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On Intrinsic Quadrics

Anne Fahrner and Jürgen Hausen

Abstract. An intrinsic quadric is a normal projective variety with a Cox ring deûned by a single
quadratic relation. We provide explicit descriptions of these varieties in the smooth case for small
Picard numbers. As applications, we ûgure out in this setting the Fano examples and (aõrmatively)
test Fujita’s freeness conjecture.

1 Introduction

Intrinsic quadrics were introduced in [5] as an example class of normal, projective,
algebraic varieties that are accessible by elementary combinatorial methods similar
to toric varieties. Recall that the normal projective toric varieties X are characterized
by the property that their divisor class group Cl(X) is ûnitely generated and their
Cox ring

R(X) = ⊕
Cl(X)

Γ(X ,OX(D))

is a polynomial ring. An intrinsic quadric is by deûnition a normal projective vari-
ety X with ûnitely generated divisor class group Cl(X) and a ûnitely generated Cox
ring admitting homogeneous generators such that the associated ideal of relations is
generated by a single, purely quadratic polynomial. In that sense, studying intrinsic
quadrics is a quitemoderate step beyond toric geometry. Somewell known non-toric
examples are the usual smooth quadrics X ⊆ Pn for n ≥ 4 and several cubic surfaces
inP3. We refer the reader to [7] for a sample use of intrinsic quadrics as a testing class.

In this article, we take a closer look at smooth intrinsic quadrics of small Picard
number, but arbitrarily high dimension. For toric varieties, the analogous idea has
been pursued byKleinschmidt [19] in Picard number two and byBatyrev [4] in Picard
number three. Moreover, in [13], we described all smooth, rational varieties of Picard
number two that come with a torus action of complexity one. Similarly to the toric
setting, where the restriction of being smooth of Picard number one allows just the
projective spaces, the situation turns out to be simple for intrinsic quadrics: in Picard
number one, we only ûnd the classical smooth quadrics X ⊆ Pn ; see Proposition 3.1.
In Picard number two, we obtain a considerably larger class. _e ûrst main result
of the paper provides a full description of these varieties X in terms of their Cl(X)-
graded Cox ring and the semiample cone τX ⊆ ClQ(X). _is collection of data indeed
ûxes X; see Section 2 for a brief reminder and [3] for more background.
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_eorem 1.1 Let X be a smooth intrinsic quadric of Picard number ρ(X) = 2. _en
X has divisor class group Cl(X) ≅ Z2 and, with suitable integers n,m ∈ Z≥0, the Cox
ring of X is given by

R(X) ≅ K[T1 , . . . , Tn , S1 , . . . , Sm]/⟨g⟩,

g =
⎧⎪⎪
⎨
⎪⎪⎩

T1T2 + ⋅ ⋅ ⋅ + Tn−1Tn , n even,
T1T2 + ⋅ ⋅ ⋅ + Tn−2Tn−1 + T2

n , n odd.

_e possible constellations for theCl(X)-grading ofR(X) and the semiample cone τX ⊆

ClQ(X) are listed below; we distinguish four types and write w i ∶= deg(Ti) and u j ∶=

deg(S j) for the Cl(X)-degrees.

Type 1: Fix α ∈ Z≥0. We have n ≥ 5 and m ≥ 2. Moreover, w1 = ⋅ ⋅ ⋅ = wn = (1, 0) and
u j = (a j , 1) with 0 = a1 ≤ a2 ≤ ⋅ ⋅ ⋅ ≤ am = α holds.

τX
w i

(0, 1) (α, 1)

Here, X is the projectivization P(OY(a1)⊕OY(a2)⊕ ⋅ ⋅ ⋅ ⊕OY(am)) of the split vector
bundle deûned by a1 , . . . , am over the smooth quadric Y = V(g) ⊆ Pn−1.

Type 2: Fix α ∈ Z≥0. We have n ≥ 5 and m ≥ 2. Moreover, u1 = ⋅ ⋅ ⋅ = um = (1, 0) holds
and we have w i = (a i , 1) with 0 ≤ a i ≤ α for i = 1, . . . , n such that
(a) w1 = (0, 1) and w2 = (α, 1),
(b) w i +w i+1 = (α, 2) for all odd i < n and 2wn = (α, 2), if n is odd.

τX
u j

w1 = (0, 1) (α, 1) = w2

Here, X admits a locally trivial ûbration X → Pm−1 with ûbers isomorphic to the smooth
quadric V(g) ⊆ Pn−1.

Type 3: We have n ≥ 5 and m ≥ 1. Moreover, u1 = ⋅ ⋅ ⋅ = um = (1, 0) holds and the w i
satisfy
(a) w1 = (0, 1) and w2 = (2, 1),
(b) w3 = ⋅ ⋅ ⋅ = wn = (1, 1).

τX

u j

w2
w1

w i ,
i≥3

Here, X is the blowing-up of the projective space Pn+m−3 centered at the smooth quadric
V(g − T1T2 , S1 , . . . , Sm) ⊆ Pn+m−3.
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Type 4: Fix 0 ≤ a ≤ α ∈ Z. We have n ≥ 6 with n even and m ≥ 0. Moreover,
u j = (a j , 1) holds with 0 ≤ a j ≤ α and
(a) w1 = w3 = ⋅ ⋅ ⋅ = wn−1 = (1, 0),
(b) w2 = w4 = ⋅ ⋅ ⋅ = wn = (a, 1),
(c) the vectors (α, 1) and (0, 1) occur among w1 , . . . ,wn , u1 , . . . , um .

τX
w i ,
i odd

w i ,
i even

(0, 1) (α, 1)

Here, X admits a locally trivial ûbration X → Pn/2−1 with ûbers isomorphic to the
projective space Pn/2+m−2.
Conversely, each of the above constellations in Types 1 to 4 deûnes a smooth intrinsic
quadric of Picard number 2.

We say that an intrinsic quadric is full if all generators of its Cox ring show up
in the relation. _e full intrinsic quadrics of _eorem 1.1 are precisely the cases of
Type 4 with m = 0 and hence α = 0; they have been found in [5] under the additional
hypothesis of a torsion free divisor class group. Moreover, the cases n = 5 and n = 6
in Types 1 to 4 of _eorem 1.1 are precisely the smooth intrinsic quadrics allowing a
torus action of complexity one and thus represent exactly the overlap with [13].

Recall that a normal projective variety X is Fano if it admits an ample anticanon-
ical divisor. More generally, X is called almost Fano if it has a numerically eòective
anticanonical divisor; we say that X is truly almost Fano if it is almost Fano but not
Fano. _eorem 1.1 gives us in every dimension the (almost) Fano smooth intrinsic
quadrics of Picard number two.

Corollary 1.2 In the notation of_eorem 1.1, the (truly almost) Fano varieties among
the smooth intrinsic quadrics X of Picard number two are characterized by the following
conditions.

Type Fano truly almost Fano

1 mα < n − 2 + a1 + ⋅ ⋅ ⋅ + am mα = n − 2 + a1 + ⋅ ⋅ ⋅ + am

2 n−2
2 α < m n−2

2 α = m

3 n − 2 > m n − 2 = m

4 mα < n−2
2 + a1 + ⋅ ⋅ ⋅ + am

and w2 = (α, 1)
mα = n−2

2 + a1 + ⋅ ⋅ ⋅ + am

and w2 = (α, 1)

4 u1 = ⋅ ⋅ ⋅ = um = (1, 1)
and w2 = (0, 1)
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Note that in _eorem 1.1, the variety X is of dimension n +m − 3. _us, the above
table provides us in particular for every dimensionwith the numbers of (almost) Fano
smooth intrinsic quadrics of Picard number two. _e overlap with the classiûcation
of smooth Fano threefolds by Mori and Mukai consists of the threefold Type 3 with
n = 5, m = 1, and the threefold of Type 4 with n = 6, m = 0, which occur as No. 2.30
and No. 2.32 in [20], respectively.
For a Fano, not necessarily smooth, full intrinsic quadric X, we see in Proposi-

tion 5.1 that its Picard number is bounded by ρ(X) ≤ 3. Moreover, if X is smooth,
then we can further show ρ(X) ≤ 2 and arrive at the following theorem.

_eorem 1.3 Let X be a Fano smooth full intrinsic quadric. _en X is of Picard
number ρ(X) ≤ 2 and

(i) if ρ(X) = 1, X is isomorphic to the smooth projective quadric V(T2
0 + ⋅ ⋅ ⋅ + T2

n) ⊆

Pn , where n ≥ 4;
(ii) if ρ(X) = 2, X is isomorphic to V(T0S0 + ⋅ ⋅ ⋅ + TnSn) ⊆ Pn × Pn , the �ag variety

of type (1, n − 1, 1), where n ≥ 2.

We use our results to test Fujita’s freeness conjecture, which says that for any
smooth projective variety X with canonical divisor CX , the divisor CX + sD is base
point free provided that D is ample and s ≥ dim(X)+ 1 holds; see [15]. _is statement
is known to hold for varieties with torus action of complexity at most one [1, 14] and
in general up to dimension ûve [11, 18, 22, 24]. Corollary 4.4 veriûes Fujita’s freeness
conjecture for smooth intrinsic quadrics of Picard number at most two.

We turn to Picard number three. Recall that smooth toric varieties of Picard num-
ber three have been described by Batyrev in [4] in terms of primitive collections. In
the setting of intrinsic quadrics, we obtain a complete picture in the full case.

_eorem 1.4 Let X be a full smooth intrinsic quadric of Picard number three. _en
X has divisor class group Cl(X) = Z3, and, with a suitable even integer n ≥ 8, the Cox
ring of X is given by

R(X) ≅ K[T1 , . . . , Tn]/⟨g⟩, g ∶= T1T2 + ⋅ ⋅ ⋅ + Tn−1Tn .

_e possible constellations for the Cl(X)-gradings and the ample cone of X are the fol-
lowing. _ere is an integer a ≥ 0 such that the degree of the relation is µ ∶= deg(g) =
(1, a, 1), and we have

w1 = w3 = (0, 1, 0), w2 = w4 = (1, a − 1, 1),
w5 = (0, 0, 1), w6 = (1, a, 0), w7 = (1, 0, 0), w8 = (0, a, 1).

For all odd 9 ≤ i < n, the generator degrees w i , w i+1 coincide either with w1 ,w2 or are
located on the line segments conv(w5 ,w8) and conv(w6 ,w7).

Moreover, as indicated in Figure 1, the semiample cone τX ⊆ Cl(X)Q of X is given as
the intersection of two cones:

τX = cone(w1 ,w2 ,w6) ∩ cone(w1 ,w6 ,w8).
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τX

w1

w2

w5

w6

w8

w7

Figure 1

Conversely, each of the above constellations deûnes a full smooth intrinsic quadric X of
Picard number 3. Moreover, each such X admits a locally trivial ûbration with ûbers a
projective space onto a smooth projective toric variety of Picard number two.

Again, we use this description to verify Fujita’s freeness conjecture for full smooth
intrinsic quadrics of Picard number three; see Corollary 6.1. As soon as we leave the
full case, the situation in Picard number three becomes much more ample; complete
descriptions in the dimensions three and four have been elaborated in [12].

2 Basics on Intrinsic Quadrics

We ûrst discuss purely quadratic polynomials in general and present a graded normal
form in Proposition 2.1. _en we provide a quick guide to the general combinatorial
theory of [3, Chap. 3] adapted to the sample class of intrinsic quadrics. _is allows us
in particular to encode and read oò the necessary geometric properties.

_roughout thewhole article,wework over an algebraically closed ûeldK of char-
acteristic zero. A grading of a K-algebra R by a ûnitely generated abelian group K is
a direct sum decomposition

R = ⊕
w∈K

Rw

into vector subspaces Rw ⊆ R being compatible with multiplication in the sense that
RwRw′ ⊆ Rw+w′ holds for all w ,w′ ∈ K. A homomorphism of graded algebras R =

⊕K Rw and S =⊕L Su is a pair (ψ, F) consisting of an algebra homomorphismψ∶R →
S and a group homomorphism F∶K → L such that one always has ψ(Rw) ⊆ SF(w).
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In this situation, we speak of a graded homomorphism if K = L holds and F is the
identity map.

Proposition 2.1 Let K be a ûnitely generated abelian group, consider a K-grading on
the polynomial ring K[T1 , . . . , Ts] such that the variables T1 , . . . , Ts and the following
quadratic polynomial are K-homogeneous:

g = ∑
1≤i≤ j≤s

a i jTiTj ∈ K[T1 , . . . , Ts].

