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Q, SPACES ON RIEMANN SURFACES

RAUNO AULASKARI, YUZAN HE, JUHA RISTIOJA AND RUHAN ZHAO

ABsTRACT.  We study the function spaces Q,(R) defined on a Riemann surface R,
which were earlier introduced in the unit disk of the complex plane. The nesting prop-
erty Qp(R) € Qq(R) for 0 < p < g < oo isshown in case of arbitrary hyperbolic Rie-
mann surfaces. Further, it is proved that the classical Dirichlet space AD(R) C Qp(R)
forany p, 0 < p < oo, thus sharpening T. Metzger’s well-known result AD(R) C
BMOA(R). Also the first author’s result AD(R) € VMOA(R) for aregular Riemann
surface Ris sharpened by showing that, infact, AD(R) € Qpo(R) forall p,0 < p < co.
The relationships between Qu(R) and various generalizations of the Bloch space on R
are considered. Finally we show that Qp(R) is a Banach space for 0 < p < oo.

1. Introduction. LetRbean openRiemann surface havingaGreen'sfunction, i.e.,
R ¢ Og. Denote the Green’s function on R with singularity at o by gr(w, o). Let A(R)
denote the collection of all functions analytic on R. For 0 < p < oo, we define

Q(R) = {F e AR [Fl3m = sup [ IF'(W)PRw, o) cwdd < o)

and
QuoR) = {F € AR : lim. [ [F(w)gE(w, @) el = 0},

wheredRistheideal boundary of Rand dwdw = 2 dudvfor alocal parameter w = u+iv.
For theunitdisc A = {z € C : |z < 1}, Qy(A) and Qpo(A) have been defined and
studied in [4] and [6]. It is proved in [4] that Qp(8) = B(A) and Quo(2) = Bo(2) for
1 < p < oo. Earlier, in [13] and [14], it was proved that Q>(A) = B(A) and Qx0(8) =
Bo(A), respectively. Recall that the Bloch space B(4A) and the little Bloch space Bo(A)
are defined asfollows:

B@) = {f cA®): |fllg = ggflf’(z)l(l— |2?) < oo}

and
Bo(&) = {f € A@): lim ["@(L~ |2 = 0}.

Itisprovedin [6] that, for 0 < py < p2 < 1, Qp,(A) C Qp, ().
f
Forp=l1landR= A,itisknownthat Qi(R) = BMOA(R) and Q1 0(R) = VMOA(R)
and so this has been taken as the definition of BMOA and VMOA on a Riemann surface
R (cf. [9, 10, 1]). BMO-spaces of harmonic functions on Riemann surfaces have been

Received by the editors November 16, 1996; revised September 25, 1997.
AMS subject classification: 30D45, 30D50, 30F35.
(© Canadian Mathematical Society 1998.

449

https://doi.org/10.4153/CJM-1998-024-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-024-4

450 R. AULASKARI, Y. HE, J. RISTIOJA AND R. ZHAO

considered by Y. Gotoh in [7]. In [5], the relationships between Q2(R), Q20(R) and var-
ious generalizations of the Bloch space on Riemann surfaces have been studied. Before
introducing these results, we first look at some basic facts on hyperbolic geometry.

Let R be a Riemann surface such that R ¢ Og. It is well known that the universal
covering surface of Ris the unit disc A. Let \z(2) = 1/(1 — |Z]?) be the density of the
hyperbolic distancein A. Then the hyperbolic distance between two pointszanda in A
is given by

da(z, @) = inf{ﬂ Aa(Q)]d¢| - visacurvein Afromato z}.

Now let 7: A — R denote the universal covering mapping, and let w, « € R. We define
the hyperbolic distance between w and o on R by

dr(w, @) = inf{da(z,@) : 7(2) = wand 7(a) = o}.
Thus the density of dr at the point « is given by
Ar(@) = inf{Aa(d) : m(@) = a}.

We can generalize the Bloch space and the little Bloch space onto R as follows:

B(R) = [F €AR) : |[Fllgr = Slejg |§R((Z))| < oo}
and -
Bo(R) = {F €AR): lim |AR((Z))| - 0}.

