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On Intrinsic Quadrics

Anne Fahrner and Jiirgen Hausen

Abstract. An intrinsic quadric is a normal projective variety with a Cox ring defined by a single
quadratic relation. We provide explicit descriptions of these varieties in the smooth case for small
Picard numbers. As applications, we figure out in this setting the Fano examples and (affirmatively)
test Fujita’s freeness conjecture.

1 Introduction

Intrinsic quadrics were introduced in [5] as an example class of normal, projective,
algebraic varieties that are accessible by elementary combinatorial methods similar
to toric varieties. Recall that the normal projective toric varieties X are characterized
by the property that their divisor class group Cl(X) is finitely generated and their
Cox ring
R(X) = @ T(X,0x(D))
cl(x)

is a polynomial ring. An intrinsic quadric is by definition a normal projective vari-
ety X with finitely generated divisor class group CI(X) and a finitely generated Cox
ring admitting homogeneous generators such that the associated ideal of relations is
generated by a single, purely quadratic polynomial. In that sense, studying intrinsic
quadrics is a quite moderate step beyond toric geometry. Some well known non-toric
examples are the usual smooth quadrics X ¢ P, for n > 4 and several cubic surfaces
in P;. We refer the reader to [7] for a sample use of intrinsic quadrics as a testing class.

In this article, we take a closer look at smooth intrinsic quadrics of small Picard
number, but arbitrarily high dimension. For toric varieties, the analogous idea has
been pursued by Kleinschmidt [19] in Picard number two and by Batyrev [4] in Picard
number three. Moreover, in [13], we described all smooth, rational varieties of Picard
number two that come with a torus action of complexity one. Similarly to the toric
setting, where the restriction of being smooth of Picard number one allows just the
projective spaces, the situation turns out to be simple for intrinsic quadrics: in Picard
number one, we only find the classical smooth quadrics X ¢ P,,; see Proposition 3.1.
In Picard number two, we obtain a considerably larger class. The first main result
of the paper provides a full description of these varieties X in terms of their CI(X)-
graded Cox ring and the semiample cone 7x € Clg(X). This collection of data indeed
fixes X; see Section 2 for a brief reminder and [3] for more background.
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Theorem 1.1  Let X be a smooth intrinsic quadric of Picard number p(X) = 2. Then
X has divisor class group CI(X) = Z?* and, with suitable integers n,m € Zs, the Cox
ring of X is given by

R(X)2K[Ti,..., Tus St .- Sm]/{2)>

TiTy +-+ Ty y T n even,
TTy+ -+ Ty Tyy + T2, 1 odd.

The possible constellations for the Cl(X)-grading of R(X) and the semiample cone Tx <
Clg(X) are listed below; we distinguish four types and write w; := deg(T;) and u; :=
deg(S;) for the CI(X)-degrees.

Type L: Fix o € Zso. We have n > 5 and m > 2. Moreover, w; = --- = w, = (1,0) and
uj=(aj,1) with0=a;<a, <---<a, = a holds.

Tx

(o,1)~ . e e e(a])

|

Here, X is the projectivization P(Oy (a1) ® Oy(a2) @ ---® Oy (a,,)) of the split vector
bundle defined by ay, ..., am over the smooth quadric Y = V(g) € P,_.

Type 2: Fix « € Zso. We have n > 5 and m > 2. Moreover, uj = «-+ = i, = (1,0) holds
and we have w; = (a;,1) with0 < a; < a fori=1,...,n such that

(a) wy=(0,1) and w, = (a, 1),
(b) wi +wiy = (a,2) forall odd i < n and 2w,, = («,2), if n is odd.

Wl = (0, 1) L) LEEY ° (0(, 1) = W2
Tx
Uj

Here, X admits a locally trivial fibration X — IP,,,_; with fibers isomorphic to the smooth
quadric V(g) € P,,_;.

Type 3: We have n > 5 and m > 1. Moreover, u; = -+ = uy, = (1,0) holds and the w;
satisfy
(a) w1 =(0,1) andw, = (2,1),
(b) wy=---=w, =(1,1).
Wi,
i>3
Tx
Wi l .
w2
K

Here, X is the blowing-up of the projective space Py, m—3 centered at the smooth quadric
V(g -NhT,S,..., Sm) CPuim—3.
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Type 4: Fix 0 < a < a € Z. We have n > 6 with n even and m > 0. Moreover,
uj=(aj,1) holds with 0 < a; < a and

@) wi=ws == wp1=(1,0),
(b) Wy =Wy =--=W, = (a,l)’
(c) the vectors (a,1) and (0,1) occur among wi, ..., Wy, Ui, . . . » Up.
Wi,
ieven
!
(0,1)4 o wor v eee_e(ad)
"7""7""7"""""""""" TX
‘ Wi,
iodd

Here, X admits a locally trivial fibration X — P, /,_, with fibers isomorphic to the
projective space Py, 54 2.

Conversely, each of the above constellations in Types 1 to 4 defines a smooth intrinsic
quadric of Picard number 2.

We say that an intrinsic quadric is full if all generators of its Cox ring show up
in the relation. The full intrinsic quadrics of Theorem 1.1 are precisely the cases of
Type 4 with m = 0 and hence « = 0; they have been found in [5] under the additional
hypothesis of a torsion free divisor class group. Moreover, the cases n =5and n = 6
in Types 1 to 4 of Theorem 1.1 are precisely the smooth intrinsic quadrics allowing a
torus action of complexity one and thus represent exactly the overlap with [13].

Recall that a normal projective variety X is Fano if it admits an ample anticanon-
ical divisor. More generally, X is called almost Fano if it has a numerically effective
anticanonical divisor; we say that X is truly almost Fano if it is almost Fano but not
Fano. Theorem 1.1 gives us in every dimension the (almost) Fano smooth intrinsic
quadrics of Picard number two.

Corollary 1.2 In the notation of Theorem 1.1, the (truly almost) Fano varieties among
the smooth intrinsic quadrics X of Picard number two are characterized by the following
conditions.

Type Fano truly almost Fano
1 ma<n—-2+ay+---+ay, moe=n—-2+ay+--+ay,
n-2 n-2 ., _
2 Sta<m S-a=m
3 n-2>m n-2=m
4 ma< 2 +ai+-+ay ma="2+a+ - +ay
and wy = (a,1) and wy = (a,1)
4 Uy =-=upy=(L1)
and wp = (0,1)
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Note that in Theorem 1.1, the variety X is of dimension #n + m — 3. Thus, the above
table provides us in particular for every dimension with the numbers of (almost) Fano
smooth intrinsic quadrics of Picard number two. The overlap with the classification
of smooth Fano threefolds by Mori and Mukai consists of the threefold Type 3 with
n =5, m =1, and the threefold of Type 4 with n = 6, m = 0, which occur as No. 2.30
and No. 2.32 in [20], respectively.

For a Fano, not necessarily smooth, full intrinsic quadric X, we see in Proposi-
tion 5.1 that its Picard number is bounded by p(X) < 3. Moreover, if X is smooth,
then we can further show p(X) < 2 and arrive at the following theorem.

Theorem 1.3 Let X be a Fano smooth full intrinsic quadric. Then X is of Picard
number p(X) < 2 and

(i) if p(X) =1, X is isomorphic to the smooth projective quadric V(Tg +---+ T2) ¢
P, where n > 4;

(il) if p(X) =2, X is isomorphic to V(ToSg + -+ + TSy ) € Py, x Py, the flag variety
of type (1,n —1,1), where n > 2.

We use our results to test Fujita’s freeness conjecture, which says that for any
smooth projective variety X with canonical divisor Cx, the divisor Cx + sD is base
point free provided that D is ample and s > dim(X) +1 holds; see [15]. This statement
is known to hold for varieties with torus action of complexity at most one [1,14] and
in general up to dimension five [11,18,22,24]. Corollary 4.4 verifies Fujita’s freeness
conjecture for smooth intrinsic quadrics of Picard number at most two.

We turn to Picard number three. Recall that smooth toric varieties of Picard num-
ber three have been described by Batyrev in [4] in terms of primitive collections. In
the setting of intrinsic quadrics, we obtain a complete picture in the full case.

Theorem 1.4  Let X be a full smooth intrinsic quadric of Picard number three. Then
X has divisor class group CI(X) = Z3, and, with a suitable even integer n > 8, the Cox
ring of X is given by

:R(X);K[Tl,,Tn]/<g), g:: T1T2+"'+Tn_1Tn.

The possible constellations for the Cl(X)-gradings and the ample cone of X are the fol-
lowing. There is an integer a > 0 such that the degree of the relation is y := deg(g) =
(1, a,1), and we have

W1=W3=(0,1,0), W2=W4=(1,a—1,1),
ws =(0,0,1), we=(1,a,0), w;=(1,0,0), wg=1(0,a,l).

For all odd 9 < i < n, the generator degrees w;, wi1 coincide either with wy, w, or are
located on the line segments conv(ws, wg) and conv(wg, w7 ).

Moreover, as indicated in Figure 1, the semiample cone 1x € Cl(X)q of X is given as
the intersection of two cones:

Tx = cone(wy, Wy, wg) N cone(wy, wg, wg).
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Conversely, each of the above constellations defines a full smooth intrinsic quadric X of
Picard number 3. Moreover, each such X admits a locally trivial fibration with fibers a
projective space onto a smooth projective toric variety of Picard number two.

