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Abstract

We show that the Gelfand–Kirillov dimension for modules over quantum Laurent polynomials is additive
with respect to tensor products over the base field. We determine the Brookes–Groves invariant associated
with a tensor product of modules. We study strongly holonomic modules and show that there are
nonholonomic simple modules.
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1. Introduction

Let F be a field, take nonzero scalars qi j in F \ {0} where i, j ∈ {1, . . . , n}, and set
q = (qi j). Consider the associative F-algebra P(q) generated by u1, . . . , un and their
inverses such that

uiu j = qi ju jui ∀i, j ∈ {1, . . . , n}. (1.1)

This algebra is known by various names, such as the multiplicative analogue of the
Weyl algebra, the quantum Laurent polynomial algebra and the quantum torus. It has
the structure of a twisted group algebra F ∗ A of a free abelian group A of rank n
over F.

In the special case where n = 2, the condition (1.1) becomes u1u2 = qu2u1, where
q ∈ F \ {0}. This case was first studied by Jategaonkar [15] and Lorenz [16], and it was
shown that P((q)) shares certain curious properties with the first Weyl algebra A1(k)
over a field k of characteristic zero, when q is not a root of unity in F.

McConnell and Pettit [18] first considered the case of arbitrary n. They showed that
if the subgroup of the multiplicative group of F generated by the qi j has the maximal
possible torsion-free rank, then P(q) is a simple noetherian hereditary domain.
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Quantum Laurent polynomial algebras play a fundamental role in noncommutative
geometry (see [17]). They also arise in the representation theory of torsion-free
nilpotent groups as suitable localizations (see [10]).

In recent times, there has been considerable interest in the theory of these algebras
and their generalizations. Their ring-theoretic properties were studied in [1, 3, 18].
Artamonov [2, 4, 5] considered projective and simple modules over general quantum
polynomial rings. Brookes and Groves [12, 13] introduced a geometric invariant for
F ∗ A-modules modelled on the original Bieri–Strebel invariant (see [8]).

The algebras P(q) are precisely the twisted group algebras F ∗ A of a free finitely
generated abelian group A over F. In this paper, we consider the structure of modules
over the algebras F ∗ A. Later in this section, we review the basic properties of these
algebras. In Section 2, we then give a brief exposition of the geometric invariant ∆(M)
of Brookes and Groves associated with a finitely generated F ∗ A-module M. Our first
main result, Theorem 3.1, determines the Brookes–Groves invariant and the Gelfand–
Kirillov (GK) dimension of a tensor product of modules. More precisely, we show
that if M1 and M2 are finitely generated F ∗ Ai-modules, then for the finitely generated
F ∗ (A1 ⊕ A2)-module M1 ⊗F M2,

∆(M1 ⊗F M2) = p∗1∆(M1) + p∗2∆(M2),

where p∗i : A∗i → (A1 ⊕ A2)∗ is the injection induced by the projection pi : A1 ⊕ A2→ Ai

when i = 1, 2. Furthermore,

GK-dim(M1 ⊗F M2) = GK-dim(M1) + GK-dim(M2).

Section 4 is concerned with strongly holonomic modules. These are defined
analogously to holonomic An(k)-modules, where An(k) denotes the nth Weyl algebra
over a field k of characteristic zero. An An-module N is called holonomic if

GK-dim(N) = 1
2 GK-dim(An).

Holonomic An-modules form an important subclass of An-modules and possess some
nice properties (see [9]). By [18, Section 5.1], GK-dim(F ∗ A) = rank(A) for the
algebras F ∗ A. We may thus call an F ∗ A-module M holonomic if

GK-dim(M) = 1
2 rank(A).

Such modules are encountered in group theory (see [11]) with the additional condition
that M is torsion-free as an F ∗ B-module whenever B is a subgroup of A such that
F ∗ B is commutative. Brookes and Groves [11] showed that, if an algebra F ∗ A with
center F has a strongly holonomic module and rank(A) = 2m, then there is a finite
index subgroup A′ in A such that

F ∗ A′ = (F ∗ B1) ⊗F · · · ⊗F (F ∗ Bm),

and each Bi � Z ⊕ Z and m = 1
2 rank(A). In Theorem 4.12, we give a new proof of this.

https://doi.org/10.1017/S1446788712000031 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000031


[3] Modules over quantum Laurent polynomials 325

In [18, Section 6], the question was considered whether an algebra F ∗ A that is
simple can have simple modules with distinct GK dimensions. It was shown that
if F ∗ A has Krull (global) dimension one, then the GK dimension of every simple
F ∗ A-module is rank(A) − 1. In fact, if an algebra F ∗ A has dimension m, where
1 ≤ m ≤ rank(A), then the work of Brookes [10] implies that the minimum possible GK
dimension of a nonzero finitely generated F ∗ A-module is rank(A) − m. The question
then arises if the GK dimension of a simple F ∗ A-module is always equal to this
minimum, as in the dimension-one case.

In Section 5, we show that this need not be true in general. More precisely, suppose
that F ∗ A has center exactly F and that A has a subgroup B such that A/B is infinite
cyclic and F ∗ B is commutative. Then F ∗ A has a simple F ∗ B-torsion-free module
S for which GK-dim(S ) = n − 1.

In the rest of this introductory section, we discuss the basic properties of the algebra
P(q) and its modules. It is easily seen that the monomials um1

1 · · · u
mn
n , where m j ∈ Z,

constitute an F-basis of P(q). The monomial um1
1 · · · u

mn
n is denoted by um, where

m = (m1, . . . , mn) ∈ Zn. We denote the set of nonzero elements of F by F∗. The facts
in the next proposition were established by McConnell and Pettit.

P 1.1 [18, Section 1]. The algebra P(q) has the following properties.

(i) umum′ =
∏

j>i q
m jm′i
ji um+m′ .