To introduce another kind of generalization of the Bloch space on R, we note that if
R is a Riemann surface with Green’s function gr(w, «), then, by using local coordinates
in aneighborhood of «, we can define the Robin’s constant Yr(«) by

. 1
Yr(a) = lim (gR(W, o) —log —)
W—a |W — al
Let cr(r) = exp(—r(e)) bethe capacity density of Rat a. Itisknownthat if F € A(R),

then |F/(«)| / cr(e) is aconformal invariant (cf., for example, [12]). Thus we can define
the spaces CB(R) and CBy(R) by

CB(R) = [F € AR [IFlca = up IEREZ;I < Oo}

and ,
CBo(R) = [F €AR) : lim m = O}.

a—0R CR((X) h

It iseasy to check that, for R = A, both B(R) (Bo(R)) and CB(R) (CBo(R)) coincidewith
the Bloch space B(A) (the little Bloch space Bo(4)).
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Thefollowing inclusions are givenin [5],

1.1) BMOA(R) € Qx(R) € CB(R) € B(R)
and
1.2 VMOA(R) € Q20(R) € CBo(R) € Bo(R.

(Note that in [5], Q2(R) and Q2,0(R) were denoted by BMOA(R, m) and VMOA(R, m),
respectively.) It turnsout that, on general RiemannsurfacesR, Qx(R) (Q20(R)) andCB(R)
(CBo(R)) do not always coincidewith B(R) (Bo(R)). ThereisaRiemann surfaceR ¢ Og
suchthat CB(R) # B(R) and Q»(R) # B(R) ([5, Theorem 4.2 and Theorem 7.2]). There
is also another Riemann surface R such that CBo(R) # Bo(R) and Q.0(R) # Bo(R) ([5,
Theorem 7.3)).

In this paper we study the relations between Qu(R) and various generalizations of the
Bloch spaces on Riemann surfaces as well as BMOA(R). One of our main resultsis to
generalize the inclusion relations (1.1) and (1.2) to Qp(R), Qq(R) and Quo(R), Qqo(R),
by showing the nesting properties

(1.3) Qp(R) € Qu(R),  Qpo(R) € Qqo(R)
and the inclusions

(1.4) Q(R) CCB(R),  Qpo(R) € CBo(R)
for 0 < p < g < 0. By (1.1) and (1.2) we have also proved
(1.5 QR CBR), Qo(R) C Bo(R)

for 0 < p < oo. Thesewill be proved in Section 2 and Section 4, respectively. Themain
result in Section 3 sharpens T. Metzger’s result

AD(R) C BMOA(R)
(cf. [9, Theorem 1]) showing that, in fact,
(1.6) AD(R) C Qp(R)

for al p, 0 < p < oo. Further, the first author’s result AD(R) C VMOA(R) for regular
Riemann surfaces R (cf. [1, Theorem 1(a)]) is sharpened by showing

1.7) AD(R) C Qpo(R)

foral p, 0 < p < oo, in caseof regular Riemann surfacesR. In Section 5, we will prove
that for 0 < p < oo, Qu(R) is aBanach space and Q, o(R) is a closed subspace of Qp(R).
We will also give acriterion for Qu(R) by regular exhaustions of R.

Finally we note that in [2] al these inclusions (1.3)—(1.7) have been proved by using
adifferent technique.
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2. Qu(R) € Qy(R). In this section, we show the nesting properties of the spaces
Qp(R) and Qp0(R) asafunction of parameter valuesp. In[2, Theorem 4] different proofs
for these nesting properties are given. For proving theinclusionswe need several lemmas
which are derived in the following.

First we show that 1 — et < %tpfort >0and0<p<1llIft>1thenl—et<
1< ,l)tp. LetO<t<landf(t) = %tp—(l—e—‘).Thenf'(t) =tl-egt>1-et>0,
and thus f(t) isincreasingwhen 0 < t < 1. Sincef(0) = Owe get f(t) > 0, and so
l-et< %tp for 0 < t < 1. By using thiswe get the first lemma

LEMMA 2.1. Let Rbea Riemann surface, let R ¢ Og and let 0 < p < 1. Then, for
FeAR),

p
[ IF (@) gr(w, ) i < % [ IF (@) gBw, ) i

PrROCF. By [8, Lemma 2] we have
F'(W)[2grW, o) dwdw < [ |F/(w)[?(1 — e 2%RW2) dw dw
k! A

and using the above consideration

y _ X , _
/R |F(w)[2gr(W, o) dwdiW < F-/R |F' () 2gR(W, o) dw dW. .