Again, we use this description to verify Fujita’s freeness conjecture for full smooth
intrinsic quadrics of Picard number three; see Corollary 6.1. As soon as we leave the
full case, the situation in Picard number three becomes much more ample; complete
descriptions in the dimensions three and four have been elaborated in [12].

2 Basics on Intrinsic Quadrics

We first discuss purely quadratic polynomials in general and present a graded normal
form in Proposition 2.1. Then we provide a quick guide to the general combinatorial
theory of [3, Chap. 3] adapted to the sample class of intrinsic quadrics. This allows us
in particular to encode and read off the necessary geometric properties.

Throughout the whole article, we work over an algebraically closed field K of char-
acteristic zero. A grading of a K-algebra R by a finitely generated abelian group K is
a direct sum decomposition

R=@R,

weK
into vector subspaces R,, € R being compatible with multiplication in the sense that
Ry, Ry, S R,y holds for all w,w’ € K. A homomorphism of graded algebras R =
@k Ryand S = @ S, isa pair (y, F) consisting of an algebra homomorphism y: R —
S and a group homomorphism F: K — L such that one always has y/(R,,) S Sp(y)-
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In this situation, we speak of a graded homomorphism if K = L holds and F is the
identity map.

Proposition 2.1 Let K be a finitely generated abelian group, consider a K-grading on
the polynomial ring K[ T, ..., Ts| such that the variables Ty, ..., Ts and the following
quadratic polynomial are K-homogeneous:
g= Z a,-jT,-TjeK[Tl,...,Ts].
1<i<j<s

Then there are a linear automorphism y:1in(Ty,..., T;) — lin(Ty,..., Ty) inducing
a graded automorphism V:K[Ty,..., T,] = K[Ti,..., T;] and non-negative integers
q, t with q + t <s, such that

V(g)=gqr=TiTa+ -+ Ty Ty + T;+1 + 4t T;-t

and deg(Tyx) # deg(Ty41) holds for all 0 < k < I < t. In this setting, s — q — t
is the dimension of the singular locus of V(g4,¢) € K° and t counts the u € K with
2u = deg(gy,¢) such that the number of T; of degree u showing up in g, ; is odd.

Proof Suitably renumbering the variables, we can assume that T3, ..., T, are pre-
cisely the variables that show up in g. Let wy, ..., w, € K be the degrees of Ty, ..., T};
we impose wy # w; for k # I here. Moreover, set y := deg(g) € K. Further suitable
renumbering of variables yields

WL+ Wy = =Wy + Wpy1 = U, QW = =2Wy =l

with a unique odd number -1 < m < n. Some of the variables Tj, ..., T, may share
the same degree, and we have

Vi=lin(T,....Ts) = V@&V, ® Vy,

where Vj is the linear subspace generated by all T;, 1 < i < r, of degree wy, and V; is

the linear subspace generated by the variables Ty, ..., Ts. Suitably renumbering the
T; again, we achieve
Tla”-)leEva Td,,,1+1a~--aTd,,€Vna Tdn+1)--~)Ts€V0-

The idea is to build up y stepwise from appropriate endomorphisms V — V. First,
consider variables T; € V; and T; € V, with «;; # 0. Define a linear automorphism

vipV—V, Tjr— aflej - a;jl Zaika, T)— T for I # j.
k#j

Then v;; respects the direct sum decomposition of V' and restricts to the identity on
all components different from V,. Moreover, y;; extends to an automorphism ‘¥;; of
the K-graded algebra K[ T3, ..., T;], and we have

‘Pij(g)z(T,-+Zai_j1aijk) Tj+ Z Elele
k+i k+i, 1+j
with some dj; € K. Now define a linear automorphism

1//ji:V—>V, Ti|—>Ti—a,-_jIZaijk, T, — T for I # i.

k+i
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Similarly as before, y;; respects the direct sum decomposition of V' and restricts to
the identity on all components different from V. Again, y;; extends to an automor-
phism ¥;; of the K-graded algebra K[ Ty, ..., T;]. This time we have

¥i(¥ij() = TiTj+ Y, @uTiTh.
k#i,l#j

Thus, a suitable composition of the automorphisms ¥j; o ¥;; turns g into the desired
form with respect to the variables from V; and V;. Proceeding similarly, we can settle
all other pairs V; and Vj,; for [ =3,5,...,m.

On each subspace Vi for k > m +1, the variables all have the same K-degree and, if
a variable of a given monomial of g belongs to Vj, then all variables of this monomial
belong to V. Thus, we can treat the part g of g built from variables of V} separately.
The usual diagonalization procedure for the Gram matrix of g leads to a presentation
of gk as a sum of squares. If the number ¢ of these squares is even, then we turn the
whole gy into a sum of terms T;Tj with i # j. Otherwise, we turn gy into a sum of
T; T; with i # j plus one single square. ]

We call g, € K[Ty,..., T;] as in Proposition 2.1 a standard K-homogeneous qua-
dratic polynomial. As the supplement of the proposition shows, a given standard
K-homogeneous quadratic polynomial g, ; can be transformed via an automorphism
of graded algebras into another one, say g,/, if and only if g = ¢’ and t = ¢’ hold. If
for some g, ; the sum g+ t is odd, then we must have ¢ > 1. Let us briefly discuss what
happens if t > 1 holds.

Remark 2.2 Letg,, € K[T,..., T;] beastandard K-homogeneous quadratic poly-
nomial with ¢ > 1. Then, for any two 1< i < j < ¢, twice the degree of T,; as well as
twice the degree of T, ; equal the degree of g, ; and thus we have

2(deg(Tysi) — deg( Ty4;)) =0€K.

In particular, the number t is bounded by the order of the subgroup K, € K consisting
of all elements annihilated by multiplication with 2. Here is a concrete example: Take

K=Z27x7/2Z,  g=T+T; cK[T, T].
Define a K-grading on K[Tj, T, ] by setting deg(Ty) := (1,0) and deg(T») := (0,1).
Then g = g, is a standard K-homogeneous quadratic polynomial in K[ T3, T3 ].

We turn to the construction of intrinsic quadrics. Recall that every Mori dream
space, that means, every irreducible, normal, projective variety X with finitely gener-
ated divisor class group Cl(X) and finitely generated Cox ring

R(X) = P 1(X,0x(D))

cl(X)

can be retrieved from R(X) as follows. The above grading defines an action of the
quasitorus H = Spec K[CI(X)] on the total coordinate space X = Spec R(X). If
u € CI(X) is any ample class of X, then the associated set of semistable points is

X (u) = {x € X; f(x) # 0 for some f € R(X)u, wheren >0} c X.
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This is an open H-invariant set and the variety X is obtained as the associated geo-
metric invariant theory quotient X = X (u) J H. We refer the reader to [3] for more
background.
Reversing the picture just drawn, we can produce all Mori dream spaces from suit-
able finitely generated, normal, integral, K-graded K-algebras
R= @ Ry,

weK
where “suitable” characterizes the Cox rings among these algebras. Let us briefly recall
from [3] what that means. First, R has to be K-factorial in the sense that we have
unique factorization in the multiplicative monoid R, € R of non-zero homogeneous
elements of R; for instance, R can be a unique factorization domain in the classical

sense. For the further conditions, fix any system fi, ..., f; of pairwise non-associated
K-prime, i.e., prime in Ry, generators of R and consider the (convex, polyhedral)
cones

ko = cone ( deg(f),...,deg(f:)), Ky i= i(i]lcone(deg(fj); jEi)

in the rational vector space Kg = K ®7 Q associated with K. Then we ask the K-
grading to be pointed in the sense that Ry = K holds and the weight cone x, contains
no lines. Moreover, the K-grading must be almost free in the sense that any s — 1 of the
deg( f;) generate K as a group. Finally, the moving cone x; has to be of full dimension
in Kg.

Example 2.3 Let a finitely generated abelian group K and a pointed, almost free
K-grading of the polynomial ring K[ T, . . ., T; ] be given such that all variables T; are
K-homogeneous and the moving cone is of full dimension in Kg. Moreover, let g, ; €
K[Ti,..., T;] be a standard K-homogeneous quadratic polynomial and consider the
factor algebra R := K[Ty, ..., Ts]/(gq,:) with its induced K-grading.

(i) If g+t > 5holds, then R is a unique factorization domain and the K-grading
of R is factorial.

(ii) For g+ t <5, the ring is normal, integral with factorial K-grading if and only
if K =7Z°/M and deg(T;) = e; + M hold, where M is the row space of an r x s matrix
with r < s of the following shape

-2 2 0 0 0 0
-2 0 2 0 0 0
q=0, =4 5 0 0 2 o0 ol
|di dy ds dy d] dr
(-1 -1 2 0 o0 0
q= 2, t=2:1-1 -1 0 2 0 0],
(i dy ds dy df d
[-2 2 0 0 ... 0
q= 0, t=3:1-2 0 2 0 e 0
(4 dy ds 4] ... d),

In Case (ii), the conditions “almost free”, “pointed” and “full-dimensional moving
cone” on the K-grading mean that the columns of the listed matrices are pairwise
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different primitive lattice points in Z" generating Q" as a cone. For the last two cases,
the statement on K-factoriality follows from the results of [16] and for the first one, a
proof in a more general framework will be presented elsewhere.