(ii) (um)−1 = µ(m)u−m, where µ(m) =
∏

j>i q
m jmi

ji .
(iii) α ∈ P(q) is a unit if and only if α = λum for some nonzero λ ∈ F.
(iv) The group-theoretic commutator [ua, ub] (that is, uaub(ua)−1(ub)−1) lies in F∗.
(v) The derived subgroup of the group of units of P(q) coincides with the subgroup

of F∗ generated by the qi j where 1 ≤ i, j ≤ n.
(vi) P(q) is simple if and only if it has center exactly F.

An associative F-algebraA is a twisted group algebra F ∗ A of a finitely generated
free abelian group A over the field F if the following hold.

(i) There is an injective function ¯ : A→A, a 7→ ā, such that A := Image(¯) is a basis
ofA as an F-space.

(ii) There is a function τ : A × A→ F∗ satisfying

τ(a1, a2)τ(a1a2, a3) = τ(a2, a3)τ(a1, a2a3) ∀a1, a2, a3 ∈ A (1.2)

such that the multiplication inA is given by

ā1ā2 = τ(a1, a2)a1a2 ∀a1, a2 ∈ A. (1.3)

Let A be a free abelian group with basis {a1, . . . , an}. Then there is an injection
from A to P(q) defined by

∏
ami

i 7→
∏

umi
1 , where mi ∈ Z and i = 1, . . . , n. Condition

(ii) above easily follows from (1.1). Finally, the associativity of P(q) implies (1.2).
Hence P(q) is a twisted group algebra F ∗ A.

We note that in an algebra F ∗ A, the scalars are central, so that

λā = āλ ∀λ ∈ F ∀a ∈ A.
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In a crossed product D ∗ A (see [19, Ch. 1]), where D is a division ring, the
multiplication is defined as in (ii) above, but an element d ∈ D need not be central.
In fact, for all a ∈ A, there is an automorphism σa of D such that

ād = σa(d)ā ∀d ∈ D.

Given an element α of the algebra F ∗ A, we may write α uniquely as
∑

a∈A κaā,
where κa ∈ F. The support of α in A is the finite subset {a ∈ A | κa , 0} of A; it is
written supp(α). For a subgroup B of A, the subalgebra {β ∈ F ∗ A | supp(β) ⊆ B} of
F ∗ A is a twisted group algebra F ∗ B of B over F.

It is known (see, for example, [19, Lemma 37.8]) that if B is a subgroup of A, then
S B = F ∗ B \ {0} is an Ore subset in F ∗ A. As a consequence, the subset TS B(M) of
M, consisting of all x such that xs = 0 for some s ∈ S B, is an F ∗ A-submodule of M.
We say that M is S B-torsion or F ∗ B-torsion if TS B(M) = M and S B-torsion-free or
F ∗ B-torsion-free if TS B(M) = 0. We note that the right Ore localization (F ∗ A)S −1

B is
a crossed product DB ∗ A/B, where DB stands for the quotient division ring of F ∗ B.
We shall also write (F ∗ A)(F ∗ B)−1 for (F ∗ A)S −1

B .
Note that if a ∈ A, then ā is a unit of F ∗ A. Without loss of generality, we may

assume that 1̄ is the identity of F ∗ A. It easily follows from (1.3) that for a1, a2 ∈ A,
the group-theoretic commutator [a1, a2], given as usual by ā1ā2ā−1

1 ā−1
2 , is in F. Then

the following equalities hold (see [20, Section 5.1.5]):

[ā1ā2, ā3] = [ā1, ā3][ā2, ā3],

[ā1, ā2ā3] = [ā1, ā2][ā1, ā3].
(1.4)

For a subset X of A, we define X = {x̄ | x ∈ X}. Moreover, when X1, X2 ⊆ A, we
define [X1, X2] = 〈[x̄1, x̄2] | x1 ∈ X1, x2 ∈ X2〉. It is clear that [X1, X2] is a subgroup of
the multiplicative group F∗.

2. The Brookes–Groves geometric invariant

We now describe a geometric invariant that was introduced in [12, 13]. It is defined
for finitely generated modules over a crossed product D ∗ A of a finitely generated free
abelian group A over a division ring D. Since a twisted group algebra F ∗ A is a special
case of D ∗ A, the definitions and theorems that follow apply to F ∗ A-modules as well.

Let A be a finitely generated free abelian group and denote HomZ(A, R) by A∗. Then
A∗ is an R-space and dim(A∗) = rank(A), where rank(A) is the cardinality of a basis of
A. Given a basis b = {bi | i ∈ I} of A, there is a basis b∗ = {b∗i | i ∈ I} dual to b, and this
allows the construction of an isomorphism from R|b| to A∗. We may thus speak of
characters φ ∈ A∗ as points. There is a Z-bilinear map 〈·, ·〉 : A∗ × A→ R defined by

(φ, c) 7→ 〈φ, c〉 = φ(c) ∀φ ∈ A∗ ∀c ∈ A.

Given a subgroup B of A, define its annihilator ann(B) in A∗ by

ann(B) = {φ ∈ A∗ | 〈φ, B〉 = 0};
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this is a subspace, and

dim(ann(B)) = rank(A) − rank(B).

For a subspace V of A∗, we define ann(V) analogously:

ann(V) = {b ∈ A | 〈V, b〉 = 0}.

It is easy to show that ann(ann(B)) = B. For a point φ ∈ A∗, we define

Aφ,0 = {a ∈ A | φ(a) ≥ 0},

Aφ,+ = {a ∈ A | φ(a) > 0}.

Note that Aφ,0 is a submonoid and Aφ,+ is a subsemigroup of A. Brookes and
Groves [13, Proposition 3.1] gave several equivalent definitions of the geometric
invariant that are analogous to the commutative case (see [8]). The following definition
was used in [10].

D 2.1 [13, Proposition 3.1]. Let D be a division ring and A be a free finitely
generated abelian group. Let M be a finitely generated D ∗ A-module with a finite
generating set X. Then the subset ∆(M) of A∗ is defined by

∆(M) = {θ ∈ A∗ | XAθ,0 > XAθ,+}.