This givesasacorollary
COROLLARY 2.2.  Qp(R) € BMOA(R) for all p,0 < p < 1.
By theinequality 1 — et < tfort > 0 and [8, Lemma 2] we get

PROPOSITION 2.3.  Jr|F'(W)[Pgr(W, @) dwdw ~ fg|F'(W)[?(1 — e 2%&Wa)) dwdw
for any positive integer k.

In the above, we use the notation a ~ b to denote comparability of the quantities,
i.e., there are absolute positive constants ¢, ¢, satisfying cib < a < c¢yb. For proving
the nesting properties of the spaces Qu(R), Qq(R) and Qu0(R), Qqo(R) we first derive
area integral estimates for parameter values p and q. By using a different method these
inequalities with different constant factors have been shownin [2, Theorem 2].

LEMMA 2.4. Let Rbea Riemann surface, let R ¢ Og andlet 0 < p < q < oo.
Then, for F € A(R),

[ IF W)[2g(w, o) dw W < Goq [ |F'(W)[?gR(w, @) dwalw,

wherecpq = 24P-9H8 2 for 1 < g <ooandgyq = P for 0<q < 1.

ProOF. Wewill provetheresult for the casewhere Risacompact bordered Riemann
surface. For the general case, the conclusion follows by taking a regular exhaustion of
R.
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LetF € AR) andlet Ry, = {w € R: gr(w, @) > 1}. Then
1 2.0 v / 2P YY)
2.1) /R i, [F PG, o) dweld < /R ., [F W) GR(w, )

Let B.(«) beadisk in Ry, with center at o and radius e, and let Ry . = Ry \ B(c).
By using Green's formula we get

[gR(W, )A(|F(W) — F(e)?) — [F(W) — F() PAGR(W, o) | dw dw
Ri ¢

aga(w, 9|F(w) — F(o)[?
SR ) _ o IE) — Pl s

2.2)
=2 /a o {|F(W) — F(o)2

where A denotes the Laplacian, a% differentiation in the inner normal direction and ds

arc length measure on dR; .. By computing we get
AF(W) — F(e)* = 4F'w)[?
and
AGR(W, @) = d(d — gt *W, a)| Var(W, @),
where V denotes the gradient operator. Further,

agg(w, a)

an — qggﬁl(W, a) agR(Wl C() — agR(Wl C()

on on

forw € dRy 4.
Let Hy o (W) be the least harmonic majorant of |F(w) — F(a)[?> on Ry.. Let gi(w, @)
be the conjugate of gr(w, ). Then

exphr(w, a) = explgr(W, @) +igr(W, )]
is ameromorphic function with asimple pole at «. Since
b1.0(W) = |(F(W) — F(@)) expha(w, )| = |F(w) — F(a) 2?9
is a subharmonic function on R ,, and
$1,4(W) = E|F(W) — F()?
for w € dRy , we get by the maximum principle
(2.3) IF(W) — F(a)]? < €Hy o(w)e 2%

forw € Ry 4.

Let gr, . (W, ) be a Green's function of Ry, with logarithmic singularity at . Now
AQr,, (W, @) = 0inRy, \ {a} and gr,, (W, @) = Ofor w € 0Ry, and similar to the proof
in[5, Lemma2.1] we get
(2.9

2 [P Pge, (o) dwaw = == [ [Fw) — F(a)
T JRya JORy o

|2 agRlvo, (Wl a)
27 JoR on

ds = Hy ().
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Fort > 0,let S, = {w € R: gr(w, ) = t}. Since gr(w, ®) = t on §, we have
dt = agrf dn. Further, in the conclusion below we use |Vgr(W, o)|> = (dgr(W, o) /dn)?
forw € S . Taking the limit as  tends to zero, (2.2) becomes
(2.5)