We are ready for explicit construction of intrinsic quadrics. The notation intro-
duced in the subsequent two constructions will be used throughout the whole article.

Construction 2.4 (Standard intrinsic quadrics) Consider a pointed K-grading of
the polynomial ring K[ T3, ..., Ty, S1, ..., Sm ], where K denotes a finitely generated
abelian group and where all variables T; and S; are K-homogeneous, any n + m —1 of
their degrees generate K as a group and the moving cone is of full dimension in Kg.
Moreover, let

ot €K[T, ..., T, 81505 S

be a standard K-homogeneous quadratic polynomial with 3 < g + ¢t = #; thus, by
choice of notation, g, ; depends precisely on the variables Ty, ..., T,,. Assume that the
K-grading is factorial; that means that Condition 2.3(i) or (ii) is satisfied. Take any
u € K from the relative interior of the moving cone. Then we obtain a commutative

diagram
V(ggt) = X c Z = Kmm
ul ul
X'(w) < Z7(w)

|

X——7Z,

where H = Spec K[K] is the quasitorus corresponding to K, the downwards arrows
are the GIT-quotients defined by u and the bottom horizontal arrow is a closed em-
bedding. Moreover, X and Z are normal projective varieties and we have

dim(X) +1=dim(Z) = n+m - dim(Kg), Cl(X)=Cl(Z)=K

for the respective dimensions and divisor class groups. Moreover, Z is a toric variety
and we call X = X(q, t, m,u) a standard intrinsic quadric. The Cox ring of X is given
as K-graded factor algebra

R(X)=K[Ti,..., TpsSts- > Sm]/(gq,e)-

By a full intrinsic quadric, we mean an intrinsic quadric with a defining quadratic
polynomial g such that the normal form of g is g, ; € K[Ti,..., T,] with n = q + t,
that means that there are no free variables S;.

By definition, intrinsic quadrics are normal projective varieties X admitting a pre-
sentation of the Cox ring by CI(X)-homogeneous generators such that the ideal of
relations is generated by single, purely quadratic, Cl(X)-homogeneous polynomial.
As an immediate consequence of Proposition 2.1, we obtain the following proposition.

Proposition 2.5  Every intrinsic quadric is isomorphic to a standard intrinsic quadric.
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Note that in Construction 2.4 the set of semistable points z" (u) is an open toric
subvariety of Z = K"*™ and the quotient map 7: Zss(u) — Z for the action of H is
a toric morphism; in fact this is the usual quotient presentation of the toric variety Z
from [9]. Cutting down the orbit decomposition from the ambient toric variety Z to
X yields a decomposition of X into locally closed subvarieties which we call the pieces
of X. We need to identify these pieces explicitly.

Construction 2.6 Notation as in Construction 2.4. The degree homomorphism
Q:Z"*™ — K sending the i-th canonical basis vector e; € Z"*™ to the weight
deg(T;) € K gives rise to a pair of mutually dual exact sequences of abelian groups

OHLHZH+”[$ZY

0<—K<TZ”+’”%Z’<—O.
P*

For every face yo < y of the positive orthant y = Q23™, denote by Z () € Z the set
of all points z € V4 having coordinates z; # 0 if e; € yo and z; = 0 otherwise. This sets
up a bijection

{faces of y} —> {toric orbits of Z}, Yo — Z(y0).

A face yy < y is called Z-relevant, if the cone Q(y) S K contains u in its relative
interior. The set of semistable points Z° () is the union of all toric orbits Z(y1),
where yo < y; with a Z-relevant yy < y. Via the quotient map 7: Z () > Z, we
obtain a bijection

{Z-relevant faces of y} — {toric orbits of Z}, Yo — Z(yo) = 1(Z(yo)).

We say that yo < y is an X-face if X(yo) := X n Z(yo) is non-empty and we call it
X-relevant if in addition y, is Z-relevant. The X-relevant faces of y correspond to the
toric orbits of Z intersecting X non-trivially. This leads to a bijection

{X-relevant faces of y} — {pieces of X}, Yo —> X(yo) == X N Z(yo).

The covering collection of X is the set cov(X) of all minimal X-relevant faces of y. The
union over all affine toric charts Z,,; ¢ Z, where y, stems from the covering collection,
is the minimal toric ambient variety of X; it is the minimal open toric subvariety of Z
containing X as a closed subvariety.

Remark 2.7 Due to the specific form of g, ; € K[Ty,...,T,,S1,... S ], we can
explicitly describe the faces yo < y defining a non-empty set X(yo) = X n Z(yo). For
any sequence 1 < i; < --- < iy < n + m, we denote

Vin,.ooix = cone(ei,...,e;, ) < y.
This gives us all the faces of the orthant y = Q%¢™. We consider the following four
basic types of faces:

(1) Vi i+1,j,j+1 with1<i< ] <q odd,
(11) yi,,-ﬂ,jwithlsi<q0ddandq+1$j§q+t,
(iii) y;jwithg+1<i<j<q+t,
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(V) Piy,.oigaqetel,..oqrt+m> Where iy € {1,2}, iy € {3,4},..., ix € {q—1,q} with
k=gq/2

Then y, < y is an X-face, i.e., the set X(y,) is non-empty, if and only if one of the

following holds

+ 7 <y, with a face 7 < y of type (i), type (ii), or type (iii).
 yo < T with a face 7 < y of type (iv).

A point x € X of a variety is factorial if the local ring O x . is a unique factorization
domain. A variety X is called locally factorial if all its points are factorial; this is equiv-
alent to the property that every Weil divisor of X is Cartier. We say that a standard
intrinsic quadric X arising from Construction 2.1 is quasismooth if X" (u) is smooth;
this implies that X has at most abelian quotient singularities.

Proposition 2.8 Let X = X(q,t,m,u) be a standard intrinsic quadric arising from
Construction 2.4.

(i) Let yp = cone(egirsts...»>eqetam) < y. Then the singular locus of the total
coordinate space X = V(gq,.) is given by

X = V(T Ty = U X(po) € X.
Yo=Ym
(ii) The variety X is quasismooth if and only if every X-relevant face yo < y contains
somee; with1<i<q+t
(iii) The piece X(yo) associated with an X-relevant yy < y consists of locally factorial
points of X if and only if Q(ling(yo) NZ"*™) generates K as a group.
(iv) The variety X is locally factorial if and only if for every y, € cov(X), the image
Q(ling(yo) NZ"*™) generates K as a group.
(v) The piece X(yo) associated with an X-relevant yo <y consists of smooth points
of X if and only if the following two statements hold:
(a) Q(ling(yo) NZ"*™) generates K as a group;
(b) e € yo holds for somel<i< g+t
(vi) The variety X is smooth if and only if it is quasismooth and for every y, €
cov(X), the image Q(ling(yo) NZ"*™) generates K as a group.

Proof The first statement is obvious and the remaining ones are the adapted versions
of [3, Cor. 3.3.1.8 and Prop. 3.3.1.10]. [ |

The following three statements are proved in more generality in [3, Sec. 3.3]. Below,
we denote for a convex, polyhedral cone ¢ in a rational vector space V, its relative
interior by ¢°.

Proposition 2.9 Let X = X(q, t, m,u) be a standard intrinsic quadric arising from
Construction 2.4. Then the Picard group of X is given as

Pic(X)= () Q(linz(yo)nE) €K =CI(X).

yoecov(X)
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Proposition 2.10 Let X = X(q, t, m,u) be a standard intrinsic quadric arising from
Construction 2.4. Then the cones of effective, movable, semiample, and ample divisor
classes of X in Clg(X) = Kq are given as

Eff(X) = Q(y), Mov(X) = Q Q(yo)
Yo=Yy facet

SAmple(X) = (] Q(yo), Ample(X) = [ Q(yo)"-
yoecov(X) yoecov(X)

Moreover, for every u’ ¢ Ample(X) we have X (u) = X (u) for the sets of semistable
points and thus X = X(q,t, m,u’).

Proposition 2.11 Let X = X(q,t, m,u) be a standard intrinsic quadric arising from
Construction 2.4. Then the following statements are equivalent.

(i) X is Q-factorial.

(i) For every X-relevant yo <y the image Q(yo) is of full dimension in Kg.
(iii) The semiample cone SAmple(X) is of full dimension in Kg.

3 Picard Numbers One and Two: Classification

First, we describe all locally factorial instrinsic quadrics of Picard number one. Then
we show that locally factorial intrinsic quadrics of Picard number two have torsion
free divisor class group, see Proposition 3.3. Finally, as the first part of the proof of
Theorem 1.1, we establish the normal forms for the smooth intrinsic quadrics given
there.

Proposition 3.1 Let X be a locally factorial intrinsic quadric of Picard number one.
Then X has divisor class group Cl(X) 2 Z and, with suitable integers n > 5 and m > 0,
the Cox ring of X is given by

R(X) = K[Tl,. . Tn,Sl,. ,Sm]/(g>,

_ T+ -+ Ty Ty, n even,
T1T2 +-0 Tn—ZTn—l + Tr%’ n odd.