As defined, ∆(M) seems to depend on the choice of generating set X for M, but it is
actually independent of this choice (see [10, Section 2]).

D 2.2 [14, Definition 2.1]. Let M be a finitely generated D ∗ A-module. For
a point φ ∈ A∗, the trailing coefficient module TCφ(M) of M at φ is defined by

TCφ(M) = XAφ,0/XAφ,+,

where X is a (finite) generating set for M.

Note that TCφ(M) is a finitely generated D ∗ K-module, where K = ker φ. It is
immediate from Definition 2.1 that φ ∈ ∆(M) if and only if TCφ(M) , 0. In general,
TCφ(M) need not be independent of X. A dimension for finitely generated D ∗ A-
modules was introduced in [13].

D 2.3 [13, Definition 2.1]. Let M be a D ∗ A-module. The dimension
dim(M) of M is defined to be the greatest integer r such that M is not D ∗ B-torsion
for some subgroup B in A of rank r. Thus 0 ≤ r ≤ rank(A).

It was shown in [13] that dim(M) coincides with the GK dimension of M. We shall
thus mostly write GK-dim(M) for dim(M). The following useful fact was also shown
in [13].
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P 2.4 [13, Lemma 2.2]. Let

0→ M1→ M→ M2→ 0

be an exact sequence of D ∗ A-modules. Then

dim(M) = max{dim(M1), dim(M2)}.

As already remarked, we may identify A∗ with Rn and thus the subset ∆(M) of
A∗ with a subset of Rn. A subset S of Rn is a polyhedron if S is a finite union of
convex polyhedra. A convex polyhedron is an intersection of finitely many closed half
spaces in Rn. A polyhedron is rational when each of the boundaries of the half spaces
that define it is rational, that is, when it is generated by rational linear combinations
of the chosen dual basis. The dimension of a convex polyhedron C is the dimension
of the subspace of Rn spanned by C. The dimension of a polyhedron is the greatest
of the dimensions of its constituent convex polyhedra. In [13, Theorem 4.4], it was
shown that an ‘essential’ subset of ∆(M) is a polyhedron of dimension equal to the GK
dimension of M. It was shown in [21] that the Brookes–Groves invariant is polyhedral.

T 2.5 [21, Theorem A]. If D ∗ A is a crossed product of a division ring D by
a free finitely generated abelian group A, then ∆(M) is a closed rational polyhedral
cone in HomZ(A, R) for all finitely generated D ∗ A-modules M.

The next section gives an application of the geometric invariant to tensor products
of F ∗ A-modules.

3. The geometric invariant and tensor products

Given twisted group algebras F ∗ A1 and F ∗ A2, the tensor product

(F ∗ A1) ⊗F (F ∗ A2)

of F-algebras is a twisted group algebra of A1 ⊕ A2 over F. Moreover, if M1 and M2

are modules over F ∗ A1 and F ∗ A2, then the formula

(m1 ⊗ m2)(ā1, ā2) = m1ā1 ⊗ m2ā2 ∀m1, m2 ∈ M ∀a1, a2 ∈ A

gives M1 ⊗F M2 the structure of an (F ∗ A1) ⊗F (F ∗ A2)-module. We now determine
the Brookes–Groves invariant associated with a tensor product of modules.

T 3.1. Let p∗i : A∗i → (A1 ⊕ A2)∗ be the injection that is induced by the
projection pi : A1 ⊕ A2→ Ai and Mi be a finitely generated module over F ∗ Ai, where
i = 1, 2. Then for the finitely generated F ∗ (A1 ⊕ A2)-module M1 ⊗F M2,

∆(M1 ⊗F M2) = p∗1∆(M1) + p∗2∆(M2) (3.1)

and
GK-dim(M1 ⊗F M2) = GK-dim(M1) + GK-dim(M2). (3.2)
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P. Let M := M1 ⊗F M2. We first show that

p∗1∆(M1) + p∗2∆(M2) ⊆ ∆(M). (3.3)

We utilize the ∆-set of a module as in [13, Section 3, Definition 4]. This is given
as follows: for a finitely generated F ∗ A-module L and a point φ ∈ A∗, a nontrivial
φ-filtration of L is a family of F-subspaces Lµ of L, where µ ∈ R, that satisfies the
following conditions.

(C1) Lν ≥ Lµ whenever ν ≤ µ.
(C2)

⋃
µ∈R Lµ = L.

(C3) Lµā = Lµ+φ(a) for all a ∈ A.
(C4) The subspace Lµ is a proper subspace of L for each µ ∈ R.

Then ∆(M) is defined to be the set of all φ ∈ A∗ for which there exists a nontrivial
φ-filtration, together with the zero of A∗. This is equivalent to Definition 2.1 (see [13,
Proposition 3.1]).

Thus, to show (3.3), it suffices to show that if φi ∈ ∆(Mi) and either φ1 or φ2 is
nonzero, then M has a nontrivial φ-filtration, where φ = φ1 p1 + φ2 p2. Suppose, for the
moment, that φ1 , 0 and φ2 , 0. Since φi ∈ ∆(Mi), there exists a nontrivial φi-filtration
{Mµ

i }µ∈R of Mi when i = 1, 2. We now define a φ-filtration on M by setting

Mλ =
∑
µ,ν∈R
µ+ν=λ

Mµ
1 ⊗F Mν

2 ∀λ ∈ R,

and verifying conditions (C1)–(C4).

If λ1, λ2 ∈ R, λ1 ≤ λ2 and (µ2, ν2) ∈ R2 is such that λ2 = µ2 + ν2, then we can find
(µ1, ν1) ∈ R2 such that µ1 ≤ µ2, ν1 ≤ ν2 and λ1 = µ1 + ν1. But then Mµ1

1 ≥ Mµ2

1 and
Mν1

2 ≥ Mν2
2 , whence

Mµ1

1 ⊗F Mν1
2 ≥ Mµ2

1 ⊗F Mν2
2 ,

which shows that Mλ1 ≥ Mλ2 . Hence (C1) holds.