_en there are a linear automorphism ψ∶ lin(T1 , . . . , Ts) → lin(T1 , . . . , Ts) inducing
a graded automorphism Ψ∶K[T1 , . . . , Ts] → K[T1 , . . . , Ts] and non-negative integers
q, t with q + t ≤ s, such that

Ψ(g) = gq ,t ∶= T1T2 + ⋅ ⋅ ⋅ + Tq−1Tq + T2
q+1 + ⋅ ⋅ ⋅ + T2

q+t

and deg(Tq+k) ≠ deg(Tq+l) holds for all 0 < k < l < t. In this setting, s − q − t
is the dimension of the singular locus of V(gq ,t) ⊆ Ks and t counts the u ∈ K with
2u = deg(gq ,t) such that the number of Ti of degree u showing up in gq ,t is odd.

Proof Suitably renumbering the variables, we can assume that T1 , . . . , Tr are pre-
cisely the variables that show up in g. Letw1 , . . . ,wn ∈ K be the degrees of T1 , . . . , Tr ;
we impose wk ≠ w l for k ≠ l here. Moreover, set µ ∶= deg(g) ∈ K. Further suitable
renumbering of variables yields

w1 +w2 = ⋅ ⋅ ⋅ = wm +wm+1 = µ, 2wm+2 = ⋅ ⋅ ⋅ = 2wn = µ

with a unique odd number −1 ≤ m < n. Some of the variables T1 , . . . , Ts may share
the same degree, and we have

V ∶= lin(T1 , . . . , Ts) = V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vn ⊕ V0 ,

where Vk is the linear subspace generated by all Ti , 1 ≤ i ≤ r, of degree wk , and V0 is
the linear subspace generated by the variables Tr+1 , . . . , Ts . Suitably renumbering the
Ti again, we achieve

T1 , . . . , Td1 ∈ V1 , ⋅ ⋅ ⋅ Tdn−1+1 , . . . , Tdn ∈ Vn , Tdn+1 , . . . , Ts ∈ V0 .

_e idea is to build up ψ stepwise from appropriate endomorphismsV → V . First,
consider variables Ti ∈ V1 and Tj ∈ V2 with α i j ≠ 0. Deûne a linear automorphism

ψ i j ∶V Ð→ V , Tj z→ a−1
i j Tj − a−1

i j ∑
k≠ j
a ikTk , Tl z→ Tl for l ≠ j.

_en ψ i j respects the direct sum decomposition of V and restricts to the identity on
all components diòerent from V2. Moreover, ψ i j extends to an automorphism Ψi j of
the K-graded algebraK[T1 , . . . , Ts], and we have

Ψi j(g) = (Ti +∑
k≠i
a−1
i j ak jTk)Tj + ∑

k≠i , l≠ j
ãklTkTl

with some ãkl ∈ K. Now deûne a linear automorphism

ψ ji ∶V Ð→ V , Ti z→ Ti − a−1
i j ∑

k≠i
ak jTk , Tl z→ Tl for l ≠ i .
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Similarly as before, ψ ji respects the direct sum decomposition of V and restricts to
the identity on all components diòerent from V1. Again, ψ ji extends to an automor-
phism Ψji of the K-graded algebraK[T1 , . . . , Ts]. _is time we have

Ψji(Ψi j(g)) = TiTj + ∑
k≠i , l≠ j

ãklTkTl .

_us, a suitable composition of the automorphisms Ψji ○Ψi j turns g into the desired
form with respect to the variables from V1 and V2. Proceeding similarly, we can settle
all other pairs Vl and Vl+1 for l = 3, 5, . . . ,m.

On each subspace Vk for k > m+ 1, the variables all have the same K-degree and, if
a variable of a given monomial of g belongs to Vk , then all variables of this monomial
belong to Vk . _us, we can treat the part qk of q built from variables of Vk separately.
_e usual diagonalization procedure for theGrammatrix of qk leads to a presentation
of qk as a sum of squares. If the number ck of these squares is even, then we turn the
whole qk into a sum of terms TiTj with i ≠ j. Otherwise, we turn qk into a sum of
TiTj with i ≠ j plus one single square.

We call gq ,t ∈ K[T1 , . . . , Ts] as in Proposition 2.1 a standard K-homogeneous qua-
dratic polynomial. As the supplement of the proposition shows, a given standard
K-homogeneous quadratic polynomial gq ,t can be transformed via an automorphism
of graded algebras into another one, say gq′ ,t′ , if and only if q = q′ and t = t′ hold. If
for some gq ,t the sum q+ t is odd, thenwemust have t ≥ 1. Let us brie�y discusswhat
happens if t > 1 holds.

Remark 2.2 Let gq ,t ∈ K[T1 , . . . , Ts] be a standardK-homogeneous quadratic poly-
nomial with t > 1. _en, for any two 1 ≤ i < j ≤ t, twice the degree of Tq+i as well as
twice the degree of Tq+ j equal the degree of gq ,t and thus we have

2(deg(Tq+i) − deg (Tq+ j)) = 0 ∈ K .

In particular, the number t is bounded by the order of the subgroupK2 ⊆ K consisting
of all elements annihilated bymultiplication with 2. Here is a concrete example: Take

K = Z/2Z ×Z/2Z, g = T2
1 + T2

2 ∈ K[T1 , T2].

Deûne a K-grading on K[T1 , T2] by setting deg(T1) ∶= (1, 0) and deg(T2) ∶= (0, 1).
_en g = g0,2 is a standard K-homogeneous quadratic polynomial in K[T1 , T2].

We turn to the construction of intrinsic quadrics. Recall that every Mori dream
space, that means, every irreducible, normal, projective variety X with ûnitely gener-
ated divisor class group Cl(X) and ûnitely generated Cox ring

R(X) = ⊕
Cl(X)

Γ(X ,OX(D))

can be retrieved from R(X) as follows. _e above grading deûnes an action of the
quasitorus H = SpecK[Cl(X)] on the total coordinate space X = SpecR(X). If
u ∈ Cl(X) is any ample class of X, then the associated set of semistable points is

X ss
(u) = {x ∈ X; f (x) ≠ 0 for some f ∈ R(X)nu , where n > 0} ⊆ X .
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_is is an open H-invariant set and the variety X is obtained as the associated geo-
metric invariant theory quotient X = X ss

(u)//H. We refer the reader to [3] for more
background.

Reversing the picture just drawn,we can produce all Mori dream spaces from suit-
able ûnitely generated, normal, integral, K-gradedK-algebras

R = ⊕
w∈K

Rw ,

where “suitable” characterizes the Cox rings among these algebras. Let us brie�y recall
from [3] what that means. First, R has to be K-factorial in the sense that we have
unique factorization in themultiplicativemonoid R× ⊆ R of non-zero homogeneous
elements of R; for instance, R can be a unique factorization domain in the classical
sense. For the further conditions, ûx any system f1 , . . . , fs of pairwise non-associated
K-prime, i.e., prime in R×, generators of R and consider the (convex, polyhedral)
cones

κ0 ∶= cone ( deg( f1), . . . , deg( fs)) , κ1 ∶=
s
⋂
i=1
cone(deg( f j); j ≠ i)

in the rational vector space KQ = K ⊗Z Q associated with K. _en we ask the K-
grading to be pointed in the sense that R0 = K holds and the weight cone κ0 contains
no lines. Moreover, the K-grading must be almost free in the sense that any s− 1 of the
deg( f i) generate K as a group. Finally, themoving cone κ1 has to be of full dimension
in KQ.

Example 2.3 Let a ûnitely generated abelian group K and a pointed, almost free
K-grading of the polynomial ringK[T1 , . . . , Ts] be given such that all variables Ti are
K-homogeneous and themoving cone is of full dimension in KQ. Moreover, let gq ,t ∈

K[T1 , . . . , Ts] be a standard K-homogeneous quadratic polynomial and consider the
factor algebra R ∶= K[T1 , . . . , Ts]/⟨gq ,t⟩ with its induced K-grading.

(i) If q + t ≥ 5 holds, then R is a unique factorization domain and the K-grading
of R is factorial.

(ii) For q + t < 5, the ring is normal, integral with factorial K-grading if and only
if K = Zs/M and deg(Ti) = e i +M hold, whereM is the row space of an r × s matrix
with r < s of the following shape

q = 0, t = 4 ∶

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 2 0 0 0 . . . 0
−2 0 2 0 0 . . . 0
−2 0 0 2 0 . . . 0
d1 d2 d3 d4 d′1 . . . d′m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

q = 2, t = 2 ∶

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 2 0 0 . . . 0
−1 −1 0 2 0 . . . 0
d1 d2 d3 d4 d′1 . . . d′m

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

q = 0, t = 3 ∶

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−2 2 0 0 . . . 0
−2 0 2 0 . . . 0
d1 d2 d3 d′1 . . . d′m

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

In Case (ii), the conditions “almost free”, “pointed” and “full-dimensional moving
cone” on the K-grading mean that the columns of the listed matrices are pairwise
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diòerent primitive lattice points in Zr generatingQr as a cone. For the last two cases,
the statement on K-factoriality follows from the results of [16] and for the ûrst one, a
proof in amore general framework will be presented elsewhere.

We are ready for explicit construction of intrinsic quadrics. _e notation intro-
duced in the subsequent two constructionswill be used throughout thewhole article.

Construction 2.4 (Standard intrinsic quadrics) Consider a pointed K-grading of
the polynomial ring K[T1 , . . . , Tn , S1 , . . . , Sm], where K denotes a ûnitely generated
abelian group and where all variables Ti and S j are K-homogeneous, any n+m− 1 of
their degrees generate K as a group and themoving cone is of full dimension in KQ.
Moreover, let

gq ,t ∈ K[T1 , . . . , Tn , S1 , . . . , Sm]

be a standard K-homogeneous quadratic polynomial with 3 ≤ q + t = n; thus, by
choice of notation, gq ,t depends precisely on the variables T1 , . . . , Tn . Assume that the
K-grading is factorial; that means that Condition 2.3(i) or (ii) is satisûed. Take any
u ∈ K from the relative interior of the moving cone. _en we obtain a commutative
diagram

V(gq ,t) = X ⊆

⊆

Z =

⊆

Kn+m

X ss
(u) ⊆

//H

��

Z
ss
(u)

//H
��

X // Z ,
where H = SpecK[K] is the quasitorus corresponding to K, the downwards arrows
are the GIT-quotients deûned by u and the bottom horizontal arrow is a closed em-
bedding. Moreover, X and Z are normal projective varieties and we have

dim(X) + 1 = dim(Z) = n +m − dim(KQ), Cl(X) = Cl(Z) = K

for the respective dimensions and divisor class groups. Moreover, Z is a toric variety
and we call X = X(q, t,m, u) a standard intrinsic quadric. _e Cox ring of X is given
as K-graded factor algebra

R(X) = K[T1 , . . . , Tn , S1 , . . . , Sm]/⟨gq ,t⟩.

By a full intrinsic quadric, we mean an intrinsic quadric with a deûning quadratic
polynomial g such that the normal form of g is gq ,t ∈ K[T1 , . . . , Tn] with n = q + t,
that means that there are no free variables S j .

By deûnition, intrinsic quadrics are normal projective varieties X admitting a pre-
sentation of the Cox ring by Cl(X)-homogeneous generators such that the ideal of
relations is generated by single, purely quadratic, Cl(X)-homogeneous polynomial.
As an immediate consequence ofProposition 2.1,we obtain the following proposition.

Proposition 2.5 Every intrinsic quadric is isomorphic to a standard intrinsic quadric.
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Note that in Construction 2.4 the set of semistable points Z
ss
(u) is an open toric

subvariety of Z = Kn+m and the quotient map π∶ Z
ss
(u) → Z for the action of H is

a toricmorphism; in fact this is the usual quotient presentation of the toric variety Z
from [9]. Cutting down the orbit decomposition from the ambient toric variety Z to
X yields a decomposition of X into locally closed subvarietieswhichwe call the pieces
of X. We need to identify these pieces explicitly.

Construction 2.6 Notation as in Construction 2.4. _e degree homomorphism
Q∶Zn+m → K sending the i-th canonical basis vector e i ∈ Zn+m to the weight
deg(Ti) ∈ K gives rise to a pair ofmutually dual exact sequences of abelian groups

0 // L // Zn+m P // Zr

0 oo K oo
Q

Zn+m oo
sssP∗

Zr oo 0.