The CI(X)-grading of R(X) is given by deg(T;) = deg(S;) = Lforalli =1,...,n
and j =1,...,m. Thus, X is isomorphic to the classical quadric V(g) ¢ P"*™! with
singular locus V (T, ..., T,,). In particular, X is smooth if and only if m = 0 holds.

Proof Since X islocally factorial, we have Pic(X) = Cl(X). In particular, Clg(X) is
of dimension one. We can assume that X arises from Construction 2.4 with a standard
Cl(X)-homogeneous quadratic polynomial g, ; and that the ample cone Ample(X)
is the positive ray in Clg(X) = Q. Consider the faces

Yo = cone(e; ), i=l,...,q or i=n+l...,n+m.

Each of these faces is X-relevant. Since X is locally factorial, Q(e;) generates CI(X)
as a group; see Proposition 2.8. In particular, if g > 2 holds, then we can conclude
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Cl(X) =Zand
deg(T;)=1, i=1...,n, deg(S;) =1, j=1...,m.

This implies that ¢+ < 1. The cases n = 3,4 are impossible: then the Cox ring R(X)
wouldn’t admit unique factorization, but it has to do so, because of the torsion free
divisor class group Cl(X), see [3, Prop. 1.4.1.5]. Thus, we also have n > 5, if g > 2
holds.

We exclude the case g = 0. Here, ¢t > 3 must hold. Thus, we have the X-relevant
face yo = cone(ey, e;). Thus, Cl(X) is generated by deg(T;) and deg(T3), which
implies CI(X) = Z @ T with a cyclic group I' = Z/kZ and, after applying a suitable
automorphism of Cl(X), we can assume

deg(Th) = (1,0), deg(Ty) = (1,1).
Since 2 deg(Ty) = 2deg( T ) holds, we obtain k = 2. But then there is no way to assign
to Ts a degree in C1(X) differing from the degrees of T; and T, a contradiction. M

Remark 3.2 Let X be a Q-factorial standard intrinsic quadric with Clg(X) of
dimension two arising from Construction 2.4. Then the effective cone Eff(X) is
uniquely decomposed into three convex sets

Eff(X)=1t"utiut

such that 7+ and 7~ do not intersect 7% = Ample(X) and 77 N7~ consists of the origin.
Because of 7% € Mov(X), each of 7% and 7~ contains at least two (not necessarily
different) degrees of the Cox ring generators Ty, ..., Ty, S1, .. ., Sm.

Note that 75 is an open cone of dimension two, whereas 7~ as well as 7+ might be one-
dimensional. The closure Tx = SAmple(X) of 7% is the intersection of two X-relevant
faces, see Proposition 2.10, and thus we find degrees of variables on its boundary.
Moreover, apart from deg(T,) when t = 1, no degree of a T; or a §; can lie in 7%, use
again Proposition 2.10.

Proposition 3.3 Let X be an intrinsic quadric of Picard number two. If X is locally
factorial, then Cl(X) = Pic(X) = Z* holds.

Proof Since X is locally factorial, every Weil divisor is principal, and thus we have
CI(X) = Pic(X). The remaining task is to show that Pic(X) is torsion free. For
this, we can assume that X arises from Construction 2.4. We claim that it suffices to
find a two-dimensional X-relevant face yo < y. Indeed, Proposition 2.9 tells us that
Pic(X) isa subgroup of Q(ling(yo)nZ"*™) < CI(X). In particular, Q(ling(yo)) is of
dimension two. Consequently, being generated by two elements, Q(ling (yo)NZ"*™)
is torsion free. Then also Pic(X) must be torsion free.
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Now, the ample cone 7% is two-dimensional and, according to Remark 3.2, we find
two degrees v ,v; € T~ and two degrees v{, vy € 77 stemming from, in total, four of
the generators T; and S; such that v and v{" generate the effective cone Eff (X). After
suitably renumbering the T; and the T}, we are in one of the following cases:

Case 1. We have deg(S;) € 7~ and deg(S,) € 7*. Then yo = cone(ey+1, €n+2) is the
desired X-relevant face.

Case 2. We have deg(S;) € 7~ and 7" contains no degrees of variables S;. If deg(T;) €
7" holds for some 1 < i < g, then yo = cone(e;, e,,41) is the desired X-relevant face.

Suppose that there is no 1 < i < g with deg(T;) € 7. Then one and hence all
deg(Ty+;) lie on the ray through v{'. This implies g = 0. Now, cone(ey, e, es41) is
an X-relevant face. Since X is locally factorial, the corresponding degrees generate
CI(X). We conclude CI(X) = Z*@T with a cyclic torsion part I’ = Z/kZ and, applying
a suitable automorphism of I', we achieve

deg(Ty) = (1,0,0), deg(T»)=(1,0,1), deg(S)=1(0,10).

Because of 2deg(T;) = 2deg(T,), we obtain k = 2. Since the T; must have different
degrees in Cl(X), we obtain that there are no T; for i > 3. Thus, no 1 < i < g with
deg(T;) € 7+ is impossible.

Case 3. The are no deg(S;) in 7~ U 7*. Then we can assume v; = deg(T1) and obtain
the desired X-relevant face yo = cone(ey, e;) by choosing i # 2 such that deg(T;) is
one of v{,v3. [ |

Proof of Theorem 1.1, Part I We show that all smooth intrinsic quadrics of Picard
number p(X) = 2 are isomorphic to one of the varieties described in Theorem 1.1.
Proposition 3.3 yields CI(X) = Z?*. Moreover, according to Proposition 2.5, we can
assume that X is a standard intrinsic quadric. Then the Cox ring of X is given as

R(X) =K[Ty, ..., T Sts - - - Sm 1/(2)»

T+ + Ty Ty if n is even,
N+ + Tyy Ty + T2 if mis odd.

Note that we have n > 5, because Cl(X) is torsion free, and thus R(X) must be a
unique factorization domain. As outlined in Remark 3.2, the effective cone of X is the
disjoint union of three convex sets,

Eff(X) =1 utiut’,

where 7% € Clg(X) is the ample cone. Since X is smooth, there are no X-relevant
faces of the form cone(e;, e;) with n +1 < i < j < n + m; see Proposition 2.8. Con-
sequently, the deg(S;) either all lie in 7~ or all in 7*. After suitably renumbering the
variables T; and S;, we are left with the following cases:
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(i) (ii) (iii)

Here, we set w; := deg(T;) and u; := deg(S;). Observe that in Case (iii), we can
indeed assume u; € 77, because ¥, .1 is an X-relevant face and thus Proposition 2.8
allows us to interchange 7~ and 7* via a linear coordinate change if necessary. We
now go through the cases, using the notation of Remark 2.7 for X-relevant faces and
writing p = (1, y2) € Z* for the degree of g.

Case (i): We have 7x = cone(w;, w,) with wy € 77 and w, € 7*. Then y € 7x holds.
Thus, we can assume w3 € 7~ and wy € 7. Applying Proposition 2.8 to y 4, we
see that wy, wy form a Z-basis for Z?. By a suitable coordinate change, we achieve
wy = (1,0) and wy = (0,1). Then wy + wy = w3 + wy = y implies wp = (41— 1, ) and
w3 = (p1, pha — 1). Like w; and wy, w3 and w; also form a Z-basis for Cl(X), being
positively oriented, because Eff (X) is pointed and we have w, € 77 and w3 € 77. This
implies
1=det(ws, wy) =y + pp — 1.

From p € 7x S cone(w;, wy) we infer py, pp > 0 and conclude that p; = py = 1.
In particular, we have w, = (0,1), w3 = (1,0) and 7x = QZ,. Moreover, y = (1,1)
implies that # is even. Suitably renumbering the T; with i > 5, we achieve w; € 7~
and w;,; € 74 for i = 5,7,...,n — 1. Then, for every odd i, Proposition 2.8 and the
homogeneity of g provide us with the conditions

det(w;, wy) =1, wi+wig=p=(11), det(wy, wi1) = L

We conclude that w; = (1,0) and w;; = (0,1) forall i =5,7,...,n — 1. The weights
uj = deg(S;) are contained either all in 7~ or all in 7*. We can assume all in 7",
Applying Proposition 2.8 to yy,j, where j = 1,...,m yields u; = (a;,1) with some
aj € Zeo. A suitable linear coordinate change in Z? leads to Type 4.

Case (ii): We have 7x = cone(wy, wy) with wy € 77 and wy € 7%, If w, € 7+ holds, then
we are in Case (i) just settled. We treat the case w, € 7~. Since y; 4 is an X-relevant
face, Proposition 2.8 says that w;, wy form a Z-basis of Z2. Thus, a suitable linear
coordinate change in Z? yields w; = (1,0) and wy = (0, 1).