The elements of M may be expressed as finite sums of the decomposable elements
x1 ⊗ x2, where xi ∈ Mi, so to see that M =

⋃
λ∈R Mλ, it is sufficient to show that

x1 ⊗ x2 ∈ Mλ for some λ ∈ R. But the filtrations {Mµ
1 } and {Mν

2} guarantee the existence
of real numbers µ and ν such that x1 ∈ Mµ

1 and x2 ∈ Mν
2, and then

x1 ⊗ x2 ∈ Mµ
1 ⊗F Mν

2 ⊆ Mµ+ν.

Thus (C2) holds.
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To show (C3), we note that

Mλ( a1, a2) =

( ∑
µ+ν=λ

Mµ
1 ⊗F Mν

2

)
( a1, a2)

=
∑
µ+ν=λ

Mµ
1 a1 ⊗F Mν

2a2

=
∑
µ+ν=λ

Mµ+φ1(a1)
1 ⊗F Mν+φ2(a2)

2

=
∑

µ′+ν′=λ+φ((a1,a2))

Mµ′

1 ⊗F Mν′

2

= Mλ+φ((a1,a2)).

To show (C4), we suppose to the contrary that Mλ = M for some λ ∈ R. This is
equivalent to asserting that M0 = M. We shall show that this leads to a contradiction.
By (C4), the F-vector space Mi/M0

i is nonzero for the nontrivial φi filtration on Mi,
where i = 1, 2. We fix an F-basis B0

i of M0
i , and an F-basis Bi of Mi such that

B0
i ⊆ Bi. Note that the inclusion B0

i ⊆ Bi must be strict since Mi/M0
i is nonzero. Pick

ui ∈ Bi \ B
0
i . NowB1 ⊗ B2 := {v1 ⊗ v2 | vi ∈ Bi} is an F-basis for M1 ⊗F M2. Moreover,

the element (u1 ⊗ u2) of B := B1 ⊗ B2 does not lie in the subset

B′ := (B0
1 ⊗ B2) ∪ (B1 ⊗ B

0
2),

where B0
1 ⊗ B2 := {w ⊗ v | w ∈ B0

1, v ∈ B2} and B1 ⊗ B
0
2 is defined analogously. Since

B is a basis of M, u1 ⊗ u2 is not contained in

M′ := (M0
1 ⊗F M2) + (M1 ⊗F M0

2),

which is the F-linear span of B′, and a fortiori, u1 ⊗ u2 is not in

M0 =
∑
µ∈R

Mµ
1 ⊗ M−µ2 =

∑
ν≥0

Mν
1 ⊗ M−ν2 +

∑
ν≤0

Mν
1 ⊗ M−ν2 .

Hence M0 , M, and (C4) is established.
We have thus exhibited a nontrivial φ-filtration of M and so φ ∈ ∆(M). It follows

that if φ ∈ ∆(Mi) \ {0}, then φ =
∑2

i=1 φi pi is in ∆(M). The case when either φ1 or φ2 is
zero is handled similarly.

We now show the reverse inclusion of (3.3). Let ψ ∈ ∆(M). We define ψi ∈ A∗i by
ψi := ψei, where ei : Ai→ A1 ⊕ A2 is the injection of the biproduct, when i = 1, 2. We
shall show that ψi ∈ ∆(Mi). It then follows that

ψ = ψ1 p1 + ψ2 p2 ∈

2∑
i=1

∆(Mi)pi.

Suppose that ψ1 < ∆(M1). Let X1 be a finite generating set for M1. By [13,
Proposition 3.1(v)], for each y ∈ X1, there exists a nonzero αy ∈ annF∗A1 (y), the
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annihilator of y in F ∗ A1, such that ψ1 attains a unique minimum on the support
supp(αy) of αy in A1. Let X2 be a finite F ∗ A-generating set for M2. Then

X := {y ⊗ z | y ∈ X1, z ∈ X2}

generates M as an F ∗ (A1 ⊕ A2)-module. Denote the image of αy ∈ F ∗ A1 in

F ∗ (A1 ⊕ A2) = (F ∗ A1) ⊗F (F ∗ A2)

by α′y; then
(y ⊗ z)α′y = yαy ⊗ z = 0 ⊗ z = 0.

Furthermore, ψ = ψ1 p1 + ψ2 p2 has a unique minimum on supp(α′y). But then ψ < ∆(M)
by [13, Proposition 3.1(v)]. This contradiction shows that ψ1 ∈ ∆(M1). Similarly, it
can be shown that ψ2 ∈ ∆(M2). We have thus shown that (3.1) holds. Applying [13,
Theorem 4.4], we obtain (3.2). �

4. Strongly holonomic modules

We now develop a new proof of a result of Brookes and Groves. We first give some
definitions and prove some useful results.

D 4.1 [11, Definition 4.2]. Let M be a finitely generated F ∗ A-module
where F ∗ A has center exactly F. Then M is strongly holonomic if

GK-dim(M) = 1
2 rank(A)

and M is torsion-free as an F ∗C-module for each commutative subalgebra F ∗C,
where C ≤ A.

D 4.2. A nonzero F ∗ A-module N is critical if the GK dimension of N/L is
strictly smaller than that of N whenever 0 < L < N.

The following proposition was first shown in [13].

P 4.3. Let M be a finitely generated nonzero F ∗ A-module. Then M
contains a critical submodule.

P. Amongst the nonzero submodules of M, choose one, N say, of minimal
possible GK dimension. If N is not critical, then it has a nonzero proper submodule
N1 such that GK-dim(N/N1) = GK-dim(N). By the minimality of GK-dim(N),

GK-dim(N1) = GK-dim(N).

Applying the same argument to N1 and so on, we obtain a chain of submodules,

N = N0 ⊃ N1 ⊃ N2 ⊃ · · · ,

for which GK-dim(Ni/Ni+1) = GK-dim(N) for each i. By [18, Lemma 5.6], this chain
must terminate. But this process halts only when it reaches a critical module. �
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P 4.4. Let M be a strongly holonomic F ∗ A-module, where F ∗ A has center
F. Then M is cyclic and has finite length. Moreover, each nonzero submodule of M is
also strongly holonomic.