For every face γ0 ⪯ γ of the positive orthant γ = Qn+m
≥0 , denote by Z(γ0) ⊆ Z the set

of all points z ∈ Z having coordinates z i ≠ 0 if e i ∈ γ0 and z i = 0 otherwise. _is sets
up a bijection

{faces of γ}Ð→ {toric orbits of Z}, γ0 z→ Z(γ0).

A face γ0 ⪯ γ is called Z-relevant, if the cone Q(γ0) ⊆ KQ contains u in its relative
interior. _e set of semistable points Z

ss
(u) is the union of all toric orbits Z(γ1),

where γ0 ⪯ γ1 with a Z-relevant γ0 ⪯ γ. Via the quotient map π∶ Z
ss
(u) → Z, we

obtain a bijection

{Z-relevant faces of γ}Ð→ {toric orbits of Z}, γ0 z→ Z(γ0) ∶= π(Z(γ0)).

We say that γ0 ⪯ γ is an X-face if X(γ0) ∶= X ∩ Z(γ0) is non-empty and we call it
X-relevant if in addition γ0 is Z-relevant. _e X-relevant faces of γ correspond to the
toric orbits of Z intersecting X non-trivially. _is leads to a bijection

{X-relevant faces of γ}Ð→ {pieces of X}, γ0 z→ X(γ0) ∶= X ∩ Z(γ0).

_e covering collection of X is the set cov(X) of all minimal X-relevant faces of γ. _e
union over all aõne toric charts Zγ0 ⊆ Z,where γ0 stems from the covering collection,
is theminimal toric ambient variety of X; it is theminimal open toric subvariety of Z
containing X as a closed subvariety.

Remark 2.7 Due to the speciûc form of gq ,t ∈ K[T1 , . . . , Tn , S1 , . . . Sm], we can
explicitly describe the faces γ0 ⪯ γ deûning a non-empty set X(γ0) = X ∩ Z(γ0). For
any sequence 1 ≤ i1 < ⋅ ⋅ ⋅ < ik ≤ n +m, we denote

γ i1 , . . . , ik ∶= cone(e i1 , . . . , e ik) ⪯ γ.

_is gives us all the faces of the orthant γ = Qn+m
≥0 . We consider the following four

basic types of faces:
(i) γ i , i+1, j, j+1 with 1 ≤ i < j < q odd,
(ii) γ i , i+1, j with 1 ≤ i < q odd and q + 1 ≤ j ≤ q + t,
(iii) γ i , j with q + 1 ≤ i < j ≤ q + t,
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(iv) γ i1 , . . . , ik ,q+t+1, . . . ,q+t+m , where i1 ∈ {1, 2}, i2 ∈ {3, 4}, . . . , ik ∈ {q − 1, q} with
k = q/2.

_en γ0 ⪯ γ is an X-face, i.e., the set X(γ0) is non-empty, if and only if one of the
following holds

● τ ⪯ γ0 with a face τ ⪯ γ of type (i), type (ii), or type (iii).
● γ0 ⪯ τ with a face τ ⪯ γ of type (iv).

A point x ∈ X of a variety is factorial if the local ringOX ,x is a unique factorization
domain. A variety X is called locally factorial if all its points are factorial; this is equiv-
alent to the property that every Weil divisor of X is Cartier. We say that a standard
intrinsic quadric X arising from Construction 2.1 is quasismooth if X ss

(u) is smooth;
this implies that X has at most abelian quotient singularities.

Proposition 2.8 Let X = X(q, t,m, u) be a standard intrinsic quadric arising from
Construction 2.4.

(i) Let γm ∶= cone(eq+t+1 , . . . , eq+t+m) ⪯ γ. _en the singular locus of the total
coordinate space X = V(gq ,t) is given by

Xsing
= V(T1 , . . . , Tq+t) = ⋃

γ0⪯γm

X(γ0) ⊆ X .

(ii) _e variety X is quasismooth if and only if every X-relevant face γ0 ⪯ γ contains
some e i with 1 ≤ i ≤ q + t.

(iii) _e piece X(γ0) associatedwith an X-relevant γ0 ⪯ γ consists of locally factorial
points of X if and only if Q(linQ(γ0) ∩Zn+m) generates K as a group.

(iv) _e variety X is locally factorial if and only if for every γ0 ∈ cov(X), the image
Q(linQ(γ0) ∩Zn+m) generates K as a group.

(v) _e piece X(γ0) associated with an X-relevant γ0 ⪯ γ consists of smooth points
of X if and only if the following two statements hold:

(a) Q(linQ(γ0) ∩Zn+m) generates K as a group;
(b) e i ∈ γ0 holds for some 1 ≤ i ≤ q + t.

(vi) _e variety X is smooth if and only if it is quasismooth and for every γ0 ∈

cov(X), the image Q(linQ(γ0) ∩Zn+m) generates K as a group.

Proof _e ûrst statement is obvious and the remaining ones are the adapted versions
of [3, Cor. 3.3.1.8 and Prop. 3.3.1.10].

_e following three statements are proved inmore generality in [3, Sec. 3.3]. Below,
we denote for a convex, polyhedral cone σ in a rational vector space V , its relative
interior by σ○.

Proposition 2.9 Let X = X(q, t,m, u) be a standard intrinsic quadric arising from
Construction 2.4. _en the Picard group of X is given as

Pic(X) = ⋂
γ0∈cov(X)

Q( linZ(γ0) ∩ E) ⊆ K = Cl(X).
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Proposition 2.10 Let X = X(q, t,m, u) be a standard intrinsic quadric arising from
Construction 2.4. _en the cones of eòective, movable, semiample, and ample divisor
classes of X in ClQ(X) = KQ are given as

Eò(X) = Q(γ), Mov(X) = ⋂
γ0⪯γ facet

Q(γ0),

SAmple(X) = ⋂
γ0∈cov(X)

Q(γ0), Ample(X) = ⋂
γ0∈cov(X)

Q(γ0)○ .

Moreover, for every u′ ∈ Ample(X)we have X ss
(u) = X ss

(u′) for the sets of semistable
points and thus X = X(q, t,m, u′).

Proposition 2.11 Let X = X(q, t,m, u) be a standard intrinsic quadric arising from
Construction 2.4. _en the following statements are equivalent.
(i) X is Q-factorial.
(ii) For every X-relevant γ0 ⪯ γ the image Q(γ0) is of full dimension in KQ.
(iii) _e semiample cone SAmple(X) is of full dimension in KQ.

3 Picard Numbers One and Two: Classification

First, we describe all locally factorial instrinsic quadrics of Picard number one. _en
we show that locally factorial intrinsic quadrics of Picard number two have torsion
free divisor class group, see Proposition 3.3. Finally, as the ûrst part of the proof of
_eorem 1.1, we establish the normal forms for the smooth intrinsic quadrics given
there.

Proposition 3.1 Let X be a locally factorial intrinsic quadric of Picard number one.
_en X has divisor class group Cl(X) ≅ Z and, with suitable integers n ≥ 5 and m ≥ 0,
the Cox ring of X is given by

R(X) ≅ K[T1 , . . . , Tn , S1 , . . . , Sm]/⟨g⟩,

g =
⎧⎪⎪
⎨
⎪⎪⎩

T1T2 + ⋅ ⋅ ⋅ + Tn−1Tn , n even,
T1T2 + ⋅ ⋅ ⋅ + Tn−2Tn−1 + T2

n , n odd.

_e Cl(X)-grading of R(X) is given by deg(Ti) = deg(S j) = 1 for all i = 1, . . . , n
and j = 1, . . . ,m. _us, X is isomorphic to the classical quadric V(g) ⊆ Pn+m−1 with
singular locus V(T1 , . . . , Tn). In particular, X is smooth if and only if m = 0 holds.

Proof Since X is locally factorial, we have Pic(X) = Cl(X). In particular, ClQ(X) is
of dimension one. We can assume that X arises fromConstruction 2.4with a standard
Cl(X)-homogeneous quadratic polynomial gq ,t and that the ample cone Ample(X)

is the positive ray in ClQ(X) = Q. Consider the faces

γ0 ∶= cone(e i), i = 1, . . . , q or i = n + 1, . . . , n +m.

Each of these faces is X-relevant. Since X is locally factorial, Q(e i) generates Cl(X)

as a group; see Proposition 2.8. In particular, if q ≥ 2 holds, then we can conclude
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Cl(X) = Z and

deg(Ti) = 1, i = 1, . . . , n, deg(S j) = 1, j = 1, . . . ,m.

_is implies that t ≤ 1. _e cases n = 3, 4 are impossible: then the Cox ring R(X)

wouldn’t admit unique factorization, but it has to do so, because of the torsion free
divisor class group Cl(X), see [3, Prop. 1.4.1.5]. _us, we also have n ≥ 5, if q ≥ 2
holds.

We exclude the case q = 0. Here, t ≥ 3 must hold. _us, we have the X-relevant
face γ0 = cone(e1 , e2). _us, Cl(X) is generated by deg(T1) and deg(T2), which
implies Cl(X) = Z ⊕ Γ with a cyclic group Γ = Z/kZ and, a�er applying a suitable
automorphism of Cl(X), we can assume

deg(T1) = (1, 0), deg(T2) = (1, 1).

Since 2deg(T1) = 2deg(T2) holds,we obtain k = 2. But then there is noway to assign
to T3 a degree in Cl(X) diòering from the degrees of T1 and T2, a contradiction.

Remark 3.2 Let X be a Q-factorial standard intrinsic quadric with ClQ(X) of
dimension two arising from Construction 2.4. _en the eòective cone Eò(X) is
uniquely decomposed into three convex sets

Eò(X) = τ+ ∪ τ○X ∪ τ−

such that τ+ and τ− do not intersect τ○X = Ample(X) and τ+∩τ− consists of the origin.
Because of τ○X ⊆ Mov(X), each of τ+ and τ− contains at least two (not necessarily
diòerent) degrees of the Cox ring generators T1 , . . . , Tn , S1 , . . . , Sm .

τ○Xτ+

τ−

Note that τ○X is an open cone of dimension two,whereas τ− aswell as τ+ might be one-
dimensional. _e closure τX = SAmple(X) of τ○X is the intersection of two X-relevant
faces, see Proposition 2.10, and thus we ûnd degrees of variables on its boundary.
Moreover, apart from deg(Tn) when t = 1, no degree of a Ti or a S j can lie in τ○X , use
again Proposition 2.10.

Proposition 3.3 Let X be an intrinsic quadric of Picard number two. If X is locally
factorial, then Cl(X) = Pic(X) = Z2 holds.

Proof Since X is locally factorial, every Weil divisor is principal, and thus we have
Cl(X) = Pic(X). _e remaining task is to show that Pic(X) is torsion free. For
this, we can assume that X arises from Construction 2.4. We claim that it suõces to
ûnd a two-dimensional X-relevant face γ0 ⪯ γ. Indeed, Proposition 2.9 tells us that
Pic(X) is a subgroup ofQ(linQ(γ0)∩Zn+m) ⊆ Cl(X). In particular,Q(linQ(γ0)) is of
dimension two. Consequently, being generated by two elements,Q(linQ(γ0)∩Zn+m)

is torsion free. _en also Pic(X) must be torsion free.
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Now, the ample cone τ○X is two-dimensional and, according to Remark 3.2,we ûnd
two degrees v−1 , v−2 ∈ τ− and two degrees v+1 , v+2 ∈ τ+ stemming from, in total, four of
the generators Ti and S j such that v−1 and v+1 generate the eòective cone Eò(X). A�er
suitably renumbering the Ti and the Tj , we are in one of the following cases:

Case 1. We have deg(S1) ∈ τ− and deg(S2) ∈ τ+. _en γ0 = cone(en+1 , en+2) is the
desired X-relevant face.

Case 2. We have deg(S1) ∈ τ− and τ+ contains no degrees of variables S j . If deg(Ti) ∈

τ+ holds for some 1 ≤ i ≤ q, then γ0 = cone(e i , en+1) is the desired X-relevant face.
Suppose that there is no 1 ≤ i ≤ q with deg(Ti) ∈ τ+. _en one and hence all

deg(Tq+i) lie on the ray through v+1 . _is implies q = 0. Now, cone(e1 , e2 , et+1) is
an X-relevant face. Since X is locally factorial, the corresponding degrees generate
Cl(X). We concludeCl(X) = Z2⊕Γwith a cyclic torsion part Γ = Z/kZ and, applying
a suitable automorphism of Γ, we achieve

deg(T1) = (1, 0, 0), deg(T2) = (1, 0, 1), deg(S1) = (0, 1, 0).