Asy, 4 isan X-relevant face, we can apply Proposition 2.8 again and see that w,, w4
is a positively oriented Z-basis of Z2. Thus, det(w,,w,) = 1 holds and we conclude
that w, = (1, x) with some x € Z.,. By the same arguments, if v* € 7+ is a degree
of any of the T; # T or the S;, we see that wy,v* is a positively oriented Z-basis and
conclude that v* = (y,1) with some y € Z.o. Moreover, arguing further along this
line gives

1=det(wy,v") =1-xy, 1=det(ws;,v")=2-xy+y,

where we use w3 = g — ws = wy + wy — wy for the last equality. This implies x = 0 and
y = -1, and thus w, = (1,0) and v* = (=1,1). We conclude that 4 = w; + w, = (2,0)
and w3 = g — wy = (2, -1). So far, the situation looks as follows:
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(e}

° oWy Tx
Vi
wiL,W2 U
[ N}

In particular, if n is odd, we must have w,, = (1,0). Because of y € 77, we can renum-
ber the other T; with i > 5 such that w; € 7~ holds for all odd i. Now consider any
odd i with 5 < i < n. Because of y = (2,0) we either have w; = w;,; = (1,0) or
wir1 =v* = (-1,1) and w; = (3,-1). The second case is excluded, because y, ; is then
an X-relevant face, contradicting the smoothness condition of Proposition 2.8. Thus,
w;i = (1,0) holds for all i > 5. Consequently, there must be at least one #; and all u;
equal v* = (-1,1). A suitable linear coordinate change in Z* and renumbering the
variables leads to Type 3.

Case (iii): We have 7y = cone(u;, w,) with u3 € 77 and w, € 7%, Then y; 41 is
an X-relevant face. By Proposition 2.8, we achieve u; = (1,0) and w, = (0,1) viaa
suitable linear coordinate change. We distinguish the following two subcases.

First assume that w; € 7*. Then p € 7" holds. Thus, we may assume that all w;
with i odd are contained in 7*. Proposition 2.8 shows that u;, w; is a Z-basis for the
odd i < n, and thus w; = (x;,1) holds in these cases, where x; € Z due to w; € 7°.
In particular, we have

p=wi+wy = (x1,2), Wi = p4—w;=(x-x;1),
where i < n is odd. Thus, we obtain wy, w,, ..., w, € 7. Consequently, m > 2 holds.
Because of u; € 77, we have ujeT forall j=1,..., m. Moreover, uj, wy is a Z-basis

due to Proposition 2.8, and thus u; = (1, ;) holds, where y; € Z<y. Repeating the
same argument with all pairings u;, w; yields w; = (0,1) for all i or u; = (1,0) for
all j. Applying a suitable linear coordinate change, we arrive at Type 1 or Type 2,
respectively.

Now assume w; € 7~. Then p € 7x U 7~ holds. Suitably renumbering the T;, we
achieve w; € 7~ for all odd i < n. Moreover, as all u; lie in 7~ and there must be the
degree of a second variable in 7%, we can assume w, € 7. Proposition 2.8 applied to
the X-relevant faces y,; for the i > 3 with w; € 77 and y; ,41 for the i with w; € 7+
shows

| @yi) withy; €Zey  ifwiet,
- (xi,1) with x; € Zeg  if w; € 77,

unless i = 1 or i = n with n odd. Now consider any even i with 4 < i < n. Then the
degree of gis = w3 + wy = (1+ x4, y3 +1). Because of y € 7x U 77, we conclude
x4 = 0 and obtain p = (1, y3 +1). In particular, we see that n is even and w; € 7% holds
for all even i. Moreover, w; = y — w, = w3 holds and for every even i we have

Lys+1)=p = wisg+w; = (1+x;,yi-1 +1).
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Consequently, x; = 0 and thus w; = (0, 1) holds for all even i. Thus, for the odd i, we
obtain w; = (I, y3). Finally u;j, w, is a Z-basis for all j = 1,..., m, and thus we have
uj = (1,a;) with a; € Zo. So, a suitable linear coordinate change leads to Type 4. H

4 Picard Number Two: Geometry

We discuss geometric aspects of the intrinsic quadrics listed in Theorem 1.1. First, we
enter their Mori theory and prove the still open geometric statements made in The-
orem 1.1. Then we figure out the Fano examples from Theorem 1.1 and thus prove
Corollary 1.2. Moreover, we obtain base point freeness for numerically effective divi-
sors (see Corollary 4.3), and thus can verify Fujita’s freeness conjecture for all smooth
intrinsic quadrics of Picard number at most two (see Corollary 4.4). Finally, we dis-
cuss Mukai’s conjecture in Example 4.5.

The morphisms providing the geometric descriptions of Theorem 1.1 are examples
of so called elementary contractions [10]. We obtain them by looking at the Mori
chamber decomposition, which in our case is easy to compute. Before entering the
details, let us briefly recall some general background. Every effective divisor D on a
normal projective variety X defines a rational map

¢p: X -» X(D), X(D) := Proj( ? I'(X,0x(nD))).
nelizo

Two divisors are called Mori equivalent if they define the same map. The Mori
chamber decomposition is the subdivision of the effective cone into the classes arising
from Mori equivalence. In the case of a Mori dream space X, there is a fundamental
connection to geometric invariant theory, as observed by Hu and Keel [17]. Namely,
we have the action of the quasitorus H = Spec K[CI(X)] on X := Spec R(X) and thus
the GIT-fan Ax describing the variation of GIT-quotients in the sense that two classes
wi, ws € CI(X) define the same sets of semistable points X (w;) if and only if they
lie in the relative interior of a common cone A € Ayx. Now, the crucial observation
is that, inside the moving cone, the Mori chambers of X are the precisely the relative
interiors of the cones of the GIT-fan.

For a Mori dream space X = X (u)/H, the cone A(1) € Ax containing u in
its relative interior, is the semiample cone of X. A divisor D defines a morphism
¢p:X — X (D) if and only if for the class w of D, the associated cone A(w) € Ax
is a face of A(u). In this case, pp: X — X(D) is called a contraction, and, in the
GIT picture, ¢p is the induced map of GIT-quotients making the following diagram
commutative:

X () < X (w)

//Hl i i

X — X(D).
$D
A contraction ¢: X — X (D) is called elementary if X(D) is of Picard number one less

than X. There are three possibilities for such an elementary contraction, according to
the possible positions of the class of D in the effective cone:
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» The class of D lies on the boundary of Eff (X). Then ¢p is of fiber type, i.e., the
dimension of X(D) is strictly less than that of X.

+ Theclass of D lies on a boundary of Mov(X), but not on the boundary of Eff (X).
Then ¢p is a birational divisorial contraction, i.e., it is birational and contracts
precisely a prime divisor of X.

« The class of D lies in the interior Mov(X). Then ¢p is a birational small contrac-
tion, i.e., it is birational and contracts only a subvariety of codimension at least
two.

Remark 4.1 Construction 2.4 produces an intrinsic quadric X in an ambient toric
variety Z by passing to a quotient of the action of H on X and Z = K"*™_ The cones
of the (finite) GIT-fans Ax and Az in Kg = Clg(X) = Clg(Z) are

Ax(w) = M Qo) Az(w) =[] Qyo)
w € Q(yo), weQn)
X()/o) +*J

respectively, where w runs through Kg and Remark 2.7 tells which are the faces yy <
y = Q"™ such that X(y,) is non-empty. In particular, the fan A refines the fan Ay,
which in turn connects the Mori theory of X with that of Z.

Proof of Theorem 1.1, Part II  We first discuss the varieties X of Types 1, 2, and 4. In
these cases, the configurations of weights and the semiample cone are of the following
shape:

Tx

We work with the toric embedding X ¢ Z provided by Construction 2.4. From
Remark 2.7, we infer 7x = 7 for the semiample cones. Thus, for the divisor class
w = (1,0), a representing toric divisor E on Z and its restriction D on X, we obtain a
commutative diagram

X c 7 z P(O(a)) ®---®0(ax))
‘ﬂvi i‘pf \L
X(D) < Z(E) = Py,

where the inclusions are closed embeddings, [ is the number of coordinates of Z =
K"™*™ of degree (1,0), call them fi,..., f;, and k is the number of remaining coor-
dinates, call them hy, ..., hg. So, we have n + m = [ + k. In terms of homogeneous

coordinates on Z and on Z(E) = K/, local trivializations of the bundle projection

https://doi.org/10.4153/CJM-2018-037-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-037-5

On Intrinsic Quadrics 163

¢g:Z — Z(E) are given by

K™\ V(b hi) — K, < (K*~ {0})

(fireeonft) //

fi

If X is of Type 1, then | = n and k = m hold, the f; are the variables T; and the h;
are the variables S;. We see directly that X maps onto V(g) ¢ P,_; and that X =
¢z (V(g)) holds. Thus, ¢p: X — X(D) is a bundle projection as wanted.

If X is of Type 2, then [ = m and k = n hold, the f; are the variables S;, and the h;
are the variables T;. Using the fact that the relation g is K-homogeneous, we see that
the above local trivializations respect g. We conclude that X(D) = Z(E) = P,
holds and that locally with respect to the base X (D), the variety X is a product of the
smooth quadric V(g) ¢ P,_; and P,,_;.

If X is of Type 4, then I = n/2 and k = m + n/2 hold, the f; are the variables T;
with i odd and the h; subsume the variables T; with i even as well as the variables S;.
Using the above local trivializations, we see that X projects onto the base, which means
that X(D) = Z(E) = IP,/,-; holds. Moreover, on each fiber ¢;'([z]), the relation g
becomes a linear form in the coordinates T; with i even and thus cuts out a hyperplane
of 9" ([2]) = Pyj24m-1. Consequently, pp: X — X (D) is as claimed.