P. We claim that if an algebra F ∗ A satisfies the conditions of Proposition 4.4,
then

GK-dim(V) ≥ 1
2 rank(A)

for each nonzero F ∗ A-module V . Indeed, let V ′ be a nonzero F ∗ A-module for which
GK-dim(V ′) < 1

2 rank(A). Then by [10, Theorem 3], there is a subgroup C of A such
that rank(C) > 1

2 rank(A) and F ∗C is commutative. By Definition 4.1, M must be
torsion-free over F ∗C. Hence GK-dim(M) > 1

2 rank(A) by Definition 2.3. But this
is contrary to the hypothesis in the proposition. Hence each nonzero subfactor of M
has the same GK dimension as M. It now follows from [18, Lemma 5.6] that a strictly
descending sequence of submodules of M halts after a finite number of steps. Hence M
has finite length. We also note that F ∗ A is simple by Proposition 1.1(vii). It follows
that M is cyclic from [6, Corollary 1.5]. �

We now introduce carrier spaces and carrier space subgroups. We recall that for
a finitely generated D ∗ A-module M, the subset ∆(M) is a finite union of convex
polyhedra. A D ∗ A-module is called pure when each nonzero submodule of M has
GK dimension equal to that of M. It is not difficult to see that a critical module is
pure, noting Proposition 2.4. It was shown in [22] that if M is pure, then ∆(M) is a
(finite) union of convex polyhedra, each having dimension equal to the GK dimension
of M. A subspaceV of A∗ is rationally defined if it can be generated by rational linear
combinations of the elements of the chosen dual basis of A∗. A rational subspace V
of A∗ may be uniquely expressed as ann(B) for a subgroup B of A such that A/B is
torsion-free.

D 4.5. Let M be a finitely generated critical D ∗ A-module with GK
dimension m. Associated with the rationally defined polyhedron ∆(M), there is a
finite family of m-dimensional rationally defined subspaces of A∗ that occur as the
linear spans of the convex polyhedra constituting ∆(M). These subspaces are called
the carrier spaces of ∆(M).

D 4.6. A subgroup of A of the form ann(V), where V is a carrier space
of ∆(M) and M a finitely generated critical D ∗ A-module, is called a carrier space
subgroup of ∆(M).

We note that for a carrier space subgroup C of ∆(M),

rank(C) = rank(A) − GK-dim(M).

If C is a carrier space subgroup of ∆(M), then M cannot be finitely generated as an
F ∗C-module by [13, Proposition 3.8]. The proof of [10, Theorem A] was based on
the following important property of carrier space subgroups, which was subsequently
highlighted in [11, Proposition 4.1(2)].
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L 4.7 [10, Theorem A]. Let M be a critical finitely generated F ∗ A-module, V
be a carrier space of ∆(M), and B := ann(V). Then B contains a subgroup B1 of finite
index such that F ∗ B1 is commutative.

We recall that a subgroup B of A is isolated in A if A/B is torsion-free.

D 4.8 [14]. Let M be a finitely generated F ∗ A-module. LetW be a rational
subspace of A∗ and B be the isolated subgroup of A such that W = ann(B). A point
φ ∈W is said to be nongeneric forW and M if TCφ(M) is not F ∗C-torsion for some
infinite cyclic subgroup C of B.

The following fact was first shown in [11, Lemma 4.5]. The proof was based on a
geometric characterization of nongeneric points in ∆(M).

L 4.9. Let M be a critical strongly holonomic F ∗ A-module, where rank(A) > 2.
For each carrier space subgroup U of ∆(M), there is a subgroup W of A with the same
rank as U such that F ∗W is commutative and

0 < rank(U ∩W) < rank(U).

P. By Lemma 4.7, U has a subgroup U′ of finite index such that F ∗ U′ is
commutative. By Definition 4.1, M is torsion-free over F ∗ U′.

We claim that M is F ∗ U-torsion-free. Indeed, if the F ∗ U-torsion submodule
tU(M) of M were nonzero, we would be able to pick a finitely generated nonzero
F ∗ U-submodule N of tU(M). Assuming this, N is F ∗ U-torsion and F ∗ U′-torsion-
free. Then

GK-dim(N) < rank(U),

in view of [13, Proposition 2.6]. Moreover, GK-dim(N) ≥ rank(U′) since N is torsion-
free as an F ∗ U′-module, by Definition 2.3. We thus have a contradiction and so M
must be F ∗ U-torsion-free.

By [14, Corollary 3.7], V := ann(U) contains a nonzero point φ that is nongeneric
for V and M. By [14, Lemma 3.1], U has an infinite cyclic subgroup C such that
φC ∈ ∆(M ⊗F∗A (F ∗ A)S −1), where φC is the character of (A/C)∗ induced by φ and
S = F ∗C \ {0}. Note that MC := M ⊗F∗A (F ∗ A)S −1 is an (F ∗ A)S −1-module and
(F ∗ A)S −1 is a crossed product DC ∗ A/C, where DC denotes the quotient division
ring of F ∗C. By [14, Lemma 4.5(2)], MC is critical.

Now φC lies in a (rationally defined) carrier space VC := ann(V/C) for some
subgroup V of A. Set K = ker φ. Then K/C = ker φC ≥ V/C, and so V ≤ K. It was
shown in [10, Section 2] that DC ∗ V/C has a nonzero module that is finite-dimensional
as a DC-space.

Note that
GK-dim(MC) = GK-dim(M) − rank(C),

in view of Definition 2.3. Since dimVC = GK-dim(MC),

rank(V/C) = rank(A/C) − GK-dim(MC) = rank(A) − GK-dim(M) = m.
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By [1, Corollary 3.3], V contains a subgroup W of rank m such that F ∗W is
commutative. Moreover, W is constructed in [1] so that W ∩C = {1}, whence

rank(U ∩W) < rank(U).