Because of 2deg(T1) = 2deg(T2), we obtain k = 2. Since the Ti must have diòerent
degrees in Cl(X), we obtain that there are no Ti for i ≥ 3. _us, no 1 ≤ i ≤ q with
deg(Ti) ∈ τ+ is impossible.

Case 3. _e are no deg(S j) in τ− ∪ τ+. _en we can assume v−1 = deg(T1) and obtain
the desired X-relevant face γ0 = cone(e1 , e i) by choosing i ≠ 2 such that deg(Ti) is
one of v+1 , v+2 .

Proof of_eorem 1.1, Part I We show that all smooth intrinsic quadrics of Picard
number ρ(X) = 2 are isomorphic to one of the varieties described in _eorem 1.1.
Proposition 3.3 yields Cl(X) = Z2. Moreover, according to Proposition 2.5, we can
assume that X is a standard intrinsic quadric. _en the Cox ring of X is given as

R(X) = K[T1 , . . . , Tn , S1 , . . . , Sm]/⟨g⟩,

g =
⎧⎪⎪
⎨
⎪⎪⎩

T1T2 + ⋅ ⋅ ⋅ + Tn−1Tn if n is even,
T1T2 + ⋅ ⋅ ⋅ + Tn−2Tn−1 + T2

n if n is odd.

Note that we have n ≥ 5, because Cl(X) is torsion free, and thus R(X) must be a
unique factorization domain. As outlined in Remark 3.2, the eòective cone of X is the
disjoint union of three convex sets,

Eò(X) = τ− ∪ τ○X ∪ τ+ ,

where τ○X ⊆ ClQ(X) is the ample cone. Since X is smooth, there are no X-relevant
faces of the form cone(e i , e j) with n + 1 ≤ i < j ≤ n + m; see Proposition 2.8. Con-
sequently, the deg(S j) either all lie in τ− or all in τ+. A�er suitably renumbering the
variables Ti and S j , we are le� with the following cases:

158

https://doi.org/10.4153/CJM-2018-037-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-037-5


On Intrinsic Quadrics

w1

τ○Xw2

τ+

τ−

(i)

w1

τ○Xw4

τ+

τ−

(ii)

u1

τ○Xw2

τ+

τ−

(iii)

Here, we set w i ∶= deg(Ti) and u j ∶= deg(S j). Observe that in Case (iii), we can
indeed assume u1 ∈ τ−, because γ2,n+1 is an X-relevant face and thus Proposition 2.8
allows us to interchange τ− and τ+ via a linear coordinate change if necessary. We
now go through the cases, using the notation of Remark 2.7 for X-relevant faces and
writing µ = (µ1 , µ2) ∈ Z2 for the degree of g.

Case (i): We have τX = cone(w1 ,w2) with w1 ∈ τ− and w2 ∈ τ+. _en µ ∈ τX holds.
_us, we can assume w3 ∈ τ− and w4 ∈ τ+. Applying Proposition 2.8 to γ1,4, we
see that w1 ,w4 form a Z-basis for Z2. By a suitable coordinate change, we achieve
w1 = (1, 0) and w4 = (0, 1). _en w1 +w2 = w3 +w4 = µ implies w2 = (µ1 − 1, µ2) and
w3 = (µ1 , µ2 − 1). Like w1 and w4, w3 and w2 also form a Z-basis for Cl(X), being
positively oriented, because Eò(X) is pointed and we have w2 ∈ τ+ and w3 ∈ τ−. _is
implies

1 = det(w3 ,w2) = µ1 + µ2 − 1.
From µ ∈ τX ⊆ cone(w1 ,w4) we infer µ1 , µ2 > 0 and conclude that µ1 = µ2 = 1.
In particular, we have w2 = (0, 1), w3 = (1, 0) and τX = Q2

≥0. Moreover, µ = (1, 1)
implies that n is even. Suitably renumbering the Ti with i ≥ 5, we achieve w i ∈ τ−
and w i+1 ∈ τ+ for i = 5, 7, . . . , n − 1. _en, for every odd i, Proposition 2.8 and the
homogeneity of g provide us with the conditions

det(w i ,w2) = 1, w i +w i+1 = µ = (1, 1), det(w1 ,w i+1) = 1.

We conclude that w i = (1, 0) and w i+1 = (0, 1) for all i = 5, 7, . . . , n − 1. _e weights
u j = deg(S j) are contained either all in τ− or all in τ+. We can assume all in τ+.
Applying Proposition 2.8 to γ1, j , where j = 1, . . . ,m yields u j = (a j , 1) with some
a j ∈ Z≤0. A suitable linear coordinate change in Z2 leads to Type 4.

Case (ii):We have τX = cone(w1 ,w4)withw1 ∈ τ− andw4 ∈ τ+. Ifw2 ∈ τ+ holds, then
we are in Case (i) just settled. We treat the case w2 ∈ τ−. Since γ1,4 is an X-relevant
face, Proposition 2.8 says that w1 ,w4 form a Z-basis of Z2. _us, a suitable linear
coordinate change in Z2 yields w1 = (1, 0) and w4 = (0, 1).
As γ2,4 is an X-relevant face,we can applyProposition 2.8 again and see thatw2 ,w4

is a positively oriented Z-basis of Z2. _us, det(w2 ,w4) = 1 holds and we conclude
that w2 = (1, x) with some x ∈ Z≤0. By the same arguments, if v+ ∈ τ+ is a degree
of any of the Ti ≠ T4 or the S j , we see that w1 , v+ is a positively oriented Z-basis and
conclude that v+ = (y, 1) with some y ∈ Z≤0. Moreover, arguing further along this
line gives

1 = det(w2 , v+) = 1 − xy, 1 = det(w3 , v+) = 2 − xy + y,

where we use w3 = µ −w4 = w1 +w2 −w4 for the last equality. _is implies x = 0 and
y = −1, and thus w2 = (1, 0) and v+ = (−1, 1). We conclude that µ = w1 +w2 = (2, 0)
and w3 = µ −w4 = (2,−1). So far, the situation looks as follows:

159

https://doi.org/10.4153/CJM-2018-037-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-037-5


A. Fahrner and J. Hausen

τ○X

w1 ,w2 µ

w4v+

w3

In particular, if n is odd, wemust have wn = (1, 0). Because of µ ∈ τ−, we can renum-
ber the other Ti with i ≥ 5 such that w i ∈ τ− holds for all odd i. Now consider any
odd i with 5 ≤ i < n. Because of µ = (2, 0) we either have w i = w i+1 = (1, 0) or
w i+1 = v+ = (−1, 1) andw i = (3,−1). _e second case is excluded, because γ4, i is then
an X-relevant face, contradicting the smoothness condition of Proposition 2.8. _us,
w i = (1, 0) holds for all i ≥ 5. Consequently, there must be at least one u j and all u j
equal v+ = (−1, 1). A suitable linear coordinate change in Z2 and renumbering the
variables leads to Type 3.

Case (iii): We have τX = cone(u1 ,w2) with u1 ∈ τ− and w2 ∈ τ+. _en γ2,n+1 is
an X-relevant face. By Proposition 2.8, we achieve u1 = (1, 0) and w2 = (0, 1) via a
suitable linear coordinate change. We distinguish the following two subcases.
First assume that w1 ∈ τ+. _en µ ∈ τ+ holds. _us, we may assume that all w i

with i odd are contained in τ+. Proposition 2.8 shows that u1 ,w i is a Z-basis for the
odd i < n, and thus w i = (x i , 1) holds in these cases, where x i ∈ Z≤0 due to w i ∈ τ+.
In particular, we have

µ = w1 +w2 = (x1 , 2), w i+1 = µ −w i = (x1 − x i , 1),

where i < n is odd. _us, we obtain w1 ,w2 , . . . ,wn ∈ τ+. Consequently, m ≥ 2 holds.
Because of u1 ∈ τ−, we have u j ∈ τ− for all j = 1, . . . ,m. Moreover, u j ,w2 is a Z-basis
due to Proposition 2.8, and thus u j = (1, y j) holds, where y j ∈ Z≤0. Repeating the
same argument with all pairings u j ,w i yields w i = (0, 1) for all i or u j = (1, 0) for
all j. Applying a suitable linear coordinate change, we arrive at Type 1 or Type 2,
respectively.

Now assume w1 ∈ τ−. _en µ ∈ τX ∪ τ− holds. Suitably renumbering the Ti , we
achieve w i ∈ τ− for all odd i < n. Moreover, as all u j lie in τ− and there must be the
degree of a second variable in τ+, we can assume w4 ∈ τ+. Proposition 2.8 applied to
the X-relevant faces γ2, i for the i ≥ 3 with w i ∈ τ− and γ i ,n+1 for the i with w i ∈ τ+
shows

w i =

⎧⎪⎪
⎨
⎪⎪⎩

(1, y i) with y i ∈ Z≤0 if w i ∈ τ−,
(x i , 1) with x i ∈ Z≤0 if w i ∈ τ+ ,

unless i = 1 or i = n with n odd. Now consider any even i with 4 ≤ i ≤ n. _en the
degree of g is µ = w3 + w4 = (1 + x4 , y3 + 1). Because of µ ∈ τX ∪ τ−, we conclude
x4 = 0 and obtain µ = (1, y3 + 1). In particular,we see that n is even andw i ∈ τ+ holds
for all even i. Moreover, w1 = µ −w2 = w3 holds and for every even i we have

(1, y3 + 1) = µ = w i−1 +w i = (1 + x i , y i−1 + 1).
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Consequently, x i = 0 and thus w i = (0, 1) holds for all even i. _us, for the odd i, we
obtain w i = (1, y3). Finally u j ,w2 is a Z-basis for all j = 1, . . . ,m, and thus we have
u j = (1, a j) with a j ∈ Z≤0. So, a suitable linear coordinate change leads to Type 4.

4 Picard Number Two: Geometry

We discuss geometric aspects of the intrinsic quadrics listed in _eorem 1.1. First, we
enter their Mori theory and prove the still open geometric statements made in _e-
orem 1.1. _en we ûgure out the Fano examples from _eorem 1.1 and thus prove
Corollary 1.2. Moreover, we obtain base point freeness for numerically eòective divi-
sors (see Corollary 4.3), and thus can verify Fujita’s freeness conjecture for all smooth
intrinsic quadrics of Picard number at most two (see Corollary 4.4). Finally, we dis-
cuss Mukai’s conjecture in Example 4.5.

_emorphisms providing the geometric descriptions of_eorem 1.1 are examples
of so called elementary contractions [10]. We obtain them by looking at the Mori
chamber decomposition, which in our case is easy to compute. Before entering the
details, let us brie�y recall some general background. Every eòective divisor D on a
normal projective variety X deûnes a rational map

φD ∶X ⇢ X(D), X(D) ∶= Proj( ⊕
n∈Z≥0

Γ(X ,OX(nD))) .

Two divisors are called Mori equivalent if they deûne the same map. _e Mori
chamber decomposition is the subdivision of the eòective cone into the classes arising
from Mori equivalence. In the case of aMori dream space X, there is a fundamental
connection to geometric invariant theory, as observed by Hu and Keel [17]. Namely,
we have the action of the quasitorus H = SpecK[Cl(X)] on X ∶= SpecR(X) and thus
theGIT-fan ΛX describing the variation ofGIT-quotients in the sense that two classes
w1 ,w2 ∈ Cl(X) deûne the same sets of semistable points X ss

(w i) if and only if they
lie in the relative interior of a common cone λ ∈ ΛX . Now, the crucial observation
is that, inside themoving cone, theMori chambers of X are the precisely the relative
interiors of the cones of the GIT-fan.
For a Mori dream space X = X ss

(u)//H, the cone λ(u) ∈ ΛX containing u in
its relative interior, is the semiample cone of X. A divisor D deûnes a morphism
φD ∶X → X(D) if and only if for the class w of D, the associated cone λ(w) ∈ ΛX
is a face of λ(u). In this case, φD ∶X → X(D) is called a contraction, and, in the
GIT picture, φD is the inducedmap of GIT-quotients making the following diagram
commutative:

X ss
(u) ⊆

//H

��

X ss
(w)

//H
��

X φD
// X(D).

A contraction φ∶X → X(D) is called elementary if X(D) is of Picard number one less
than X. _ere are three possibilities for such an elementary contraction, according to
the possible positions of the class of D in the eòective cone:
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● _e class of D lies on the boundary of Eò(X). _en φD is of ûber type, i.e., the
dimension of X(D) is strictly less than that of X.