Finally, let X be of Type 3. Observe that the ambient toric variety Z is not smooth in
this case. We take the divisors E on Z and D on X corresponding to the generator T3 of
the respective Cox rings. Then ¢g: Z — Z(E) and X — X(E) contract the respective
divisors defined by T;. We obtain that Z(E) is the weighted projective space P, 1,5)
of dimension n + m —2 and X(D) ¢ Z(E) is defined by the equation g — Ty T> + T, =
0. This gives X(D) = P,.m_3. Moreover, the fan of the ambient toric variety Z is
obtained from the fan of Z(E) = Py, ;,) by barycentric subdivsion of the cone
over the rays corresponding to uy, ..., U, ws. We conclude that the center of the
modification X — X(D) is the smooth quadric V(g - T1T2, S1,--»Sm) € Puim-3.
The fact that X — X(D) is indeed the blowing-up is checked directly in the affine
charts of X(D) = Py p-3. [ |

We turn to the (almost) Fano varieties among the smooth intrinsic quadrics of Pi-
card number two. Adapting [3, Prop. 3.3.3.2] leads to the following explicit description
of the anticanonical class.

Proposition 4.2 Let X = X(q, t, m,u) be a standard intrinsic quadric arising from
Construction 2.1. Then the anticanonical class of X is given by

_ 2 t m
. S deg(gq) + > deg(Tysi) + . deg(S) € K = CI(X).
i=1 k=1
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Proof of Corollary 1.2  In the situation of Theorem 1.1, the formula of Proposition 4.2
simplifies to

-Kx = n-2 deg(g) + deg(uy) +--- + deg(um).

The variety X is Fano if and only if -Kx lies in the interior of the semiample cone 7x
specified in the theorem, and X is truly almost Fano if -Xx lies on the boundary of
7x and in the interior of Eff (X). One immediately computes:

Type ~Kx >
1| ()« (e (o) ()
5 2205+ (5) | come((5)-(5))
300 (-2)()+ () | cone(().(3)
4| 2+ () | eone (3):(%)).

From this, we directly derive the Fano and truly almost Fano conditions. Note that
for Type 4, we must have w, = («,1) in order to obtain a (truly almost) Fano variety
and w, = (0, 1) produces further truly almost Fano varieties. ]

Corollary 4.3 Let X be a smooth intrinsic quadric of Picard number at most two.
Then every numerically effective divisor on X is base point free.

Proof We can assume that X arises from Construction 2.1. Consider the monoid
BPF(X) ¢ CI(X) of divisor classes admitting a base point free representative. Us-
ing [3, Prop. 3.3.2.8], we obtain

BPF(X)= (] Q(yonZ"™™)cCl(X).
yoecov(X)
By Proposition 2.10, the cone in Clg(X) generated by BPF(X) equals the cone
SAmple(X) of semiample divisor classes. As for any Mori dream space, SAmple(X)
coincides with the cone of numerically effective divisor classes.

Our task is to show that BPF(X) is saturated in Cl(X) in the sense that given
w € CI(X) and n € Z, with nw € BPF(X), one has w € BPF(X). Since the in-
tersection of saturated submonoids is saturated, it suffices to show that every monoid
Q(yo NZ™™), where yy € cov(X), is saturated. If X is of Picard number one, then
Proposition 3.1 tells us CI(X) = Z and Q(yo NZ"*™) = Zy for all faces yq € cov(X),
proving that BPF(X) is saturated.

Assume that X is of Picard number two. Then CI(X) = Z? holds according to
Theorem 1.1. Moreover, for any two-dimensional face y;,; = cone(e;, e;j) of cov(X),
Proposition 2.8(v) says that Q(e;) and Q(e;) form a Z-basis for C1(X). We conclude
that Q(y;,; N Z"*™) is saturated for all two-dimensional faces y; ; = cone(e;,e;)
of cov(X). Theorem 1.1 specifies the semiample cone for each of the Types 1 to 4.
Combining this with Remark 2.7 allows us to determine the set cov(X) of minimal
X-relevant faces explicitly. If X is of Types 1, 2, or 4, then we see that in fact all
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yo € cov(X) are two-dimensional and thus BPF(X) is saturated. We are left with
discussing X of Type 3. If n is even, then again all yo € cov(X) are two-dimensional.
If n is odd, then, besides the two-dimensional ones, we find one more face in cov(X),
namely y; 5, = cone(ey, €3, €, ). The corresponding images under Q are (0,1), (2,1)
and (1,1), generating the saturated monoid cone(Q(y1,2,,)) N Z>. [ |

Corollary 4.4  Every smooth intrinsic quadric X of Picard number at most two fulfills
Fujita’s freeness conjecture. That means that Cx +sD is base point free for any canonical
divisor Cx, all s > dim(X) + 1 and all ample divisors D on X.

Proof Fuyjita proved that Cx + sD is numerically effective under the above assump-
tions [15, Thm. 1] on s and D. Thus, Corollary 4.3 gives the assertion. [ |

Mukai’s conjecture [21] predicts that p(X)(g(X) — 1) < dim(X) with equality
if and only if X is the p(X)-fold product of the projective space IP;(x)_; for every
smooth Fano variety X of Picard number p(X) and Fano index g(X). The conjecture
is proved for toric X and in general for p(X) < 2 as well as for dim(X) < 5; see [2,6,
8,23]. Let us revisit the case p(X) < 2.

Example 4.5 We show how to obtain Mukai’s conjecture for smooth Fano intrin-
sic quadrics X of Picard number p(X) < 2 from our results. In the case p(X) =1,
Proposition 3.1 tells us that X is a smooth quadric in a projective space and thus sat-
isfies Mukai’s conjecture. So, assume p(X) = 2. We can assume that X arises from
Construction 2.1 with input data given by Theorem 1.1. Note that we have

dim(X)=n+m-3.

Corollary 1.2 provides us with the Fano condition. Moreover, the anticanonical class
~Kx € CI(X) = Z? is specified in the table shown in the proof of Corollary 1.2, and
the Fano index q(X) equals the greatest common divisor of the two entries of the
vector —Kx. We now go through the four different Types of Theorem 1.1.

Let X be of Type 1. If = 0 holds, then we have -Kx = (n-2, m) and thus q(X) =
gcd(n — 2, m). We conclude

2(q(X)-1) <2min(n-2,m) -2< (n-2+m) -2 < dim(X).

Now let a > 0. With k := n—2+aj+---+a,,, we have -Kx = (k, m) and q(X) divides
both entries. This implies q(X) < m. If g¢(X) < m holds, then, because of n > 5, we
obtain

2(q(x)-1) S2(%—1) =m-2<n+m-7<dim(X).

If we have q(X) = m, then m divides k. Thus, the Fano condition am < k implies
(e +1)m < k. Moreover, a > 0 implies a; + - - + a,, < am. Together, we obtain

2@(X)-D=2m-2<k-(a+1-2)m-2<n-2+m-2<dim(X).

Let X be of Type 2. Then we have -Kx = ((n/2-1)a+m, n—2), and q(X) divides
both entries. If g(X) < n — 2 holds, then using m > 2, we obtain

2(q(X)—1)§2(nT_2—1) =n-4<n+m-6<dim(X).
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We are left with discussing the case q(X) = n — 2. If & = 0 holds, then we obtain
-Kx = (m,n —2) and thus n — 2 < m. We conclude

2(q(X)-1) =2((n-2)-1) =(n-2)+(n-4) <n+m-4<dim(X).
Next, let « = 1. Then -Kx = ((n —2)/2 + m,n —2) holds and q(X) = n — 2 divides
the first entry. Thus, with a suitable k € Z, we have
2k +1
m =
2

In the case « = 1, the Fano condition reads as m > (n — 2)/2, and thus k > 1 holds.
Moreover, because of n > 4, we have n/2 —1 < n — 3 and thus obtain

(n-2).

n-2

Z(q(X)—l):2(n—2—1)<§(n—2)+ §m+g—1<dim(X).

Finally, let & > 2. Then the Fano condition says n — 2 < 2m/a. Consequently, we
obtain

2(q(x)-1) =(n—2)+(n—4)<27m+(n—4)gn+m—4<dim(X).

Let X be of Type 3. Then -Xx = (n — 2 + m, n — 2) holds and the Fano condition
yields m < n —2. As q(X) divides both entries of —-Kx, we see g(X) # n —2 and thus
q(X) < (n-2)/2. We conclude

2(q(x)-1) < 2(

Let X be of Type 4. Then -Kx = ((n/2-1)(a+1) +a; +---+ am,n/2 -1+ m)
holds. In the case a = 0, all the a; vanish as well, we obtain g(X) < n/2 — 1 and thus

2(q(X)-1) <n-4<n+m-4<dim(X).

Let > 0. If g(X) < n/2 - 1+ m holds, then even g(X) < (n/2 — 1+ m)/2 must hold
and, because of n < 0, we obtain

n-2

—1) =n-4 < dim(X).

2(g(x)-1) gg—1+m—2<dim(X).