As φ is nonzero, rank(K) ≤ 2m − 1 and rank(U ∩W) ≥ 1 since U, W ≤ K. �

The next lemma is a generalization of [11, Lemma 4.4].

L 4.10. Suppose that F ∗ A has a finitely generated module M and A has a
subgroup C such that A/C is torsion-free, rank(C) = GK-dim(M), and F ∗C is
commutative. Suppose, moreover, that M is not F ∗C-torsion. Then C has a virtual
complement E in A such that F ∗ E is commutative. In fact given Z-bases {x1, . . . , xr}

and {x1, . . . , xr, xr+1, . . . , xn} for C and A respectively, there exist monomials µ j in
F ∗C, where j = r + 1, . . . , n, and a positive integer s such that the monomials µ j x̄s

j
commute in F ∗ A.

P. Let x̄i x̄ j = qi j x̄ j x̄i, where i, j = 1, . . . , n and qi j ∈ F∗. We set S = F ∗C \ {0}
and denote the quotient field (F ∗C)S −1 by FS . Then (F ∗ A)S −1 is a crossed product

R = FS ∗ 〈xr+1, . . . , xn〉.

By hypothesis, M is not S -torsion and so the corresponding module of fractions
MS −1 is nonzero. Further, GK-dim(M) = rank(C) and so MS −1 is finite-dimensional
as an FS -space in view of [13, Lemma 2.3]. In [1, Section 3], we show that,
if R has a module that is one-dimensional over FS , then there exist monomials
µi ∈ F[x±1

1 , x±1
2 , . . . , x±1

r ] such that the monomials µixi mutually commute, where
r + 1 ≤ i ≤ n. Thus we may take E = 〈µr+1xr+1, . . . , µnxn〉 in this case. Let s =

dimFS MS −1. The s-fold exterior power ∧s(MS −1
FS

) is a one-dimensional module over
R′ := FS ∗

s 〈xr+1, . . . , xn〉 and the 2-cocycle is the sth power of the 2-cocycle of R, as
observed in the remark following [1, Corollary 3.3]. Thus for R′,

q′i j =

qi j when i ∈ {1, . . . , r}, j ∈ {1, . . . , n},

qs
i j when i, j ∈ {r + 1, . . . , n}.

(4.1)

By [1, Proposition 3.2], the monomials µ jx j commute in R′, that is,

1 = [µk xk, µlxl] = [µk, xl][xk, µl][xk, xl] ∀k, l ∈ {r + 1, . . . , n}.

In view of (4.1), [µk, xl] and [xk, µl] are the same in R and R′, but [xk, xl] = [xk, xl]s in
R′. It easily follows from this that the elements µ jxs

j, where j = r + 1, . . . , n, commute
in R. �

The final lemma of this section is somewhat technical and is used in the proof of
Theorem 4.12.

L 4.11. Suppose that F ∗ A has a strongly holonomic module. If rank(A) = 2m,
where m > 1, then A has nontrivial subgroups B1, B2, B3, and B4 such that each F ∗ Bi
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is commutative and

[B1, B2] = [B2, B3] = [B3, B4] = {1},

B1 ∩ B2 = B3 ∩ B4 = B1B2 ∩ B3B4 = {1},

rank(B1) + rank(B2) = rank(B2) + rank(B3) = rank(B3) + rank(B4) = m.

P. By Proposition 4.4, M contains a simple submodule that is also strongly
holonomic. Hence we may assume that M is simple.

Let U be a carrier space subgroup of ∆(M). As shown in the first paragraph of the
proof of Lemma 4.9, M is torsion-free as an F ∗ U-module. Moreover, as noted above,
rank(U) = m = GK-dim(M). Let V be a (virtual) complement to U in A, as given by
Lemma 4.10, such that F ∗ V is commutative. By Lemma 4.7, there is a finite index
subgroup U0 of U so that F ∗ U0 is commutative. But then A0 := U0V has finite index
in A. In particular, M may be regarded as a finitely generated F ∗ A0-module M0. By
[13, Lemma 2.7], GK-dim(M0) = GK-dim(M), and it follows that M0 is a strongly
holonomic F ∗ A0-module. For this reason, we will assume that A = UV and that both
F ∗ U and F ∗ V are commutative.

By Lemma 4.9, there is also a subgroup W that intersects nontrivially with U such
that rank(W) = rank(U) = m. Set B2 := U ∩W, and pick a subgroup B1 in U that is
maximal with respect to the condition that B1 ∩ B2 = {1}. Let pV : A = U ⊕ V → V be
the projection and p′V be its restriction to W. Then ker p′V = B2 and so

rank(p′V (W)) + rank(B2) = rank(W) = m.

Set B3 := p′V (W), and let B4 be a subgroup of V that is maximal with respect to the
condition that

B3 ∩ B4 = {1}.

As B1, B2 ≤ U and F ∗ U is commutative, [B1, B2] = {1} and similarly [B3, B4] = {1}.
We claim that

[B2, B3] = {1}.

Indeed, take u2 ∈ B2 = U ∩W and v3 ∈ B3. Now B3 = p′V (W), hence uv3 ∈W for some
u ∈ U. Since F ∗W is commutative,

1 = [ūv̄3, ū2] = [ū, ū2][v̄3, ū2].

Moreover, as F ∗ U is commutative, [ū, ū2] = 1 and so [v̄3, ū2] = 1. �

We now give a new proof of a result of Brookes and Groves.

T 4.12 [11, Theorem 4.2]. Suppose that F ∗ A is an algebra with center F for
which rank(A) = 2m, and that F ∗ A has a strongly holonomic module. Then there is a
finite index subgroup A′ in A such that

F ∗ A′ = (F ∗ B1) ⊗F · · · ⊗F (F ∗ Bm),

where each Bi � Z ⊕ Z and m = 1
2 rank(A).
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P. We use the notation

F ∗ A
vir
= (F ∗ A1) ⊗F · · · ⊗F (F ∗ Ak)

to indicate that A has a subgroup A′ of finite index such that

F ∗ A′ = (F ∗ A1) ⊗F · · · ⊗F (F ∗ Ak).