() = 4 /R 1 |F’ ()| 2g%(w, ) dw dw

= [ IF0) — F(@)Agiw, o) dwali

v2 [0 Flo 2R _ g, ) F0 —F@F
=a@-1) [ IFw) - F(a)|29R* (W, )| Vg, o) 2wl

. 2
+2q [ FW) — F(o) [, TR _FEL g

=d@-1) /RM IF(w) — F)Pg} 2(w, )] Var(W, )| dw i

ZOgR(W C() d _ 2

o0gr(W, o) _
+2g /aR [F(w) — Fo) P =52 ds+ 4/RM |F/(w)[? dwdw,

where we have used the equality

_ 9|F(w) — F(e)|?
/ 2 _
2 /R |F ()2 dw dW = /a W

obtained by Green’s formula.
Wefirst supposethat 1 < g < co. Then, by LemmaZ2.1, (2.3), (2.4) and theinequality
gRLO((Wl Cl/) < gR(W! Cl’),
(2.6)
l10(0) <A@ = DE [ HioWgE *w, )| Var(w, o) e dwati
+ 4qrH1 o(a) + 4 / |F/(w)|? dw dw
< ZQ(q 1)62 / (/ H a( )agR(W a) dS) 9272(W, a)e—zgR(W,DC) dt
+dq [ |FW)gr,, (W, 0)dwdW+4 | /(W) gh(w, o) dwdi
%0 2p _
_ q—2,5—2t = / 2P
< 409(Q— DerHye(a) [ 1% dt+4g . e, IF0)PGR,, (w, ) i
+4 [ |Fw)Pghw, o) dwdw
o Rl‘O(
<T@+ De [ |FWl gk, (W, o) dwdw
¥ 4q2—p/ |F’(w)|zgp(w o) dwdw+4 [ |F/(w)*gh(w, o) dwaw
p Rl.o( R ' K Rl.a R ’

< 23+p—qwe2 /R IF' (W) 2GR (W, &) dwdW,
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since 23P-all&d) > 228 > 4. For 0 < q < 1 we have, by Lemma 2.1, (2.4) and the
inequality gr, (W, @) < gr(W, @), the estimate

l1(c) < darHyo(e) +4 [ F/(w)[? dwdw
v Rl
<d4q [ [FW)Pgr,, (W, a)dwdi+4 [ |F/w)Pghw, o) dwdw
2.7) .

& / 2P — / 2P vy
< 4a; /Rm||:(w)| BW, oc)dwdw+4/RM |F ()] 20B (W, or) dw W

2+p9 / 2P —

<2 ID_/RM|F(w)| R, o) cw i,

sinceq—1<0.
Combining (2.1) and (2.6) we get for 1 < q < oo,

I WPgw, o) dwaw = [ e, IF PG, o) dw
2.9) + [, IFW)giw, o) dwiw
< Zl’r”‘qwe2 / |F’(w)|*gR(w, or) dw dw
P R
and similarly combining (2.1) and (2.7), for 0 < g < 1,
|1 IF ) Pglw, @) dweliw < ng [ IF () Pghw, @) dw .
This proves the lemma. ]

Thusthe nesting property of the Q,(R) spacesis adirect consequenceof Lemma2.4.

THEOREM 2.5. Let RbeaRiemannsurface, R ¢ Og, andlet 0 < p < g < co. Then
() QR € (R,
(i) Qpo(R) € Qqo(R).

We note that a different proof of this result is shownin [2, Theorem 4].

3. AD(R) € Qp(R). In this section we will sharpen T. Metzger’s result that the
classical Dirichlet space AD(R) = {F € A(R) : Jg|F'(W)|2dwdw < oo} isincluded in
BMOA(R) (cf. [9, Theorem 1]) by proving

AD(R) C Qp(R)

for any p, 0 < p < oo. Thefirst author proved in [1, Theorem 1(a)] that AD(R) C
VMOA(R) for aregular Riemann surface R. Also thisresult is strengthened by using the

Qp,0(R) spaces.
We are now ready to prove
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THEOREM 3.1.  AD(R) C Qu(R) for anyp, 0 < p < 0.

Proor. Applying Theorem 2.5for 1 = p < q < oo weget BMOA(R) C Qy4(R). By
T. Metzger'sresult AD(R) € BMOA(R) [9, Theorem 1] we have

3.1) AD(R) € Qu(R)

forl <qg< oo.
So we can concentrateonthe case0 < p < 1. By (2.5) wegetincaseof Ry, = {w €
R: gr(w, o) > 1},

4 [, IF/W)Pghw, o) dwalw
. <pp—1) [, [FW) — F@)Pg% *(w, )| Varw, o)|? dwdi
3.2 .
+aprHa(e) +4 [ [FW)? dwdw
< dprHyo(@) +4 [ |F/(w)]? dwdw.