● _e class ofD lies on a boundary ofMov(X), butnot on the boundary of Eò(X).
_en φD is a birational divisorial contraction, i.e., it is birational and contracts
precisely a prime divisor of X.

● _e class of D lies in the interiorMov(X). _en φD is a birational small contrac-
tion, i.e., it is birational and contracts only a subvariety of codimension at least
two.

Remark 4.1 Construction 2.4 produces an intrinsic quadric X in an ambient toric
variety Z by passing to a quotient of the action of H on X and Z = Kn+m . _e cones
of the (ûnite) GIT-fans ΛX and ΛZ in KQ = ClQ(X) = ClQ(Z) are

λX(w) = ⋂

w ∈ Q(γ0),
X(γ0) ≠ ∅

Q(γ0), λZ(w) = ⋂
w∈Q(γ0)

Q(γ0),

respectively, where w runs through KQ and Remark 2.7 tells which are the faces γ0 ⪯
γ = Qn+m such that X(γ0) is non-empty. In particular, the fan ΛZ reûnes the fan ΛX ,
which in turn connects theMori theory of X with that of Z.

Proof of_eorem 1.1, Part II We ûrst discuss the varieties X of Types 1, 2, and 4. In
these cases, the conûgurations ofweights and the semiample cone are of the following
shape:

τX

We work with the toric embedding X ⊆ Z provided by Construction 2.4. From
Remark 2.7, we infer τX = τZ for the semiample cones. _us, for the divisor class
w = (1, 0), a representing toric divisor E on Z and its restriction D on X, we obtain a
commutative diagram

X ⊆

φD
��

Z ≅

φE
��

P(O(a1)⊕ ⋅ ⋅ ⋅ ⊕O(ak))

��
X(D) ⊆ Z(E) ≅ Pl−1 ,

where the inclusions are closed embeddings, l is the number of coordinates of Z =

Kn+m of degree (1, 0), call them f1 , . . . , f l , and k is the number of remaining coor-
dinates, call them h1 , . . . , hk . So, we have n + m = l + k. In terms of homogeneous
coordinates on Z and on Z(E) = Kl , local trivializations of the bundle projection
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φE ∶ Z → Z(E) are given by

Kn+m
f i ∖ V(h1 , . . . , hk)

( f1 , . . . , f l ,
h1
f a1i

, . . . , hk
f
ak
i

)
//

( f1 , . . . , f l )
))

Kl
f i × (Kk ∖ {0})

prKl

vv
Kl
f i .

If X is of Type 1, then l = n and k = m hold, the f i are the variables Ti and the h j
are the variables S j . We see directly that X maps onto V(g) ⊆ Pn−1 and that X =

φ−1
E (V(g)) holds. _us, φD ∶X → X(D) is a bundle projection as wanted.
If X is of Type 2, then l = m and k = n hold, the f i are the variables S i , and the h j

are the variables Tj . Using the fact that the relation g is K-homogeneous, we see that
the above local trivializations respect g. We conclude that X(D) = Z(E) = Pm−1
holds and that locally with respect to the base X(D), the variety X is a product of the
smooth quadric V(g) ⊆ Pn−1 and Pm−1.

If X is of Type 4, then l = n/2 and k = m + n/2 hold, the f i are the variables Ti
with i odd and the h j subsume the variables Ti with i even as well as the variables S j .
Using the above local trivializations,we see that X projectsonto the base,whichmeans
that X(D) = Z(E) = Pn/2−1 holds. Moreover, on each ûber φ−1

E ([z]), the relation g
becomes a linear form in the coordinates Ti with i even and thus cuts out a hyperplane
of φ−1

E ([z]) ≅ Pn/2+m−1. Consequently, φD ∶X → X(D) is as claimed.
Finally, let X be ofType 3. Observe that the ambient toric variety Z isnot smooth in

this case. We take the divisors E on Z andD on X corresponding to the generatorT3 of
the respective Cox rings. _en φE ∶ Z → Z(E) and X → X(E) contract the respective
divisors deûned by T1. We obtain that Z(E) is theweighted projective space P(1, . . . ,1,2)
of dimension n +m − 2 and X(D) ⊆ Z(E) is deûned by the equation g − T1T2 + T2 =

0. _is gives X(D) = Pn+m−3. Moreover, the fan of the ambient toric variety Z is
obtained from the fan of Z(E) = P(1, . . . ,1,2) by barycentric subdivsion of the cone
over the rays corresponding to u1 , . . . , um ,w2. We conclude that the center of the
modiûcation X → X(D) is the smooth quadric V(g − T1T2 , S1 , . . . , Sm) ⊆ Pn+m−3.
_e fact that X → X(D) is indeed the blowing-up is checked directly in the aõne
charts of X(D) = Pn+m−3.

We turn to the (almost) Fano varieties among the smooth intrinsic quadrics of Pi-
cardnumber two. Adapting [3,Prop. 3.3.3.2] leads to the following explicitdescription
of the anticanonical class.

Proposition 4.2 Let X = X(q, t,m, u) be a standard intrinsic quadric arising from
Construction 2.1. _en the anticanonical class of X is given by

−KX =
q − 2

2
deg(gq ,t) +

t

∑
i=1
deg(Tq+i) +

m

∑
k=1
deg(Sk) ∈ K = Cl(X).
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Proof of Corollary 1.2 In the situation of_eorem1.1, the formulaofProposition 4.2
simpliûes to

−KX =
n − 2

2
deg(g) + deg(u1) + ⋅ ⋅ ⋅ + deg(um).

_e variety X is Fano if and only if −KX lies in the interior of the semiample cone τX
speciûed in the theorem, and X is truly almost Fano if −KX lies on the boundary of
τX and in the interior of Eò(X). One immediately computes:

Type −KX τX

1 (
n−2
0 ) + (

a1+⋅⋅⋅+am
m ) cone ((1

0), (
α
1))

2 n−2
2 (

α
2) + (

m
0) cone ((1

0), (
α
1))

3 (n − 2)(1
1) + (

m
0) cone ((1

1), (
2
1))

4 n−2
2 (

a+1
1 ) + (

a1+⋅⋅⋅+am
m ) cone ((1

0), (
α
1)) .

From this, we directly derive the Fano and truly almost Fano conditions. Note that
for Type 4, wemust have w2 = (α, 1) in order to obtain a (truly almost) Fano variety
and w2 = (0, 1) produces further truly almost Fano varieties.

Corollary 4.3 Let X be a smooth intrinsic quadric of Picard number at most two.
_en every numerically eòective divisor on X is base point free.

Proof We can assume that X arises from Construction 2.1. Consider the monoid
BPF(X) ⊆ Cl(X) of divisor classes admitting a base point free representative. Us-
ing [3, Prop. 3.3.2.8], we obtain

BPF(X) = ⋂
γ0∈cov(X)

Q(γ0 ∩Zn+m
) ⊆ Cl(X).

By Proposition 2.10, the cone in ClQ(X) generated by BPF(X) equals the cone
SAmple(X) of semiample divisor classes. As for any Mori dream space, SAmple(X)

coincides with the cone of numerically eòective divisor classes.
Our task is to show that BPF(X) is saturated in Cl(X) in the sense that given

w ∈ Cl(X) and n ∈ Z>0 with nw ∈ BPF(X), one has w ∈ BPF(X). Since the in-
tersection of saturated submonoids is saturated, it suõces to show that everymonoid
Q(γ0 ∩ Zn+m), where γ0 ∈ cov(X), is saturated. If X is of Picard number one, then
Proposition 3.1 tells us Cl(X) = Z and Q(γ0 ∩Zn+m) = Z≥0 for all faces γ0 ∈ cov(X),
proving that BPF(X) is saturated.
Assume that X is of Picard number two. _en Cl(X) = Z2 holds according to

_eorem 1.1. Moreover, for any two-dimensional face γ i , j = cone(e i , e j) of cov(X),
Proposition 2.8(v) says that Q(e i) and Q(e j) form a Z-basis for Cl(X). We conclude
that Q(γ i , j ∩ Zn+m) is saturated for all two-dimensional faces γ i , j = cone(e i , e j)
of cov(X). _eorem 1.1 speciûes the semiample cone for each of the Types 1 to 4.
Combining this with Remark 2.7 allows us to determine the set cov(X) of minimal
X-relevant faces explicitly. If X is of Types 1, 2, or 4, then we see that in fact all
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γ0 ∈ cov(X) are two-dimensional and thus BPF(X) is saturated. We are le� with
discussing X of Type 3. If n is even, then again all γ0 ∈ cov(X) are two-dimensional.
If n is odd, then, besides the two-dimensional ones,we ûnd onemore face in cov(X),
namely γ1,2,n = cone(e1 , e2 , en). _e corresponding images under Q are (0, 1), (2, 1)
and (1, 1), generating the saturatedmonoid cone(Q(γ1,2,n)) ∩Z2.

Corollary 4.4 Every smooth intrinsic quadric X of Picard number atmost two fulûlls
Fujita’s freeness conjecture. _atmeans that CX + sD is base point free for any canonical
divisor CX , all s ≥ dim(X) + 1 and all ample divisors D on X.

Proof Fujita proved that CX + sD is numerically eòective under the above assump-
tions [15,_m. 1] on s and D. _us, Corollary 4.3 gives the assertion.

Mukai’s conjecture [21] predicts that ρ(X)(q(X) − 1) ≤ dim(X) with equality
if and only if X is the ρ(X)-fold product of the projective space Pq(X)−1 for every
smooth Fano variety X of Picard number ρ(X) and Fano index q(X). _e conjecture
is proved for toric X and in general for ρ(X) ≤ 2 as well as for dim(X) ≤ 5; see [2,6,
8,23]. Let us revisit the case ρ(X) ≤ 2.

Example 4.5 We show how to obtain Mukai’s conjecture for smooth Fano intrin-
sic quadrics X of Picard number ρ(X) ≤ 2 from our results. In the case ρ(X) = 1,
Proposition 3.1 tells us that X is a smooth quadric in a projective space and thus sat-
isûes Mukai’s conjecture. So, assume ρ(X) = 2. We can assume that X arises from
Construction 2.1 with input data given by _eorem 1.1. Note that we have

dim(X) = n +m − 3.

Corollary 1.2 provides us with the Fano condition. Moreover, the anticanonical class
−KX ∈ Cl(X) = Z2 is speciûed in the table shown in the proof of Corollary 1.2, and
the Fano index q(X) equals the greatest common divisor of the two entries of the
vector −KX . We now go through the four diòerent Types of_eorem 1.1.

Let X be of Type 1. If α = 0 holds, thenwe have −KX = (n−2,m) and thus q(X) =

gcd(n − 2,m). We conclude

2(q(X) − 1) ≤ 2min(n − 2,m) − 2 ≤ (n − 2 +m) − 2 < dim(X).

Now let α > 0. With k ∶= n−2+a1+⋅ ⋅ ⋅+am ,we have −KX = (k,m) and q(X) divides
both entries. _is implies q(X) ≤ m. If q(X) < m holds, then, because of n ≥ 5, we
obtain

2(q(X) − 1) ≤ 2(
m
2
− 1) = m − 2 ≤ n +m − 7 < dim(X).

If we have q(X) = m, then m divides k. _us, the Fano condition αm < k implies
(α + 1)m ≤ k. Moreover, α > 0 implies a1 + ⋅ ⋅ ⋅ + am < αm. Together, we obtain

2(q(X) − 1) = 2m − 2 ≤ k − (α + 1 − 2)m − 2 < n − 2 +m − 2 < dim(X).

Let X be of Type 2. _enwe have −KX = ((n/2−1)α+m, n−2), and q(X) divides
both entries. If q(X) < n − 2 holds, then using m ≥ 2, we obtain

2(q(X) − 1) ≤ 2(
n − 2

2
− 1) = n − 4 ≤ n +m − 6 < dim(X).
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We are le� with discussing the case q(X) = n − 2. If α = 0 holds, then we obtain
−KX = (m, n − 2) and thus n − 2 ≤ m. We conclude

2(q(X) − 1) = 2((n − 2) − 1) = (n − 2) + (n − 4) ≤ n +m − 4 < dim(X).

Next, let α = 1. _en −KX = ((n − 2)/2 +m, n − 2) holds and q(X) = n − 2 divides
the ûrst entry. _us, with a suitable k ∈ Z, we have

m =
2k + 1

2
(n − 2).