We discuss the case g(X) = n/2 — 1+ m. The first component of -Xx equals fq(X)
with some positive integer . Plugging the Fano condition
am-(nf2-1)<aj+-+ap

into this equality leads to the estimate « + 1 < . Comparing (& + 1)g(X) with the
first component fg(X) of -Kx gives

(oc+1)q(X)g(g—l)(a+1)+a1+~--+am<(g—1)((x+1)+am,

where the last inequality is due to the fact that « > 0 forces vanishing of at least one
of the a;. This allows us to conclude the discussion by

2(q(X) ~1) = ((a+1) = (@ +1-2)) g(X) ~2
<((g—1)(¢x+1)+(xm) —(a-1)g(X) -2

=n+m-4<dim(X).
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5 Proof of Theorem 1.3

A first step is the general bound for the Picard number of (possibly singular) Fano
full intrinsic quadrics provided in Proposition 5.1. Then we prepare the proof of The-
orem 1.3, which is given at the end of the section. We will mostly work in the setting
of standard intrinsic quadrics X = X(q, t, m, u) arising from Construction 2.4. We
write g = g, ; for the relation, and the degrees of the variables in CI(X) = K will be
denoted as

wi =deg(T;) = Q(e;) fori=1,...,n,
Wysj = deg(S;) = Qensj) forj=1,...,m.

Proposition 5.1 Let X be a Fano full standard intrinsic quadric arising from Con-
struction 2.4.

(i) Ift>1holds, i.e., g has at least two squares, then we have p(X) = 1.
(i) Ift =1holds, i.e., g has one square, then we have p(X) < 2.
(iil) Ift = 0 holds, i.e., g has no squares, then we have p(X) < 3.
(iv) If p(X) = 3 holds, then we have t = 0 and X is Q-factorial.

Proof We have X = X(q,t, m,u) with m = 0, and, according to Proposition 2.10,
we may assume that u is the anticanonical class. Proposition 4.2 tells us that in Kg,
we have

q+t-2

5 des(g).

A face yg < y is X-relevant if and only if it satisfies the conditions of Remark 2.7 and
one has u € relint(Q(yq)). For Assertions (i), (ii), and (iii), we consider the following
X-relevant faces of y:

@) Y = ygenqe2s (i) Y =12+ (i) " =y12,3.4

We have dim(Q(y")) < 1,2, 3 according to the cases, because homogeneity of g yields
the following linear relations in the respective images Q(ling(yo)):

2wy = 2W442, Wy + Wy = Wel, w1+ wey = wes + Wy,

The first three assertions thus follow from the description of the Picard group pro-
vided by Proposition 2.9: in each of the three cases, we have

Pic(X)= () Q(linz(yo)) € Q(Y").

yoecov(X)

In order to prove (iv), assume p(X) = 3. Assertions (i) and (ii) yield ¢t = 0. To
obtain Q-factoriality of X, we have to show that Kg = Cl(X)g is of dimension three.
The assumption p(X) = 3 together with Proposition 2.9 yields dim(Q(yo)) > 3 for
all X-relevant faces yo < y. Consider the faces

y(i,7) = Yijisnjj+1 < Ps

where i, j are odd with 1 < i < j < g — 1. These are all X-relevant and Q(y(i, j))
is of dimension three. Using p(X) = 3 and Proposition 2.9 again, we conclude that
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the Q(y(i, j)) generate all the same 3-dimensional vector subspace V ¢ Kg. Thus
dim(Kgp) = 3 follows from

Kg = Q(Q™"™) = Q(ling(y(1,3)) +--- +ling(y(9 - 3.9))) = V. u

Corollary 5.2 Let X be a Fano full intrinsic quadric. Then p(X) < 3 holds, and if we
have p(X) = 3, then X is Q-factorial.

We start our preparations for the proof of Theorem 1.3. When performing a renu-
meration of variables, we always keep g = g, ; a standard K-homogeneous quadratic
polynomial, which means that our renumberings respect monomials and take place
only inside the g-, t- and m-blocks. Moreover, when visualizing the situation, we
draw (parts of) the intersection of Eff (X) = Q(y) with an affine hyperplane passing
orthogonally through an inner vector of Eff (X) and we will indicate the ray through,
for instance, w; by a dot with label w;.

Lemma 5.3 Let X = X(q,t,m,u) be a Q-factorial standard intrinsic quadric of
Picard number three with q > 4. If there is an € with5 < €< qorn+1< € < n+m such
that yy 3. < y is Z-relevant, then there are1< i <2 and 3 < j< 4 such that y; j, <y is
X-relevant.

Proof Let I}, be a linear form on Kg = Clg(X) with l;;(w1) = ha(wz) = 0 and
Li2(we) > 0. Then l1;(deg(g)) = 0 holds, and we can assume l;(w3) < 0.

1
P} =N

Wy w1

Moreover, Q(y1,2,¢) is contained in Q(y1,3,¢) U Q(y2,3,¢). Thus, u lies in the relative
interior of a face 7 of one of the latter two cones. We have 7 = Q(y,) with a face y,
of y1,3,¢ OF Y2.3,¢. Since y, is an X-face, Proposition 2.11 yields that Q(y,) must be of
dimension three. Thus, yo equals y;3,¢ Or 2,3,¢- [ |

Lemma 54 Let X = X(q,t,m,u) be a Q-factorial standard intrinsic quadric of
Picard number three with q > 6. If 1, < y is Z-relevant, then y; 3 ; is X-relevant for
somel<i<2and5<j<6.

Proof Let I be a linear form on Kg with Ij;(w;) = ha(wz) = 0 and L (ws) < 0.
We can assume that /;;(ws) > 0, and then we have Q(y1,2) € Q(y1,3,5) U Q(y2,3,5)-
As in the previous proof, we conclude that u lies in the relative interior of Q(y1,3,5)
or that of Q(y2,3,5)- [ |
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Lemma 5.5 Let X = X(q,t, m,u) be a Q-factorial full standard intrinsic quadric of
Picard number three. Then we have q > 6 and, after suitable renumbering of variables,
Y1,3,5 is X-relevant.

Proof As the moving cone of X is of dimension three, we must have g > 6; use
Proposition 2.10. The effective cone of X is generated by wy, ..., w,. Thus, Carathéo-
dory’s theorem yields a Z-relevant face T < y generated by at most three of ey, .. . , €.
Suitably renumbering the variables, we achieve 7 < y; 3 5 or T < y; 5 3. Since all rays of
7 are X-relevant, Proposition 2.11 shows that 7 is at least of dimension two. If dim(7) =
2 holds, then Proposition 2.11 yields that 7 is not an X-face, which means that 7 = y .
In this case, Lemma 5.4 gives the assertion. If 7 is three-dimensional, then Lemma 5.3
completes the proof. ]

Lemma 5.6 Let X = X(q, t, m,u) be a standard intrinsic quadric of Picard number
three. If there are pairwise different odd integers1< a, b, c < q —1such that 7o = Y4 ..
and 11 := y,4.p,c41 are X-relevant, then X is not locally factorial.

Proof Assume that X is locally factorial. Applying Proposition 2.8(iii) to 7, gives
CI(X) = Z°. Using K-homogeneity of g and suitable coordinates on K = CI(X), we
achieve

1 d-1]0 d; 0 d;
[Wa’Wa+1>Wb’Wh+1:Wc:Wc+1] =0 d |1 dp-1|0 d, ,
0 ds 0 ds 1 d;-1

where (d;,d,,d;) = deg(g). Applying Proposition 2.8(iii) to 7; gives d3 € {0,2}.
Let 75 = Ya,a41,b,6+1- Since Q(79)° N Q(11)° is three-dimensional and contained in
Q(13), we conclude that the X-face 7, is X-relevant. Proposition 2.8 applied to 7,
yields dj € {-1,1}, a contradiction. ]

Lemma 5.7 Let X = X(q,t, m,u) be alocally Q-factorial standard intrinsic quadric
of Picard number three with q > 6. Then, after suitably renumbering the variables, y; 3 5
is X-relevant and deg(g) € Q(y1,3,5) holds.

Proof According to Lemma 5.5, we can assume that y; 3 5 is X-relevant. If deg(g)
is contained in Q(y1,3,5), then we are done. Otherwise, suitably renumbering the
variables once more, we arrive at one of the situations in Figure 2.

In the right-hand setting, exchanging T} and T, yields the assertion. So, consider
the left-hand setting. Applying Lemma 5.6 to the X-relevant face y; 3,5 yields that
neither y; 3,6 nor y, 3 5 is X-relevant. Note that we have

ueQ(y1,35)° € Q(y1,3,6) UQ(y2,3,6) UQ(y23,5)

and that all faces of y136,y236 and y235 are X-faces. Proposition 2.11 shows
that y,3,6 is X-relevant. After exchanging T) and T, as well as Ts and Tg, the new
y1,3,5 is X-relevant, and we have deg(g) € Q(y1,3,5)- ]
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Lemma 5.8 Let X = X(q,t, m,u) be a standard intrinsic quadric of Picard number
three. If there are pairwise different odd integers1< a, b, ¢ < q—1such that 7o := Y4 p..
and T1 := Y a41,b41,c1 are X-relevant, then X is not locally factorial.