The latter inequality follows because p — 1 < 0. If now F € AD(R), then
Jr|F/(W)|? dwdw = M < oo. On the other hand, by T. Metzger'sresult F € BMOA(R)
and (2.4),

1 _
Hio(@) = = [ |F/W)[0r,, (w, @) dwdw
(3.3) 7{ L

< —/ IF(w)[2gr(W, &) dwdW < K < 00

m JR
foral o € R By (3.2) and (3.3),
(3.4) [ IFW)PgRw, o) dwdw < prK +M
v Rl

foral « € R
Further, trivialy

! 2P W / 2 —
3.5 /R\Rm |F/(w) PR (w, o) dwetw < [ o, [F O dwaim
< /R|F'(W)|2dwdv_v: M.

Thus, by (3.4) and (3.5),

sup / |F/(w)|2gR(w, @) dwdw < priK + 2M,
a€eR R

and hence F € Qp(R). Combining this result with (3.1) we have
AD(R) C Qp(R

for all p, 0 < p < oo. Thetheoremiis proved. L]
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REMARK. Theorem 3.1 sharpens T. Metzger's result AD(R) € BMOA(R), since
evenin the caseof theunit disk A, Qp(A) C BMOA(A), for 0 < p < 1(cf. [6, Theorem 2
f

and Corollary 3]).
We recall that Ris aregular Riemann surfaceif for eachw € R,

Y o )= 0

Otherwise, we say that R is a non-regular Riemann surface. The first author proved that
AD(R) C VMOA(R) for regular Riemann surfaces. He also showed that VMOA(R) con-
tains only constant functionsfor non-regular Riemann surfaces. Thisresult isgeneralized
to the space Qo(R) in [5, Theorem 2.5]. It is a'so true for Qpo(R) for 0 < p < oo asthe
next theorem shows. Since even for the unit disk A, Qpo(4) g VMOA(A) as0 < p < 1,

the case (i) of the below theorem sharpens the first author’s result [1, Theorem 1(a)],
and by Theorem 2.5(ii) the case (ii) generalizes[1, Theorem 1(b)]. Finally we note that
Theorem 3.2(i) has been proved in [2, Theorem 7] by using a different technique.

THEOREM 3.2. Let0 < p < oo. Then
(i) if Risaregular Riemann surface, AD(R) C Quo(R),
(if) if Risanon-regular Riemann surface, Qpo(R) contains only constant functions.

ProoF. (i) For1l < p < oo thisis adirect conseguence of Theorem 2.5(ii) and
[1, Theorem 1(a)], since Q10(R) = VMOA(R). Thereforelet 0 < p < 1 and let ¢,
0 < e < 1, bearbitrary but fixed during the consideration. If F € AD(R), then, by (3.2)
and (3.3),

(3.6)
4  IF/ () ghw, @) dwdw < 4p JLIF W)[Pgr(w, o)) dwatw +4 [ _ IF) dwaw,

where Ry, = {w € R: gr(w, &) > 1}. By [1, Theorem 1(a)] we know that the integral
Jr |F"(W)|?gr(w, or) dw dw tends to 0 as « tendsto OR. Since Ris aregular Riemann sur-
face, Ry~ asacompact set tendsto dR when « tends to R. Hence Jr, , |[F/(W)[* dwdw —
0for « — 0R. Thus, by (3.6),

(3.7) ( /R |F'(w) 2gR(W, ) dw dW < e

asa € R\ Ky, where K; isacompact subset of R Let R. = {w € R | gr(w, ) >
(¢/M)MP}, where [z |[F'(w)[? dwdw = M. We can supposethat ¢ /M < 1. Then

! 2P = _ & , 2 _
. Jrw IF 0P GRW, o) dwelw < o [ |F(w)[? dwelw
< ﬁ/R|F'(w)|2dwdv—v= % ‘M =e.

Now R.\ Ry« isacompact setand R. \ Ry tendsto 0Ras « tendsto dR. SinceF € AD(R),
there existsacompact set Asuch that J a |F’(w)|? dwdw < . On the other hand, thereis
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acompact set K, suchthat when oo € R\ Ky, then R. \ R, C R\ A. Thus, for « € R\ K,

1w 2P — PN —
3.9 -/F{\Rl‘a [F'(W)[“gr(W, a)deWS./R\RLa |F'(w)|? dw dw
. o 3
S/R\A“: (W)[2 dwdw < e.