In the case α = 1, the Fano condition reads as m > (n − 2)/2, and thus k ≥ 1 holds.
Moreover, because of n > 4, we have n/2 − 1 < n − 3 and thus obtain

2(q(X) − 1) = 2(n − 2 − 1) <
3
2
(n − 2) +

n − 2
2

≤ m +
n
2
− 1 < dim(X).

Finally, let α ≥ 2. _en the Fano condition says n − 2 < 2m/α. Consequently, we
obtain

2(q(X) − 1) = (n − 2) + (n − 4) <
2m
α

+ (n − 4) ≤ n +m − 4 < dim(X).

Let X be of Type 3. _en −KX = (n − 2 +m, n − 2) holds and the Fano condition
yields m < n − 2. As q(X) divides both entries of −KX , we see q(X) ≠ n − 2 and thus
q(X) ≤ (n − 2)/2. We conclude

2(q(X) − 1) ≤ 2(
n − 2

2
− 1) = n − 4 < dim(X).

Let X be of Type 4. _en −KX = ((n/2 − 1)(α + 1) + a1 + ⋅ ⋅ ⋅ + am , n/2 − 1 + m)

holds. In the case α = 0, all the a i vanish as well, we obtain q(X) ≤ n/2 − 1 and thus

2(q(X) − 1) ≤ n − 4 ≤ n +m − 4 < dim(X).

Let α > 0. If q(X) < n/2 − 1 +m holds, then even q(X) ≤ (n/2 − 1 +m)/2 must hold
and, because of n < 0, we obtain

2(q(X) − 1) ≤
n
2
− 1 +m − 2 < dim(X).

We discuss the case q(X) = n/2 − 1 +m. _e ûrst component of −KX equals βq(X)

with some positive integer β. Plugging the Fano condition

αm − (n/2 − 1) < a1 + ⋅ ⋅ ⋅ + am

into this equality leads to the estimate α + 1 ≤ β. Comparing (α + 1)q(X) with the
ûrst component βq(X) of −KX gives

(α + 1)q(X) ≤ (
n
2
− 1)(α + 1) + a1 + ⋅ ⋅ ⋅ + am < (

n
2
− 1)(α + 1) + αm,

where the last inequality is due to the fact that α > 0 forces vanishing of at least one
of the a j . _is allows us to conclude the discussion by

2(q(X) − 1) = ((α + 1) − (α + 1 − 2))q(X) − 2

< ((
n
2
− 1)(α + 1) + αm) − (α − 1)q(X) − 2

= n +m − 4 < dim(X).
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5 Proof of Theorem 1.3

A ûrst step is the general bound for the Picard number of (possibly singular) Fano
full intrinsic quadrics provided in Proposition 5.1. _en we prepare the proof of_e-
orem 1.3, which is given at the end of the section. We will mostly work in the setting
of standard intrinsic quadrics X = X(q, t,m, u) arising from Construction 2.4. We
write g = gq ,t for the relation, and the degrees of the variables in Cl(X) = K will be
denoted as

w i = deg(Ti) = Q(e i) for i = 1, . . . , n,
wn+ j = deg(S j) = Q(en+ j) for j = 1, . . . ,m.

Proposition 5.1 Let X be a Fano full standard intrinsic quadric arising from Con-
struction 2.4.
(i) If t > 1 holds, i.e., g has at least two squares, then we have ρ(X) = 1.
(ii) If t = 1 holds, i.e., g has one square, then we have ρ(X) ≤ 2.
(iii) If t = 0 holds, i.e., g has no squares, then we have ρ(X) ≤ 3.
(iv) If ρ(X) = 3 holds, then we have t = 0 and X is Q-factorial.

Proof We have X = X(q, t,m, u) with m = 0, and, according to Proposition 2.10,
we may assume that u is the anticanonical class. Proposition 4.2 tells us that in KQ,
we have

u =
q + t − 2

2
deg(g).

A face γ0 ⪯ γ is X-relevant if and only if it satisûes the conditions of Remark 2.7 and
one has u ∈ relint(Q(γ0)). ForAssertions (i), (ii), and (iii),we consider the following
X-relevant faces of γ:

(i) γ′ = γq+1,q+2 , (ii) γ′ = γ1,2,q+1 , (iii) γ′ = γ1,2,3,4 .

We have dim(Q(γ′)) ≤ 1, 2, 3 according to the cases, because homogeneity of g yields
the following linear relations in the respective images Q(linQ(γ0)):

2wq+1 = 2wq+2 , w1 +w2 = wq+1 , w1 +we2 = we3 +w4 .

_e ûrst three assertions thus follow from the description of the Picard group pro-
vided by Proposition 2.9: in each of the three cases, we have

Pic(X) = ⋂
γ0∈cov(X)

Q(linZ(γ0)) ⊆ Q(γ′).

In order to prove (iv), assume ρ(X) = 3. Assertions (i) and (ii) yield t = 0. To
obtain Q-factoriality of X, we have to show that KQ = Cl(X)Q is of dimension three.
_e assumption ρ(X) = 3 together with Proposition 2.9 yields dim(Q(γ0)) ≥ 3 for
all X-relevant faces γ0 ⪯ γ. Consider the faces

γ(i , j) ∶= γ i , i+1, j, j+1 ⪯ γ,

where i , j are odd with 1 ≤ i < j ≤ q − 1. _ese are all X-relevant and Q(γ(i , j))
is of dimension three. Using ρ(X) = 3 and Proposition 2.9 again, we conclude that
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the Q(γ(i , j)) generate all the same 3-dimensional vector subspace V ⊆ KQ. _us
dim(KQ) = 3 follows from

KQ = Q(Qn+m
) = Q( linQ(γ(1, 3)) + ⋅ ⋅ ⋅ + linQ(γ(q − 3, q))) = V .

Corollary 5.2 Let X be a Fano full intrinsic quadric. _en ρ(X) ≤ 3 holds, and if we
have ρ(X) = 3, then X is Q-factorial.

We start our preparations for the proof of_eorem 1.3. When performing a renu-
meration of variables, we always keep g = gq ,t a standard K-homogeneous quadratic
polynomial, which means that our renumberings respect monomials and take place
only inside the q-, t- and m-blocks. Moreover, when visualizing the situation, we
draw (parts of) the intersection of Eò(X) = Q(γ) with an aõne hyperplane passing
orthogonally through an inner vector of Eò(X) and we will indicate the ray through,
for instance, w i by a dot with label w i .

Lemma 5.3 Let X = X(q, t,m, u) be a Q-factorial standard intrinsic quadric of
Picard number three with q ≥ 4. If there is an ℓ with 5 ≤ ℓ ≤ q or n+ 1 ≤ ℓ ≤ n+m such
that γ1,2,ℓ ⪯ γ is Z-relevant, then there are 1 ≤ i ≤ 2 and 3 ≤ j ≤ 4 such that γ i , j,ℓ ⪯ γ is
X-relevant.

Proof Let l12 be a linear form on KQ = ClQ(X) with l12(w1) = l12(w2) = 0 and
l12(wℓ) ≥ 0. _en l12(deg(g)) = 0 holds, and we can assume l12(w3) ≤ 0.

w1

w3

deg(g)

w2

w4

wℓ

l⊥12

Moreover, Q(γ1,2,ℓ) is contained in Q(γ1,3,ℓ) ∪ Q(γ2,3,ℓ). _us, u lies in the relative
interior of a face τ of one of the latter two cones. We have τ = Q(γ0) with a face γ0
of γ1,3,ℓ or γ2,3,ℓ . Since γ0 is an X-face, Proposition 2.11 yields that Q(γ0) must be of
dimension three. _us, γ0 equals γ1,3,ℓ or γ2,3,ℓ .

Lemma 5.4 Let X = X(q, t,m, u) be a Q-factorial standard intrinsic quadric of
Picard number three with q ≥ 6. If γ1,2 ⪯ γ is Z-relevant, then γ i ,3, j is X-relevant for
some 1 ≤ i ≤ 2 and 5 ≤ j ≤ 6.

Proof Let l12 be a linear form on KQ with l12(w1) = l12(w2) = 0 and l12(w3) ≤ 0.
We can assume that l12(w5) ≥ 0, and then we have Q(γ1,2) ⊆ Q(γ1,3,5) ∪ Q(γ2,3,5).
As in the previous proof, we conclude that u lies in the relative interior of Q(γ1,3,5)

or that of Q(γ2,3,5).
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Lemma 5.5 Let X = X(q, t,m, u) be aQ-factorial full standard intrinsic quadric of
Picard number three. _en we have q ≥ 6 and, a�er suitable renumbering of variables,
γ1,3,5 is X-relevant.

Proof As the moving cone of X is of dimension three, we must have q ≥ 6; use
Proposition 2.10. _e eòective cone of X is generated by w1 , . . . ,wq . _us, Carathéo-
dory’s theorem yields a Z-relevant face τ ⪯ γ generated by at most three of e1 , . . . , eq .
Suitably renumbering the variables,we achieve τ ⪯ γ1,3,5 or τ ⪯ γ1,2,3. Since all rays of
τ are X-relevant, Proposition 2.11 shows that τ is at least of dimension two. If dim(τ) =
2 holds, then Proposition 2.11 yields that τ is not an X-face,whichmeans that τ = γ1,2.
In this case, Lemma 5.4 gives the assertion. If τ is three-dimensional, then Lemma 5.3
completes the proof.

Lemma 5.6 Let X = X(q, t,m, u) be a standard intrinsic quadric of Picard number
three. If there are pairwise diòerent odd integers 1 ≤ a, b, c ≤ q − 1 such that τ0 ∶= γa ,b ,c
and τ1 ∶= γa ,b ,c+1 are X-relevant, then X is not locally factorial.

Proof Assume that X is locally factorial. Applying Proposition 2.8(iii) to τ0 gives
Cl(X) ≅ Z3. Using K-homogeneity of g and suitable coordinates on K = Cl(X), we
achieve

[wa ,wa+1 ,wb ,wb+1 ,wc ,wc+1] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 d1 − 1 0 d1 0 d1
0 d2 1 d2 − 1 0 d2
0 d3 0 d3 1 d3 − 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where (d1 , d2 , d3) = deg(g). Applying Proposition 2.8(iii) to τ1 gives d3 ∈ {0, 2}.
Let τ2 ∶= γa ,a+1,b ,b+1. Since Q(τ0)○ ∩ Q(τ1)

○ is three-dimensional and contained in
Q(τ2), we conclude that the X-face τ2 is X-relevant. Proposition 2.8 applied to τ2
yields d3 ∈ {−1, 1}, a contradiction.

Lemma 5.7 Let X = X(q, t,m, u) be a locallyQ-factorial standard intrinsic quadric
of Picard number threewith q ≥ 6. _en, a�er suitably renumbering the variables, γ1,3,5
is X-relevant and deg(g) ∈ Q(γ1,3,5) holds.

Proof According to Lemma 5.5, we can assume that γ1,3,5 is X-relevant. If deg(g)
is contained in Q(γ1,3,5), then we are done. Otherwise, suitably renumbering the
variables oncemore, we arrive at one of the situations in Figure 2.

In the right-hand setting, exchanging T1 and T2 yields the assertion. So, consider
the le�-hand setting. Applying Lemma 5.6 to the X-relevant face γ1,3,5 yields that
neither γ1,3,6 nor γ2,3,5 is X-relevant. Note that we have

u ∈ Q(γ1,3,5)
○
⊆ Q(γ1,3,6) ∪ Q(γ2,3,6) ∪ Q(γ2,3,5)

and that all faces of γ1,3,6 , γ2,3,6 and γ2,3,5 are X-faces. Proposition 2.11 shows
that γ2,3,6 is X-relevant. A�er exchanging T1 and T2 as well as T5 and T6, the new
γ1,3,5 is X-relevant, and we have deg(g) ∈ Q(γ1,3,5).
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Lemma 5.8 Let X = X(q, t,m, u) be a standard intrinsic quadric of Picard number
three. If there are pairwise diòerent odd integers 1 ≤ a, b, c ≤ q − 1 such that τ0 ∶= γa ,b ,c
and τ1 ∶= γa+1,b+1,c+1 are X-relevant, then X is not locally factorial.