We shall prove the theorem by induction. If rank(A) = 2, then there is nothing to
be proved, so we assume that rank(A) = 2m where m > 1. We also assume that the
theorem holds for all smaller values of m and for all fields F.

Let B1, B2, B3 and B4 be as in Lemma 4.11 and set B := B1B2B3B4. By the lemma,
F ∗ B2B3 is commutative and

rank(B2B3) = m = GK-dim(M).

We fix bases in the subgroups B1, . . . , B4 as follows:

B1 := 〈uk+1, . . . , um〉,

B2 := 〈u1, . . . , uk〉,

B3 := 〈wk+1, . . . , wm〉,

B4 := 〈w1, . . . , wk〉.

By Lemma 4.10 (with C taken to be B2B3), there are monomials µ j ∈ F ∗ B2 and
ν j ∈ F ∗ B3, where j = 1, . . . m, such that the monomials in

{µiνiw̄
s
i | i = 1, . . . , k} ∪ {µ jν jū

s
j | j = k + 1, . . . , m} (4.2)

commute mutually for some positive integer s. Set

w̄′i = νiw̄s
i ∀i ∈ {1, . . . , k},

ū′j = µ jūs
j ∀ j ∈ {k + 1, . . . , m}.

(4.3)

As noted in (4.2),

1 = [µiνiwi
s, µ jν ju j

s]

= [µi, µ jν ju j
s][νiwi

s, µ jν ju j
s]

= [µi, µ jν j][µi, u j
s][νiwi

s, µ jν ju j
s].

But [µi, µ jν j] = 1 since F ∗ B2B3 is commutative and [µi, u j
s] = 1 since [B1, B2] = {1}

by Lemma 4.11. Thus

1 = [νiwi
s, µ jν ju j

s]

= [νiwi
s, µ ju j

s][νiwi
s, ν j]

= [νiwi
s, µ ju j

s][νi, ν j][wi
s, ν j].
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By Lemma 4.11, F ∗ B3 is commutative and [B3, B4] = {1}. It follows that

[νi, ν j] = [wi
s, ν j] = 1.

Hence in view of (4.3),
[w′i , u′j] = 1.

Set B′1 := 〈u′k+1, . . . , u′m〉 and B′4 := 〈w′1, . . . , W ′
k〉; then

[B′1, B′4] = 〈1〉,

which, in view of Lemma 4.11, gives

[B′1B3, B2B′4] = 〈1〉. (4.4)

Hence
F ∗ B = (F ∗ B′1B3) ⊗F (F ∗ B2B′4). (4.5)

By the hypothesis in the theorem, F ∗ A has center exactly F, so in view of (4.4),
F ∗ B′1B2B3 has center exactly F ∗ B2. Moreover, C := F ∗ B′1B2 is commutative and
thus M is torsion-free over C. Consequently, there is a finitely generated critical
F ∗ B′1B2B3-submodule N of M such that GK-dim(N) = m. Localizing F ∗ B′1B2B3 at
F ∗ B2 \ {0}, we obtain F′ ∗ B′1B3, where F′ is the quotient field of the integral domain
F ∗ B2.

We claim that M′ := M(F ∗ B2)−1 is a strongly holonomic F′ ∗ B′1B3-module.
Indeed, in view of [14, Lemma 4.5(2)],

GK-dim(M′) = GK-dim(M) − k = m − k = 1
2 rank(B′1B3),

and M′ is F′ ∗C-torsion-free if F′ ∗C is commutative (see [11, Lemma 4.3]). We
note that the 2-cocycle of F′ ∗ B′1B3 is the restriction to B′1B3 of the 2-cocycle of
F ∗ B′1B2B3. Then the induction hypothesis yields that

F ∗ B′1B3
vir
= (F ∗C1) ⊗F (F ∗C2) ⊗F · · · ⊗ (F ∗Cm−k). (4.6)

By parallel reasoning applied to F ∗ B2B3B′4, which has center F ∗ B3, we deduce that

F ∗ B2B′4
vir
= F ∗ E1 ⊗F (F ∗ E2) ⊗F · · · ⊗F (F ∗ Ek). (4.7)

Combining (4.5), (4.6) and (4.7) proves the theorem. �

5. Nonholonomic simple modules

We now consider the problem of the GK dimensions of simple modules over the
algebras F ∗ A. In particular, we wish to show there can be simple F ∗ A-modules
with distinct GK dimensions. We shall achieve this by embedding F ∗ A in a principal
ideal domain. Given an algebra F ∗ A, let B be a subgroup of A such that A/B is infinite
cyclic. The localization F ∗ A(F ∗ B)−1 is a crossed product D ∗ A/B, where D denotes
the quotient division ring F ∗ B(F ∗ B)−1. Moreover, if A/B = 〈uB〉, then D ∗ A/B is a
skew Laurent extension D[ū±1, σ], where σ(d) = ū dū−1 for all d ∈ D.
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L 5.1. Suppose that F ∗ A has center exactly F and A has a subgroup B such that
F ∗ B is commutative and A/B is infinite cyclic. If M is a nonzero finitely generated
F ∗ A-module that is finitely generated as an F ∗ B-module, then M is F ∗ B-torsion-
free.