Hence, for « € R\ K3 U Kz, by combining (3.7), (3.8) and (3.9) we get
JIFwPgiw, o) dwdw = [ [F/W)?ghw, o) dwdw
Lo

(W) 2gP. _
¥ /R\RM |F"(W)|“gr(W, o) dw dw

+ _/R\R: |/ (W) 2gR(W, @) dWdW < = + &+ = 3=

ThusF € Qpo(R) for 0 < p < 1.

(ii) Because of the nesting property in Theorem 2.5(ii) it is enough to prove the
assertion for 1 < p < oo, and then we can follow the proof of Theorem 1(b) in [1] by
noticing that, by Holder’s inequality,

(/Vrlrz Or(W, @) devT/)p < (7'(([‘% . r%))p_l /Vrlrz ng(W, o) dwdiw,

where Vi,r, = {w: r1 < |w— a| < rp}isapart of the parameter disk. We omit the
details here. "

DEFINITION 3.3, Let E(¢) = >, a¢" bean entire function with a, > 0. We define
Qe(R) = {F € AR) : sup / |F(W)PE(gr(W, o)) chwai < oo}
a€eR R
and
_ H / 2 Yy
Qeo(R) = {F EAR): lim /R |F(W)PE(gr(W, o)) cwai = o}.

THEOREM 3.4. Let E(Q) = 2, ar¢" bean entire function with a, > 0and a; > 0.

If its growth order p and type o satisfy one of the following conditions:
i p=1o<20r

(i) p > 1, o arbitrary, then BMOA(R) = Qg(R) and VMOA(R) = Qgo(R).

PROOF. Sincea; > O and a, > O, it is obvious that Qe(R) € BMOA(R) and
Qeo(R) € VMOA(R). For the converse, we use (2.8) for p = 1 and q a positive in-
teger n, and get

_ i 2 Yl
le(a) = /R |F'(W)|?E(gr(w, ) ) dw dw

= 3 an [ IF/(w)Pgh(w, @) dwew
n=1 :

< 4€ [ [F'(w)Pgr(w. ) clwow—vi1 A,

https://doi.org/10.4153/CJM-1998-024-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-024-4

Qp SPACESON RIEMANN SURFACES 459

where A, = anl'(n+1)/2". Similar to the proof of [3, Theorem 1.1] it is not hard to show
that 3°°° ; Ay is convergent under the condition (i) or (ii). Therefore we have

/R |F(w)[2E(gr(W, @) dwdW < M /R |F (W) 2R (W, o) dwdw,

where M > 0 is a constant. Thus, by definition, we get BMOA(R) C Qg(R) and
VMOA(R) C Qeo(R), and the proof is completed. ]

COROLLARY 35. Let0O< 3 < 2andletF € A(R). ThenF € BMOA(R) if and only
if for every o € Rand everyt > 0, thereisa constant K > 0 such that

(3.10) /R{ |F/(w)[2gr(W, &) dw dw < Ke ™,

whereR, = {w € R: gr(w, ) > t}.

PrOOF. Assumethat F € BMOA(R). Let E5() = ¢e* = »2, 8" %"/(n — 1)..
Then it is easy to check that the growth order p and type o of the entire function Es(()
satisfy p=1land o = 8 < 2. Thus, by Theorem 3.4, for every « € Rand every t > 0,

& [, IF (w[ga(w, 0 dwa < [ |F/(w) Pgaw, @)’ dw i
< [ IF (W) PE5 (gr(w, 0)) dweli < K < oo.

Hence
[, IF@0fgr(w, 0) dwa < Ke~".

Onthe contrary, if F satisfies (3.10), we let t tend to 0 and get

sup [ |F/(W)[2gr(w, @) dwd < limKe ™ = K < oo,
aeR’/R t—0
ThusF € BMOA(R) and the proof is completed. ]

4. The Bloch spaceand Qu(R). In this section we study the relationship between
the spaces B(R), CB(R) and Q,(R) for 0 < p < oo. Sincein [5] the theorems below of
this section have been proved in a special case for parameter value p = 2, we will not
give the proofsin adetailed way. We first draft the proof of the following result.