Proof Assume that X is locally factorial. Applying Proposition 2.8(iii) to τ0 gives
Cl(X) ≅ Z3. Using K-homogeneity of g and suitable coordinates on K = Cl(X), we
achieve

[wa ,wa+1 ,wb ,wb+1 ,wc ,wc+1] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 d1 − 1 0 d1 0 d1
0 d2 1 d2 − 1 0 d2
0 d3 0 d3 1 d3 − 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where (d1 , d2 , d3) = deg(g). Consider τ i , j ∶= cone(e i , e i+1 , e j , e j+1), where i , j ∈
{a, b, c} with i ≠ j. For all three possibilities, we have

Q(τ0)○ ∩ Q(τ1)
○
⊆ Q(τ i , j)

○ .

_us, all the τ i , j are X-relevant. Proposition 2.8(iii) says that w i ,w i+1 ,w j ,w j+1 gen-
erate K in all cases, which implies d1 , d2 , d3 ∈ {−1, 1}. Consequently,

det(wa+1 ,wb+1 ,wc+1) = d1 + d2 + d3 − 1 ∈ {0, 2}.

But Proposition 2.8(iii) applied to τ1 = γa+1,b+1,c+1 shows that this determinant should
equal ±1, a contradiction.

Lemma 5.9 Let X = X(q, t,m, u) be a locally factorial full standard intrinsic quadric
of Picard number three. _en K = Cl(X) ≅ Z3 and q ≥ 6 hold. Moreover, by a suitable
renumeration of variables, we achieve

[w1 , . . . ,w6] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 d1 − 1 0 d1 0 d1
0 1 1 0 0 1
0 1 0 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,
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where d1 ∈ Z≥0, the faces γ1,3,5, γ1,4,6, γ1,2,3,4, γ1,2,5,6 are all X-relevant, and,moreover,
u ∈ cone(w1 ,w3 , d)∩Q(γ1,4,6)

○ holds, where d = (d1 , 1, 1) = deg(g). In particular, we
have t = 0, and n = q is even.

Proof Lemmas 5.5 and 5.7 show that q ≥ 6 holds and that a�er suitably renumber-
ing the variables, γ1,3,5 is an X-relevant face with d = deg(g) ∈ Q(γ1,3,5). By Propo-
sition 2.8(iii), the cone Q(γ1,3,5) is of dimension three and w1 ,w3 ,w5 freely generate
K = Z3.

w1

w3 w5

w6

w2

w4

d

Note that d might as well lie on the boundary of Q(γ1,3,5). However, u lies in the
relative interior of Q(γ1,3,5), and, suitably renumbering the variables T1 , . . . , T6, we
achieve that τ ∶= cone(w1 ,w3 , d) satisûes

dim(τ) = 3, u ∈ τ ∖ Q(γ1,3).

Note thatwehavew2 /∈ cone(w1 , d) andw4 /∈ cone(w3 , d), because otherwisew1 orw3
would lie on cone(d), contradicting dim(τ) = 3. We conclude that u ∈ Q(γ1,2,3,4)

○,
and thus γ1,2,3,4 is X-relevant. Observe that

τ ⊆ Q(γ1,5,6) ∪ Q(γ3,5,6) ∪ Q(γ1,3,6).

As X is locally factorial and γ1,3,5 is X-relevant, Lemma 5.6 shows u /∈ Q(γ1,3,6)
○.

_us, u lies in one of the other two r.h.s. cones in Figure 2. Suitably renumbering
T1 , . . . , T4, we achieve u ∈ Q(γ1,5,6). _en also u ∈ Q(γ1,2,5,6) holds. Now,

γ1,2,5,6 , γ1,5 , γ1,6 , γ2,5 , γ2,6 , γ1 , γ2 , γ5 , γ6

are X-faces. _us, Proposition 2.11 yields that u does not lie in any of the correspond-
ing Q(γ i) and Q(γ i , j). Consequently, Q(γ1,2,5,6) is three-dimensional and contains
u in its relative interior. _at means that γ1,2,5,6 is X-relevant. Observe that

u ∈ Q(γ1,5,6) ∩ τ ⊆ Q(γ1,4,6) ∪ Q(γ2,4,6).

Applying Lemma 5.8 to γ1,3,5, we see that γ2,4,6 is not X-relevant. Moreover, all faces
of the two cones γ1,4,6 and γ2,4,6 are X-relevant. We conclude u ∈ Q(γ1,4,6)

○ and thus
γ1,4,6 is X-relevant. A suitable choice of coordinates on K = Z3 yields

[w1 , . . . ,w6] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 d1 − 1 0 d1 0 d1
0 d2 1 d2 − 1 0 d2
0 d3 0 d3 1 d3 − 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Because of d ∈ Q(γ1,3,5) = Q3
≥0, we have d1 , d2 , d3 ≥ 0. Proposition 2.8(iii) together

with the X-relevant faces γ1,2,3,4 and γ1,2,5,6 show that d2 = d3 = 1 holds.
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Proof of_eorem 1.3 Proposition 3.1 and_eorem1.1 settle the case of Picard num-
ber at most two. Proposition 5.1 settles the case of Picard number at least four. _e
remaining task is to consider smooth full intrinsic quadrics X of Picard number three.
By Proposition 2.5, we can assume that X = X(q, t,m, u) is a standard intrinsic
quadric. Moreover, Lemma 5.9 says Cl(X) = Z3 and that by a suitable choice of
coordinates, we have

[w1 , . . . ,w6] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 d1 − 1 0 d1 0 d1
0 1 1 0 0 1
0 1 0 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where d1 ∈ Z≥0 and the ample cone of X is contained inQ(γ146)
○. Proposition 4.2 tells

us that −KX is a multiple of deg(g) = (d1 , 1, 1). But (d1 , 1, 1) cannot be represented
as a strict positive combination over w1, w4 and w6. _us, deg(g) is not contained in
Q(γ146)

○. Consequently, −KX is not ample and hence X is not Fano.

6 Proof of Theorem 1.4

A detailed analysis of the combinatorics of the X-relevant faces together with the re-
sulting conditions on determinants provided by Proposition 2.8 lead to the normal
form asserted in the theorem. _is is the ûrst part of the proof. _e second one estab-
lishes the geometric supplements. At the end of the section, we prove Corollary 6.1.

Proof of_eorem 1.4, Part I According to Proposition 2.5, we can assume that X =

X(q, t,m, u) is a standard intrinsic quadric. Lemma 5.9 tells us n = q ≥ 6 and K = Z3.
Moreover, choosing suitable coordinates on K, we achieve that

[w1 , . . . ,w6] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 d1 − 1 0 d1 0 d1
0 1 1 0 0 1
0 1 0 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

holds with d1 ∈ Z≥0, the faces γ1,3,5 , γ1,4,6 , γ1,2,3,4 , γ1,2,5,6 of γ are all X-relevant, and
the ample class u of X satisûes

u ∈ cone(w1 ,w3 , d) ∩ Q(γ1,4,6)
○ ,

where d = (d1 , 1, 1) denotes the degree of the relation g. Depending on d1, the situa-
tion looks as in Figure 3.

We claim that n ≥ 8 holds. Otherwise, n = 6, and according to Proposition 2.10,
we have

Mov(X) ⊆ cone(w1 ,w3 ,w5) ∩ cone(w2 ,w4 ,w6).

ByLemma 5.8, this contradicts smoothness of X. _us,we obtain n ≥ 8,which implies
in particular that dim(X) ≥ 4.

We specify the possible positions of the weights wℓ , where ℓ = 7, . . . , n. For i =
1, . . . , 6 choose linear forms l i on KQ such that

l i(w i) = l i(u) = 0, i = 1, . . . , 6,
l i(w1) > 0, i = 3, . . . , 6, l2(w4) > 0, l1(w3) > 0.
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w1

w3 ,w6w2

w4 ,w5

d1 = 0

d
w1

w3

w5

w6w2

w4

d

d1 > 0

Figure 3

Each of the linear forms l1 , . . . , l6 deûnes a negative half space and a positive half
space:

H−
i ∶= {x ∈ KQ; l i(x) ≤ 0} , H+

i ∶= {x ∈ KQ; l i(x) ≥ 0} .

Note that γ i ,ℓ is an X-face for all i = 1, . . . , 6 and ℓ = 7, . . . , n. _us, Proposition 2.11
yields that u cannot lie in Q(γ i ,ℓ). In otherwords, for all i = 1, . . . , 6 and ℓ = 7, . . . , n,
we have

wℓ /∈ H i ∶= Qu −Q≥0w i ⊆ H−
i ∩H+

i .
_e half planes H1 , . . . ,H6 deûne a subdivision of KQ = Q3 into the following three-
dimensional cones, all having Qu as a common line:

Ma ∶= H1 +H4 , Mb ∶= H4 +H5 , Mc ∶= H5 +H2 ,
Md ∶= H2 +H3 , Me ∶= H3 +H6 , M f ∶= H6 +H1 .

As observed before, the degrees wℓ , where ℓ = 7, . . . , n, are distributed over the rel-
ative interiors M○

a , . . . ,M○
f . According to the cases d1 = 0 and d1 > 0, the situation

looks as in Figure 4.
We show wℓ /∈ Mb for ℓ = 7, . . . , n. Otherwise, wℓ = (x , y, z) ∈ M○

b holds. _en
γ1,ℓ ,5, γ4,ℓ ,5, γ2,4,ℓ and γ6,4,ℓ are X-relevant. _e way we list the indices i , j, k for the
γ i , j,k ensures that det(w i ,w j ,wk) is positive and thus, by Proposition 2.8(iii), equals
one. For 1, ℓ, 5, this implies that y = 1. Looking at 4, ℓ, 5 yields d1 = 1. Taking 2, 4, ℓ
gives z = x. But this leads to det(w6 ,w4 ,wℓ) = −1, a contradiction.

We show that wℓ /∈ Me for ℓ = 7, . . . , n. Otherwise, wℓ = (x , y, z) ∈ M○
e holds

and thus γ1,3,ℓ , γ6,3,ℓ , γ6,2,ℓ , γ6,4,ℓ are X-relevant. Again the indices are listed in a
way that det(w i ,w j ,wk) = 1 holds. For 1, 3, ℓ, this means that z = 1. _en 6, 3, ℓ
brings us to d1 = 1. Taking 6, 2, ℓ yields y = x. But then det(w6 ,w4 ,wℓ) = −1 holds, a
contradiction.

Next observe that {wℓ ,wℓ+1} /⊆ M f holds for all odd ℓ ≥ 7, because otherwise we
have the X-relevant faces γ1,3,ℓ and γ1,3,ℓ+1, contradicting Lemma 5.6. Hence, suitably
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(d1 = 0)
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H3 = H6 = Me

Ma

Mc

Md

M f
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w1
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w6
w2

w4
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H4

H5

H6

Ma

Mb

Mc
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MeM f

Figure 4

renumbering the variables T7 , . . . , Tn , we achieve wℓ ∈ M○
a ∪M○

c ∪M○
d for all odd 7 ≤

ℓ < n. _us, for a given odd ℓ ≥ 7, Table 1 shows the possibilities for the positions of
the pair wℓ ,wℓ+1.

Here, the position ofwℓ+1 isdetermined bywℓ+wℓ+1 = deg(g). Moreover, the γ i , j,k
occurring in the table are some but not necessarily all X-relevant faces containing eℓ
or eℓ+1 and the indices i , j, k are listed in such amanner that det(w i ,w j ,wk) = 1 holds.
We now discuss each of these cases.
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Case Pos. of wℓ Pos. of wℓ+1 Resulting X-relevant faces

(1) M○
a M○

d γ1,ℓ ,5, γ3,5,ℓ+1, γ6,4,ℓ+1

(2) M○
a M○

f γ1,ℓ ,4, γ1,6,ℓ+1

(3) M○
c M○

f γℓ ,3,5, γ1,3,ℓ+1, γℓ ,2,4

(4) M○
d M○

f γℓ ,3,5, γ1,6,ℓ+1, γℓ ,6,4, γℓ ,3,2, γℓ+1,3,1

Table 1

Case (1). Write wℓ = (x , y, z). _en det(w1 ,wℓ ,w5) = 1 implies that y = 1 and
det(w3 ,w5 ,wℓ+1) = 1 gives x = d1 − 1. Moreover, det(w6 ,w4 ,wℓ+1) = 1 leads to z = 1.
_us, we arrive at w1 = wℓ+1, w2 = wℓ , which contradicts wℓ ∈ M○

a .