P. Suppose to the contrary that the F ∗ B-torsion submodule T of M is nonzero.
Now F ∗ B \ {0} is a right Ore subset in F ∗ A, so T is an F ∗ A-submodule of M.
Since F ∗ B is noetherian, the hypothesis in the lemma that M is finitely generated as
an F ∗ B-module implies that T is finitely generated as an F ∗ B-module. It follows
by [13, Lemma 2.7] that the GK dimensions of T as an F ∗ A-module and as an F ∗ B-
module are equal. But T is F ∗ B-torsion by definition, and so

GK-dim(T ) < rank(B) = t − 1

by Definition 2.3 and [13, Proposition 2.6], where rank(A) = t.
We assume for clarity that GK-dim(T ) = t − 2, for our reasoning below is equally

valid for all possible values of GK-dim(T ) less than t − 1. By Definition 2.3, there
is a subgroup C of B of rank t − 2 such that T is not F ∗C-torsion, and in view
of [13, Lemma 2.6], C may be chosen such that B/C is infinite cyclic. We pick
a basis {v1, v2, . . . , vt−2} of C. Since B/C � Z, this can be extended to a basis
{v1, v2, . . . , vt−2, vt−1} of B. Set S := F ∗C \ {0}. We denote the right Ore localization
(F ∗ A)S −1 as R0 = F(v1, . . . , vt−2)[vt−1, u], with the localized generators v1, . . . , vt−2

in parentheses. As noted above, T is not S -torsion and so the localization TS −1

is a nonzero R0-module. Further, TS −1 is finite-dimensional as an F1-space, where
F1 = (F ∗C)S =1, in view of [13, Lemma 2.3]. By [18, Theorem 3.9],

[vt−1, ū]s
t−2∏
i=1

[vi, ū]ti = 1,

where ti ∈ Z and s = dimF1 (TS −1) > 0. This yields

[
vt−1

s
t−2∏
i=1

vi
ti , ū

]
= 1,

which implies that vt−1
s ∏t−2

i=1 vi
ti is central in F ∗ A, contrary to the hypothesis. It now

follows that T = 0 as claimed. �

D 5.2. Let R be a principal ideal domain. An element r ∈ R is irreducible if
in any factorization r = st, where s, t ∈ R, at least one of s and t is a unit.

P 5.3. Suppose that F ∗ A has center exactly F and A has a subgroup B
such that F ∗ B is commutative and A/B is infinite cyclic. Then F ∗ A has a simple
module S 1 such that GK-dim(S 1) = 1. Furthermore, let A/B = 〈uB〉 and R be the right
Ore localization F ∗ A(F ∗ B)−1. Let r be an irreducible element in the principal ideal
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domain R. If J := F ∗ A ∩ rR contains a nonzero element γ such that in the (unique)
expression

γ =

t∑
i=s

βiū
i, (5.1)

where s, t ∈ Z and βi ∈ F ∗ B, the leading elements βs and βt are units in F ∗ B, then
S 2 := F ∗ A/J is a simple F ∗ B-torsion-free module and GK-dim(S 2) = n − 1.

P. First, we show that S 2 is simple and GK-dim(S 2) = n − 1. As noted above, R
is a principal ideal domain. Thus if r is irreducible in R, then rR is a maximal right
ideal in R.

By [7, Lemma 3.3], J = F ∗ A ∩ rR is a maximal right ideal of F ∗ A if and only if
for each β ∈ F ∗ B \ {0},

F ∗ A = βF ∗ A +J . (5.2)

We shall show that S 2 = F ∗ A/J is simple by showing that (5.2) holds. Indeed, by
the hypothesis of the theorem, J contains a nonzero element γ of the form (5.1),
so by [5, Proposition 2.1], S 2 = F ∗ A/J is a finitely generated F ∗ B-module. Take
β ∈ F ∗ B \ {0} and set Jβ := β(F ∗ A) +J and Mβ := F ∗ A/Jβ. Then Mβ is a finitely
generated F ∗ B-module. If Mβ , 0, then there exists m ∈ Mβ \ {0}, namely the coset
1 +Jβ, such that mβ = 0 for the nonzero element β ∈ F ∗ B. But this is a contradiction,
in view of Lemma 5.1. Hence Mβ = 0, and it follows that (5.2) is satisfied and thus S 2

is simple. As already noted above, S 2 is finitely generated as an F ∗ B-module and so
is F ∗ B-torsion-free, by Lemma 5.1. Hence by Definition 2.3, GK-dim(S 2) ≥ n − 1.
But it is impossible that GK-dim(S 2) = n, for this would imply that S 2 � F ∗ A, by
Definition 2.3, and it is easily seen that F ∗ A is not a simple F ∗ A-module.

It remains to show that F ∗ A has a simple module S 1 with GK-dim(S 1) = 1. By
[10, Section 2], F ∗ A has a finitely generated module T1 with GK-dim(T1) = 1. We
claim that if N is a finitely generated F ∗ A-module such that GK-dim(N) = 0, then
N = 0. Indeed, if N , 0, then by [10, Theorem 3], A has a subgroup A′ of finite index
such that F ∗ A′ is commutative. It is easily seen, from (1.4), that F ∗ A has center
larger than F in this case, contrary to the hypothesis in Proposition 5.3.

By reasoning like that in the proof of Proposition 4.4, it follows that T1 has finite
length and so contains a simple submodule S 1 for which GK-dim(S 1) = 1. �

Here is our third main result, which follows from the previous proposition.

T 5.4. Suppose that F ∗ A has center exactly F and A has a subgroup B such
that A/B is infinite cyclic and F ∗ B is commutative. Then F ∗ A has a simple F ∗ B-
torsion-free module S for which GK-dim(S ) = n − 1.

E 5.5. Let t be a positive integer and K be the ordinary Laurent polynomial
ring Q[u±1

1 , . . . , u±1
t ] over Q in the t variables u1, . . . , ut. Let p1, p2, . . . , pt be distinct

primes in Z, and define the automorphism σ of K by σ(ui) = piui. The skew Laurent
extension T = K[u±1, σ] is a quantum Laurent polynomial algebra that satisfies the
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hypothesis of Proposition 5.3. Furthermore, let K∗ := K \ {0} and R be the right Ore
localization of T at K∗. Let r be an irreducible element of R of the form

r = uk + f1uk−1 + · · · + fk−1u + g,

where k ∈ Z+, f1, . . . , fk−1, g ∈ K, and g is a monomial. Clearly, r satisfies (5.1). By
Proposition 5.3, the T -module T/T ∩ rR is simple and torsion-free over K.
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