THEOREM 4.1. Let 0 < p < co. Then
(i) Q(R € CB(R),
(i) Qoo(R) € CBo(R).

ProoF.  Becauseof the nesting property for the spaces Qp(R) in Theorem 2.5 and by
Theorem 7.7 in [5] we need only consider parameter values1 < p < oo. Butin this case
our proof differs from the proof of Theorem 7.10in [5] for a special casep = 2 only in
afew points which we now show. First replacing Ry o by R, = R\ B.(«) and letting
e tend to O we get
(4.2)

/R |F’(w)|?gR(w, o) dwdw = p(p

5 > JLIF@W) = F(@)[?g} 2w, o) Vor(w, o) dw .
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Thus we need replace | Vgr(W, @)|? by g 2(w, a)| Vgr(W, a)|? and then consider the in-
tegral J§° Ho(a)tP=2 dt instead of [5° Hy.(c) dt. By these changes using the same in-

equality
|F'(@) )2
—2 | <Hig
( a(@ ) =Ml
for the capacity density ci(«) of R, a « asin the proof of [5, Theorem 7.10] we get the
inequality

/ 2
(4.2 /R IF(W) — F(e) 2R 2w, @) Vgr(W, )| dwdW > 227PT (p — 1)7T( | CFREZ;U

which proves the theorem. ]

COROLLARY 4.2. Let0 < p < oo. Then

(i) Q(R) € B(R),

(i) Qoo(R) € Bo(R).

Thisisobvious since CB(R) C B(R) and CBo(R) C Bo(R) ([5, Theorem 7.1]).

THEOREM 4.3.  Thereexist Riemann surfaces R; and R, for which Qu(Ry) # B(Ry)
and Qp,0(Rz) # Bo(Ry) for anyp, 0 < p < oo.

PrROOF. By obvious changesthe proofs are the same asin [5, Theorem 4.2] and [5,
Theorem 5.4], respectively. ]

Next we give a sufficient condition for which Qu(R) = B(R) for 1 < p < co. To this

end, we define
dR(W, (X)

[r(W, )
where dr(w, ) is the hyperbolic distance between w and « and

1, (exp(gr(W, @) +1

Ir(w, ) = = log )
2 "\ exp(gr(w, @) — 1

We note that C(R) > 1 and the equality holdsif and only if Ris simply connected.

THEOREM 4.4.  If C(R) < oo, then Qx(R) = B(R) for all 1 < p < oo.

PrROOF.  If gk(w, @) isaGreen'sfunction of R, in aregular exhaustion {R} of R, we
denote hy(w, o) = gk(w, ) + igg(w, or). The similar notation is introduced for I, (w, c).
Following the proof of Theorem 4.4 in [5] we get

/Rk('k(w’ o)) g0~ 2w, )| (w, o) dw o

~ k(5,2 e (oo g o e

- W/OOO(Iog Sill)ztp‘zdt

—an | 2672 (1+0(e %)) dt = K < oo,

C(R):sup{ :W,aER},

(4.3)
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where S ok = {wW € Ry : gk(w, @) = t}. From (4.3) and the proof of [5, Theorem 4.4]
we conclude that B(R) C Qu(R) for al 1 < p < oo. In Corollary 4.2 we have shown
Qu(R) C B(R), and thus the theorem is proved. "

Next we consider the relations between Qg(R) and B(R) (CB(R)). Note that in the
following we do not restrict a; > 0.

THEOREM 4.5.  LetE(() = Y22, an¢" bean entire function with a, > 0. If itsgrowth
order p and type o satisfy one of the following conditions:
i) p=1Lo<20r
(i) p < 1,0 arbitrary, then Qe(R) C CB(R) and Qeo(R) C CBo(R).

ProOF. Using (4.1) and (4.2), we get
|- IF W) PE(gr(w, @) i = i an [ IF/ (W) GR(w, o) dwi

IF(a)I)

Cr(a)

> 2r ZAn(
where A, = a,['(n +1)/2". Asbefore, if (i) or (i) is satisfied, then ¥2°; A, = M < oo.
Thus

[ IF @) PE(gr(w, o) dwd > 27 M(lF/(a)|)

Cr(a)
Both inclusions Qe(R) € CB(R) and Qe o(R) C CBy(R) follow from thisinequality. =
COROLLARY 4.6.  Under the same conditionsas in Theorem 4.5, we have Qg(R) C
B(R) and Qe o(R) € Bo(R).
5. Qp(R) asa Banach space. The main result of this section is the following.