Case (2). Write wℓ = (x , y, z). _en det(w1 ,wℓ ,w4) = 1 implies y = 1. From
det(w1 ,w6 ,wℓ+1), we derive z = 0. _us, we obtain

[w1 ,w2 ,w3 ,w4 ,w5 ,w6 ,wℓ ,wℓ+1] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 d1 − 1 0 d1 0 d1 x d1 − x
0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

_eweights are arranged as follows,wherew2 lies on the dotted line,wℓ on the thickly
dotted line, and wℓ+1 on the dash-dotted line.

w1

w3

w5

w6
w2

w4

d u

H1

H4

H6

Ma

M f
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We remark that n = 8 with w7 ,w8 as in Case (2) is not possible. Indeed, otherwise,
we have u /∈ cone(w2 , . . . ,w6 ,w7 ,w8),where by Proposition 2.10, the latter cone con-
tains themoving cone X and thus u; a contradiction. Moreover, we note that for any
wℓ ,wℓ+1 of Case (2), we have

SAmple(X) ⊆ Q(γ1,6,4) ∩ Q(γ1,ℓ ,4) ∩ Q(γ1,6,ℓ+1).

Case (3). Write wℓ = (x , y, z). _en det(wℓ ,w3 ,w5) = 1 shows x = 1. Moreover,
det(wℓ ,w2 ,w4) = 1 implies y = d1z. Finally, det(w1 ,w3 ,wℓ+1) = 1 leads to z = 0. We
arrive at wℓ = w1 and thus wℓ ∉ M○

c , a contradiction.

Case (4). Write wℓ = (x , y, z). _en det(wℓ ,w3 ,w5) = 1 and det(w1 ,w6 ,wℓ+1) = 1
show x = 1 and z = 0. Now det(wℓ ,w6 ,w4) = 1 yields d1 y = 0. We distinguish the
cases d1 = 0 and d1 > 0.

Case (4.1):We have d1 = 0. Here,we have the following situation,where, in the ûgure,
wℓ = (1, y, 0) lies on the dotted line and wℓ+1 on the dash-dotted line.

[w1 ,w2 ,w3 ,w4 ,w5 ,w6 ,wℓ ,wℓ+1] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 0 0 0 1 −1
0 1 1 0 0 1 y 1 − y
0 1 0 1 1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

w1

w3 ,w6w2

w4 ,w5

d u

H1

H2

H3 = H6 = Me

M f

wℓ+1

wℓ

Applying Proposition 2.10 to the resulting X-relevant faces of the present case, we
arrive at

SAmple(X) ⊆ Q(γ1,3,5) ∩ Q(γℓ ,3,5) ∩ Q(γℓ ,3,2) ∩ Q(γℓ+1,3,1).

Case (4.2):Wehave d1 > 0. _en y = 0musthold. _is implieswℓ = w1 andwℓ+1 = w2.
For the semiample cone, we have

SAmple(X) ⊆ Q(γ1,4,6) ∩ Q(γ1,2,6).

Moreover, theweights are arranged as in the ûgure below,wherew2 = wℓ+1 lies on the
dotted line.
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w1 = wℓ

w3

w5

w6

w2 = wℓ+1

w4

d u

Subsuming the discussion so far, we see that only the Cases (2) and (4) allow
weightsw i , where i ≥ 7. _e remaining task is to check inwhichways these cases can
be combined. So, let us go through the possible constellations of the pairsw i ,w i+1 for
i = 7, 9, . . . , n − 1.

(a) All pairs w i ,w i+1, where i = 7, 9, . . . , n− 1, are from Case (2). In the discussion
of Case (2), we have seen that n ≥ 10must hold. For odd i ≥ 7, we have w i = (x i , 1, 0)
and w i+1 = (d1 − x i , 0, 1), where we can assume x7 ≥ x9 ≥ ⋅ ⋅ ⋅ ≥ xn−1. Now, the ample
class u lies in themoving cone. Proposition 2.10 yields

u ∈ cone(w2 ,w3 , . . . ,wn−1 ,wn)
○ .

We conclude w7 ∈ Q(γ1,6)
○ and wn ∈ Q(γ1,4)

○. _is in turn implies that x7 > d1 and
xn−1 < 0. Moreover, Q(γ7,n) is a bounding face of themoving cone. _us, we obtain

u ∈ Q(γ1,7,4)
○
∩ Q(γ1,6,n)

○
∖ Q(γ1,7,n) ⊆ Q(γ7,2,n)

○ .

We conclude that γ7,2,n is X-relevant. Applying Proposition 2.8(iii) and the estimates
for x7 and xn just obtained, we arrive at a contradiction, showing that the present
setting cannot occur:

1 = det(w7 ,w2 ,wn) = d1 − xn−1 + x7 − d1 + 1 ≥ 2.

(b) _ere is an even 7 < k ≤ n such that for i = 7, . . . , k − 1, the pairs w i ,w i+1 are
from Case (4.1) and for all odd j = k + 1, . . . n − 1, we have w j = w3 and w j+1 = w4.
_en, for the odd i = 7, . . . , k − 1, we have w i = (1, y i , 0) and w i+1 = (−1, 1 − y i , 1),
where we can assume y7 ≥ ⋅ ⋅ ⋅ ≥ yk−1. Set

α ∶= max(0, y7), w̃1 ∶= (1, α, 0), β ∶= min(0, yk−1), w̃k ∶= (−1, 1 − β, 1).

_en w̃1 and w̃k are degrees of variables, and they are closest to w3 in the sense that
w̃1 ∈ cone(w3 ,w i) and w̃k ∈ cone(w3 ,w i+1) holds for i = 1 and i = 7, . . . , k− 1; see the
ûgure in Case (4.1). Recall that the semiample cone is contained in the intersection of
Q(γ1,3,5) and cone(d ,w1 ,w3). We even claim that

SAmple(X) = cone(w̃1 ,w3 ,w5) ∩ cone(w̃1 ,w3 , w̃k).

By the deûnition of w̃1 and w̃k , we only have to show that both cones are images of
X-relevant faces. For the ûrst one this is clear. We discuss the second one. Observe
that we have

u ∈ cone(w̃1 ,w3 , w̃k) ∪ cone(w̃1 ,w4 , w̃k)
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_us, according to Proposition 2.11, the task is to show that cone(w̃1 ,w4 , w̃k) is not
the image of an X-relevant face. Indeed, this would contradict Lemma 5.8 applied to
an X-relevant face projecting onto

cone(w̃2 ,w3 , w̃k−1), w̃2 ∶= (−1, 1 − α, 1), w̃k−1 ∶= (1, β, 0).

Now, the coordinate change on K = Z3 given by the following unimodularmatrix and
suitably renumbering of variables leads to the setting of_eorem 1.4:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1
−β 1 α − β − 1
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

(c) _ere is an even 7 < k < n such that for i = 7, . . . , k − 1, the pairs w i ,w i+1 are
from Case (4.1) and for all odd j = k + 1, . . . , n − 1 the pair w j ,w j+1 is from Case (2).
Note that we have d1 = 0 and the weights are of the form

w i = (1, y i , 0), w i+1 = (−1, 1 − y i , 1), w j = (x j , 1, 0), w j+1 = (−x j , 0, 1),

where we can assume that y7 ≥ ⋅ ⋅ ⋅ ≥ yk−1 and xk+1 ≥ ⋅ ⋅ ⋅ ≥ xn−1. _e weights are
arranged as follows, where thew i for i = 7, . . . , k − 1 and thew j for j = k + 1, . . . , n− 1
lie on the dotted line:

w1

w3 ,w6w2

w4 ,w5

d

_e discussion on the Cases (4.1) and (2) performed so far shows that for all odd
i = 7, . . . , k − 1 and j = k + 1, . . . , n − 1, the semiample cone of X satisûes

SAmple(X) ⊆ Q(γ3,5, i) ∩ Q(γ1,4, j) ⊆ Q(γ5, i , j).

Since the semiample cone is full-dimensional, we see that γ5, i , j is X-relevant. _us,
we can apply Proposition 2.8 and obtain

1 = det(w5 ,w i ,w j) = 1 − y ix j .

_is leaves us with y i = 0 for i = 7, . . . , k − 1 or x j = 0 for j = k + 1, . . . , n − 1. If all the
x j vanish, then we are in the case just treated. So, assume that all the y i vanish. _en
we have w i = w1 and w i+1 = w2 for i = 7, . . . , k − 1. Set

α ∶= max(0, xk+1), w̃3 ∶= (α, 1, 0), β ∶= min(0, xn−1), w̃n ∶= (−β, 0, 1).

_en w̃3 and w̃n are the degrees of the variables sitting closest to w1 and among the
w j and w j+1 with j = 3 or j = k + 1, . . . , n − 1. We claim that the semiample cone is
given by

SAmple(X) = cone(w1 , w̃3 ,w2) ∩ cone(w1 , w̃3 , w̃n).
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As in the preceding case, we only have to show that both cones are projected
X-relevant faces. For the ûrst one this is clear. We turn to the second one. For sure
we have

u ∈ cone(w1 , w̃3 , w̃n) ∪ cone(w̃3 ,w2 , w̃n).
We verify u /∈ cone(w̃3 ,w2 , w̃n). Otherwise, because of det(w̃3 ,w2 , w̃n) = 1 + α − β,
Proposition 2.8(iii) yields α = β = 0, a contradiction. _us, cone(w1 , w̃3 , w̃n) is the
image of an X-relevant face.

Now, the coordinate change on K = Z3 given by the following unimodular matrix
and suitably renumbering of variables leads to the setting of_eorem 1.4:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0
1 −β α
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

(d) _ere is an even 7 < k < n such that for i = 7, . . . , k − 1, the pairs w i ,w i+1 are
from Case (4.2) and for all odd j = k + 1, . . . n − 1 the pair w j ,w j+1 is from Case (2).
_is means

w i = (1, 0, 0), w i+1 = (d1 − 1, 1, 1), w j = (x j , 1, 0), w j+1 = (d1 − x j , 0, 1),

A coordinate change on K = Z3 given by the following unimodular matrix and suit-
ably renumbering of variables leads to the preceding case:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 −1
1 0 1 − d1
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Proof of_eorem 1.4, Part II Let X arise fromConstruction 2.4with the input data
speciûed in_eorem1.4. Consider the toric embedding X ⊆ Z provided byConstruc-
tion 2.4. From Remark 2.7, we infer τX = τZ for the semiample cones. _us, for the
divisor class w = (1, a + 1, 1), a representing toric divisor E on Z and its restriction D
on X, we obtain a commutative diagram

X ⊆

φD
��

Z

φE
��

X(D) ⊆ Z(E) ≅ P(OPl−1(b1)⊕ ⋅ ⋅ ⋅ ⊕OPl−1(bk)),

where the inclusions are closed embeddings, l is the number of coordinates of Z =

Kn of degree w1 = (0, 1, 0), call them f1 , . . . , f l , and k is the number of coordinates
whose degree is located on the line segment cone(w5 ,w8), call them h1 , . . . , hk . _en
we have n = 2l + 2k and deg(h i) = (1, b i , 0) with 0 = b1 ≤ b2 ≤ ⋅ ⋅ ⋅ ≤ bk = a.
Using local trivializations, we see that X projects onto the base Z(E), which means
X(D) = Z(E). Moreover, on each ûber φ−1

E ([z]), the relation g becomes a linear
form in the coordinates Ti diòerent from f i and h j and thus cuts out a hyperplane of
φ−1
E ([z]) ≅ Pl+k−1. Consequently, φD ∶X → X(D) is as claimed.

Corollary 6.1 Let X be a Fano smooth full intrinsic quadric of Picard number three.
_en every numerically eòective divisor on X is base point free. In particular, X fulûlls
Fujita’s freeness conjecture.
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Proof We can assume that X arises fromConstruction 2.4with the input data speci-
ûed in_eorem1.4. As in the proof of Corollaries 4.3 and 4.4,we consider themonoid
of base point free divisor classes and its combinatorial description:

BPF(X) = ⋂
γ0∈cov(X)

Q(γ0 ∩Zn
).

Again the task is to show that for all γ0 ∈ cov(X), themonoid

Q(γ0 ∩ E) ⊆ Q(lin(γ0) ∩ E)

is saturated. For three-dimensional γ0, this is due to Proposition 2.8(iii). If γ0 ∈

cov(X) is not three-dimensional, then we have γ0 = γ i , i+1, j, j+1 with w i = (0, 1, 0),
w i+1 = (1, a − 1, 1), and w j = (0, b, 1), w j+1 = (1, a − b, 0) for some 0 ≤ b ≤ a. One
directly checks that the corresponding monoid Q(γ0 ∩ E) ⊆ Q(lin(γ0) ∩ E) is satu-
rated.
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