 i=l

In particular, we have

(1.6) Σ by(2;ln)r = (1 -

and hence, by (1.3), (1.6), we get

(1.7)

§ 2. Review of a mean value theorem in potential theory

Let φ(x) be a complex valued smooth function defined on an open
set Ω in Rn containing Sn~\ Assume that either (i) Δmφ = 0 for some
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136 TAKASHI ONO

m >̂ 1 or (ii) Δφ = λφ for a constant λe C. In this situation, a mean

value theorem in potential theory3) tells us that

ί **^ =
Jsn-i (μβ, )

Needless to say, when φ is harmonic, then m = 1 in (i) or λ = 0 in (ii)

and (2.1) is the mean value theorem of Gauss:

f φ(x)dωn.1 = φ(0) .

By (1.7), (2.2) can also be written as:

(2.2) f φyd^^t^M-.
Jsn-i V=Q (vl)2bX2; ln)

If φ is a form of even degree t — 2k, then Δmψ = 0 for m > k and

since Δmψ(0) = 0 for m < k, we get from (2.2)

f \)2bk(2;ln)

This shows also that

f φ(x)dωn^ = 0

if the degree of φ is odd, a fact which can be proved directly. On the

other hand, in case (ii), we have

where Jv(z) is the v-th Bessel function.

§3. Mean value of quadratic forms

Let

(3.1) φ(x)= Σ cp'
\β\=2k

be a form of even degree 2k. By (0.5), (2.3), we have

3) See Courant-Hilbert [3], pp. 258-261.
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LAPLACE INTEGRALS 137

C (W) Σ cJi2a)\la\)
(3.2) Ψ{x)dωn.1 = •-'-*

J 5 " " 1 bk(2;ln)

Consider now a diagonal form f(x) = λ^i + + λnx
ι

n and put φ(x)

= f(x)" with tv = 2k. Since we have

φ(x) = Σ
\σ\

Σ
8|2fc

where

(3.3) Co = ^-λa if β = £σ, =0 if
σl

by (3.2), (3.3), we have

(1/*!) Σ (»` lσϊ)A

(3.4) ί f(x)vdωn
J s °k\*, K)

From (1.1), (3.4), it follows that

(3.5) ί {λxx{ + + λnx
e

nydωn^ - JϊMlΆ- ,

If, in particular, t = 2, then v = k and we have

(3.6) L - 1

( A ^ + ••• +*»**•' " A r 9 '6,(2; ln)

Consider a quadratic form g(x) on Rn and the integral

(3.7) f

Since the change of variable x ι-» sx, s e 0(Rn), the orthogonal group, does

not change the integral (3.7) and q(x) can be brought to a diagonal form

λxx\ + + λnx\ by such a change of variable, (3.6) implies that

(3.8) f q(x)
v(2;ln)

veZ+,

where /I = (λ19 - - ,λn) denotes arbitrarily ordered eigenvalues of g(x)4).

From (3.8), we get the following equality of formal power series

4) Note that &*(2;Λ) is a symmetric function of Vs.
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138 TAKASHI ONO

(3.9) I 2] bX2; ln)q(xytvdωn^ί = Σ b»(2'> *)?

Replacing t by t/4 in (3.9) and using (1.5), (1.6), we obtain an interesting

equality

(3.10) ί (1 - tq(x)Ynβdωn^ = Π (1 — ^ ) ~ 1 / 2

which makes sense if | ί | is sufficiently small.

§4. fXξ) and σXf)

As in Introduction, let Ω be an open set of Rn containing Sn~1 and

let f:Ω-+Rm be a smooth map. With each v ;> 0, we associate a form

/v(f) on Rm of degree v by

(4.1) Λ(f)= f Xξj(x)ydωn^.

We shall denote by σ v(/) the mean value of /v(f):

(4.2) <7υ(/) = ί fXξ)dωm.x .

To study the numbers σXf) simultaneously for all veZ+, we introduce

the generating function

(4.3) σ(f; t) = Σ>c
v\

A s i s e a s i l y s e e n , t h e s e r i e s (4 .3) c o n v e r g e s f o r a n y teC a n d w e h a v e

°° tv C Γ
v = 0 VI J Sm~1 J Sn~1

(4.4)
f - 1

= I dcyn_! I exp(ί<f,/(Λ:)»(iωm.1 .

We are thus reduced to compute the integral

(4.5) f φ(ξ)dωm.1 with 9<£) = exp (*<£,/(*)».
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A simple computation shows that

(4.6) Δφ=±^ = ?\f{x)?φ.

Since φ(0) = 1 and λ = f\f(x)f is a constant for the variable f, we have,

by (2.4),

and so

(4.7) σ(f; t) =

with

(4.8) Nt(f) =

Finally, by (4.3), (4.7), we have

/2k\

(4.9) σ»(/) = ) f e / Nk(f) , keZ+.
Dk\*> Lm)

We can also write (4.9) as

(4.10) <%(/) = AgiiLjV^/), k 6 Z+ .

We shall call a map f:Ω->Rm spherical if f{Sn~ι) a Sm~\ Since

I/O*;)] = 1, x e Sn~\ for a spherical map /, we have Nk(f) = 1 and so

<4 π) - ( 0=wd
when / is spherical.