THEOREM 5.1.  Let R be a Riemann surface, R ¢ Og, and let 0 < p < oo. Then
Qp(R) isa Banach space with the norm

, 2.p N\1/2
Il = [F(eo)] + (sup [ F(w)ghw, o) dwetw) ", a0 € R
aeR /R

and the point evaluation is a continuous functional on Qu(R).

PROOF.  Suppose0 < p < oo. Itiseasy to check that || - || isanorm. For F € Qu(R)
let

lp(cr) = /R |F' ()| 2gB(W, &) dw dW.

From (4.1), (4.2) and the fact cr(a) < Ar() for every o € R(cf. [11, Theorem 2]), we

- F@N\? _ (IF@?
()\R(a)) S(CR((X)) < Clp(a),
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where C > 0 is a constant independent of F. Let m:A — R be the universal covering
mapping such that 7(0) = ap, and let f = F o 7. Then it iswell known that f € B(A)
and for every z € A,

f@| < [FO) + M@)[f[IB(a)-

where M(2) is a constant depending on z. Thus, by f = Fo 7w and ||F|[gr = I|flIB(), We
get

F] < [F(eo)] + MW Fllag < [Floo)] + CH2M) (sup1p(e) ' < MGa)

where M(w) and M(w) are constants depending on w. Thus the point evaluation is a

continuous functional with respect to || - ||. By a standard argument, we can prove that
Qp(R) isaBanach spaceunder thenorm || - || (cf., for example, the proof of Theorem 2.10
in[15]). "

THEOREM 5.2.  Let R be a Riemann surface, let R ¢ Og and let 0 < p < oo. Then
Qpo(R) isa closed subspace of Qp(R).

PrROOF. By the same method asin the proof of Theorem 3.1in[5], we can provethat
Qpo(R) € Qp(R) for 0 < p < oo. Since the point evaluation is a continuous linear func-
tional on Qu(R), we can prove by a standard argument that Qp,o(R) is a closed subspace
of Qp(R) (cf., for example, [15, Theorem 2.15]). We omit the details here. ]

To close this section, we give a characterization of Q,(R) by regular exhaustions.

THEOREM 53. Let R be a Riemann surface, let R ¢ Og, let {R¢} be a regular
exhaustion of R, and let F € A(R). If we denote

IFIIE = sup [ F/(w)[2gR(w, @) dwaw,
a€Ry Re
where gg(w, o) isthe Green's function on Ry, then for 0 < p < o0,

Fll3.q = lim ||F|.
IFllgw = Jim [IF[i

PROOF. It is easy to see that {||F||2} is increasing with respect to k and ||F||2 <
||F||ép(R). Thus

[ F||ép(R) > k“jolo IIFI%.
On the contrary, since
Il = up [ IF wPgRw, o) dwdw,
we know that there is a sequence of points {ay, } in R such that

IFIB = lim [ F/(w)[2ghw, c) dw i,
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For every o € Rand every k > 1, let

G, @) = gl’((w, ). x; Ek\ Re.

Then, from lim,_., g(w, @) = gr(w, ), we know
Jim Gi(w, o) = gr(W, @).

Let n be an arhitrary positive integer. Because {R¢} isaregular exhaustion of R, thereis
ak, suchthat o, € Ry,. Thusfor every k > kn, an € R¢ C R, and so

/R |F (W) 28w, an) dw dw < sup /R |F' (W) 2GR (w, o) dw .
aeRy
Then, by Fatou'sLemma,
S IF () PO, o) vt = [ [F'w)]? lim GR(w, o) chwri

. / 2~p —
< lim [ IF'W)gw, an) dw e

IN

_ S _
Jim sup L IF W) P8w, o) cdwaw

. / 2xp v
Jim sup S JF ) PR, ) i

H 2
Jim [[F{f.
Since the right hand side is independent of n, we have
P8y = Jim [ IF(w)PgRw, an) dweld < lim [|F|Z.

The proof is complete. ]
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