§ 5. Examples

EXAMPLE 1. Let fp9 peR, be the map R2 -> R2 defined by fp(x) ==

(x\ - xl 2pxίx2). When p = ±1, fp sends S1 onto S1; when p = 1, fp is

the map z->z2 of C — R2 onto itself and when /> = —l,fp is the map

£ -> 02. NOW,
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140 TAKASHI ONO

with q(x) = <f, / (̂x)> = 'Λ A^X where

whose eigenvalues are λ, = VξI + p2ξI ^ = - VξI + pψ2. Therefore, by

(1.7), (3.8), we have

ί a(xYd bX2;λ) - bv{2;λ)

Jsi ' ωi 6,(2; 12) 4υ

Since we have

ΓT /I ΛΊ A-ifi /1 ΛΊ Λ-W1 _l_ A `i A-1/2 (Λ 1fi22/2W2

ϊ = l

we get, by (1.5),

M2;i) = -^p-(^ +

Or we have

Γ (~ k)

and

^! J s1

Since f? + fI = 1 on S1, we have

(~» ̂ ) f

As for the last integral, since the eigenvalues of the quadratic form ξl

are λ = (0,1), we have, by (1.7), (3.8),

f-tfo, - M2; (0,1)) _ 6m(2;(0,p)
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Since we have

Π /1 A 5 /\-1/2 (Λ /lΛ-1/2 V 1 / I rvΛ ^ &
V1 — *λzι) — vi — 4r; — Z J V2̀> m ) r~ >

i=l m=0 m!

we get, by (1.5),

ml

and

α M * / I? \ (1
. #v I ^—i I /v 1 V 9 J '

because

\ m / ml

Finally, from (4.10) we get

(5.1) Nk(fp) = F(-k,i;l;l-p>).

EXAMPLE 2. Let fp, peR, be the map R* -> i?3 defined by fp(x) =

(x\ + x\ — x\ — xl, 2p(x2x3 — xtxχ 2p(xίx3 + x2x4)). When p = ± 1 , / is the

classical Hopf map sending S3 onto S2 (see Hopf [5]). Now,

with g(x) = (ft fp(x)) ~ *xApx where

(
ft 0 pζ3 —psz\

0 ft pft pft
jθf3 pft —ft 0

- p f t /oft 0 - f t -

whose eigenvalues are

χx = χ2 =. vfj 4- ^2(f̂  -(- f0 ? ^3 — ̂ 4 = — yfi

Therefore, by (1.7), (3.8), we have
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Since we have

Π (1 - 4JM)-1/2 = (1 - 4λit)'Kl + ±UYι

= l + ι§λ\? + ι&λ\ϋ> +

we get, by (1.5),

6M(2; λ) = 16*(£ + ^(?1 + ξ

Or we have

' \ Γ \2krJ 1

and

1 f
2k + 1 J s*

Since ξ* + ξl + f3
2 = 1 on S2, we have

1 Γ
9 2k + 1 Js2 ^

ΣΣ ( ) ( ^ - Dm f
o\ m / Js

^ΓVT Σ (
2k + 1 m=o\ m

As for the last integral, since the eigenvalues of the quadratic form

ξl + ζl are λ = (0,1,1), we have, by (1.7), (3.8)

L ; (0, 1, 1)) Jΐl.

6W(2;18) 4w(f, m)

Since we have

Π (1 - 4^^)~1/2 = (1 - 40"1 = 1 + 4ί +

we get, by (1.5), &ro(2; (0,1,1)) = 4ro and

λ \ ml, n 1 4i / k \ m
2/J + 1 m-o \ m / (f, m)

Finally, from (4.10) we get

(5.2)
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Appendix. On Legendre polynomials

Let /: Rn —• Rm be an affine map given by f(x) = Ax + b where A is

an (m X n)-matrix with real coefficients aij9 1 ^ / ^ m, 1 <^j <> n, and b

is a real m-vector written vertically. Put at = (aίίy , aίn), the i-th row

of A = (ai3), M — ((di, dj}), an (m X m)-symmetric real matrix, and Q(ξ)

the corresponding quadratic form. We can verify easily that

satisfies Δφ = ^ for p = exp (ί<f, /(x)». Hence, by (2.4), we

have

(a l)

and so

O/2]

(a.2) /,(f) Σ .ϊΓΓΓΊoΐi?

*=o Aκk\(nj2, k){v

Denote by H the algebraic set in Rm defined by

H={ξeRm; Q(ξ) = <?, 6>2 - 1}

and put z = <£, ί>>. Then, for | e H, we have

^ (z2 — lYz*~-'c

k\(l2k)(2k)\K '

(nl2,k)k\
±y

where the equality between two hypergeometric series follows from a

formula of quadratic transformations^ and the last equality is a well-

known relation of the Legendre polynomial for R71^1 of order v and the

hypergeometric series6). On equating the first and the last terms of (a.3),

we get

5) See Magnus-Oberhettinger-Soni [6], p. 50, line 3 from the bottom.
6) See Hochstadt [4], p. 183, line 8.
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(a.4)
Js»-i

Ax f e

which is substantially the Laplace integral for the Legendre polynomials.
If, in particular, m = n + 1,

A =

0 0 ••• 01
1 0 ••• 0

0 0 ••• 1

b =

and ξ3 = = £B+1 = 0, then ξl — ξl = 1 for ξ e H and we get

= f
the Laplace integral in its original form7).
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