Proof Assume that X is locally factorial. Applying Proposition 2.8(iii) to 7o gives
CI(X) = Z*. Using K-homogeneity of g and suitable coordinates on K = CI(X), we
achieve

1 dl -1 0 d] 0 dl

[(Wa> Wast> Wp Wpst, We, Wesr | = | 0 d 1 d-1{0 d, )

0 d3 |0 ds |1 ds3—1
where (dy,d,,d3) = deg(g). Consider 7; ; = cone(e;, €j.1, €j, ej1), where i, j €
{a,b,c} with i # j. For all three possibilities, we have

Q(70)° N Q(m)° € Q(7:,;)°.
Thus, all the 7; ; are X-relevant. Proposition 2.8(iii) says that w;, w1, wj, wj, gen-
erate K in all cases, which implies dj, d,, ds € {-1,1}. Consequently,
det(wa+1, Wh+1» W,:+1) = dl + dz + d3 —-1le {0, 2}

But Proposition 2.8(iii) applied to 71 = Y441,p+1,c+1 Shows that this determinant should
equal +1, a contradiction. ]

Lemma 5.9 Let X = X(q,t, m, u) be alocally factorial full standard intrinsic quadric
of Picard number three. Then K = CI(X) = Z* and q > 6 hold. Moreover, by a suitable
renumeration of variables, we achieve

1 d-1(0 d |0 4
[Wl,...,WG]: 0 1 1 0 0 1 5
0 1 0O 1|1 O
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where dy € Z, the faces 1,35, Y1,4,6> ¥1,2,3,4> Y1,2,5,6 are all X-relevant, and, moreover,
u € cone(wy, ws, d) N Q(y1,4,6)° holds, where d = (d1,1,1) = deg(g). In particular, we
have t = 0, and n = q is even.

Proof Lemmas 5.5 and 5.7 show that g > 6 holds and that after suitably renumber-
ing the variables, y; 3 5 is an X-relevant face with d = deg(g) € Q(y1,3,5). By Propo-
sition 2.8(iii), the cone Q(y,3,5) is of dimension three and wy, w3, w5 freely generate
K=17°

Note that d might as well lie on the boundary of Q(y1,3,5). However, u lies in the
relative interior of Q(y1,3,5), and, suitably renumbering the variables T3, ..., Ty, we
achieve that 7 := cone(w;, ws, d) satisfies

dim(7) =3, uerQ(y13)

Note that we have w, ¢ cone(w;, d) and w4 ¢ cone(ws, d), because otherwise wy or w;
would lie on cone(d), contradicting dim(7) = 3. We conclude that u € Q(y1,2,3,4)°,
and thus y; 53,4 is X-relevant. Observe that

7S Q(y1,56) Y Q(¥3,56) U Q(y1,3,6)-

As X is locally factorial and y; 35 is X-relevant, Lemma 5.6 shows u ¢ Q(y1,3,6)°-
Thus, u lies in one of the other two r.h.s. cones in Figure 2. Suitably renumbering
Ti,..., Ty, we achieve u € Q(y1,5,6). Then also u € Q(y1,2,5,6) holds. Now,

Y1,2,5,6>  Y1,5> V1,60 Y2,5- V2,65  Y1-V2>Y5: Y6

are X-faces. Thus, Proposition 2.11 yields that u does not lie in any of the correspond-
ing Q(yi) and Q(yi,;). Consequently, Q(y1,2,5,6) is three-dimensional and contains
u in its relative interior. That means that y; 5 5 ¢ is X-relevant. Observe that

ueQ(ys56)NTEC Q(yra6)YQ(yr46).

Applying Lemma 5.8 to y; 3,5, we see that y; 4 ¢ is not X-relevant. Moreover, all faces
of the two cones y;,4,6 and y, 4,6 are X-relevant. We conclude u € Q(y1,4,6)° and thus
Y1,4,6 is X-relevant. A suitable choice of coordinates on K = Z? yields

1 dl—l 0 dl 0 dl
[Wl,...,W6]: 0 dz 1 d2—1 0 dz
0 d; |0 d; 1 d;-1

Because of d € Q(y1,3,5) = Q2,, we have dy, d,,ds > 0. Proposition 2.8(iii) together
with the X-relevant faces ;53,4 and ;55,6 show that d, = d3 = 1 holds. [ |
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Proof of Theorem 1.3  Proposition 3.1 and Theorem 1.1 settle the case of Picard num-
ber at most two. Proposition 5.1 settles the case of Picard number at least four. The
remaining task is to consider smooth full intrinsic quadrics X of Picard number three.
By Proposition 2.5, we can assume that X = X(gq,t,m,u) is a standard intrinsic
quadric. Moreover, Lemma 5.9 says CI(X) = Z> and that by a suitable choice of
coordinates, we have

1 d-1(0 d |0 4
[wi,....wg]=| 0 1 1 00 1 |,
0 1 0O 1|11 O

where d € Z and the ample cone of X is contained in Q(y146)°. Proposition 4.2 tells
us that -Kx is a multiple of deg(g) = (d,1,1). But (d;,1,1) cannot be represented
as a strict positive combination over wy, w4 and we. Thus, deg(g) is not contained in
Q(y146)°. Consequently, —-Kx is not ample and hence X is not Fano. [ |

6 Proof of Theorem 1.4

A detailed analysis of the combinatorics of the X-relevant faces together with the re-
sulting conditions on determinants provided by Proposition 2.8 lead to the normal
form asserted in the theorem. This is the first part of the proof. The second one estab-
lishes the geometric supplements. At the end of the section, we prove Corollary 6.1.

Proof of Theorem 1.4, PartI  According to Proposition 2.5, we can assume that X =
X(q,t, m,u) is a standard intrinsic quadric. Lemma 5.9 tellsus n = q¢ > 6 and K = Z°.
Moreover, choosing suitable coordinates on K, we achieve that

1 d-1]0 d|0 d
[Wi,....ws]=| 0 1 1 00 1
0 1 0O 1|1 0

holds with d; € Zs,, the faces 13,5, ¥1,4,6> ¥1,2,3,4> ¥1,2,5,6 Of  are all X-relevant, and
the ample class u of X satisfies

u € cone(wy, w3, d) N Q(y1,4,6)°

where d = (d;,1,1) denotes the degree of the relation g. Depending on dj, the situa-
tion looks as in Figure 3.

We claim that n > 8 holds. Otherwise, n = 6, and according to Proposition 2.10,
we have

Mov(X) € cone(wy, w3, ws) N cone(wa, Wq, Wg).

By Lemma 5.8, this contradicts smoothness of X. Thus, we obtain n > 8, which implies
in particular that dim(X) > 4.
We specify the possible positions of the weights w,, where € = 7,...,n. For i =
1,...,6 choose linear forms /; on Kg such that
l,-(w,-):li(u):O, izl,...,6,
li(W1)>0,i:3,...,6, lz(W4)>0, ll(W3)>0.
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Each of the linear forms 1,..., I defines a negative half space and a positive half

space:

H; :={xeKg;li(x) <0},  Hj:={xeKgli(x)>0}.
Note that y; ¢ is an X-face forall i = 1,...,6 and € = 7,.. ., n. Thus, Proposition 2.1
yields that u cannot lie in Q(y;,¢). In other words, foralli =1,...,6and £=7,...,n,
we have

We ¢ H; = Qu - Qsow; € Hl_ N H:—

The half planes Hj, ..., Hg define a subdivision of Kg = Q? into the following three-
dimensional cones, all having Qu as a common line:

M, = H; + Hy, Mb = H4+H5, MC = H5+H2,

Md = H2+H3, Me = H3+H6, Mf = H6+H1.
As observed before, the degrees w,, where € = 7,.. ., n, are distributed over the rel-
ative interiors Mg, ..., M%. According to the cases d; = 0 and d; > 0, the situation

looks as in Figure 4.

We show we ¢ My, for € = 7,...,n. Otherwise, we = (x, y,2z) € Mj holds. Then
Y1,6,5> V46,5, V2,4,¢ and ye 4 ¢ are X-relevant. The way we list the indices i, j, k for the
¥i,j,k ensures that det(w;, w;j, wy) is positive and thus, by Proposition 2.8(iii), equals
one. For 1, ¢,5, this implies that y = 1. Looking at 4, ¢, 5 yields d; = 1. Taking 2,4, ¢
gives z = x. But this leads to det(ws, wy, wp) = —1, a contradiction.

We show that w, ¢ M, for £ = 7,...,n. Otherwise, w, = (x, y,z) € M holds
and thus y1,3,¢, V6,3,6> V6,2,6> V6,4,¢ are X-relevant. Again the indices are listed in a
way that det(w;, w;, wy) = 1holds. For 1,3,¢, this means that z = 1. Then 6,3, ¢
brings us to d; = 1. Taking 6, 2, £ yields y = x. But then det(wg, w4, w,) = —1holds, a
contradiction.

Next observe that {we, we,1} ¢ My holds for all odd € > 7, because otherwise we
have the X-relevant faces y;,3,¢ and y1,3,¢+1, contradicting Lemma 5.6. Hence, suitably
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M.
1/1;1\\\\\
- H
\\ Md 2
Hs = He = M,"
(di>0)
H,
Figure 4
renumbering the variables Ty, ..., T,,, we achieve w, € M; u M7 U M forall odd 7 <

¢ < n. Thus, for a given odd ¢ > 7, Table 1 shows the possibilities for the positions of
the pair we, wey;.

Here, the position of we,, is determined by we+we,; = deg(g). Moreover, the y; j «
occurring in the table are some but not necessarily all X-relevant faces containing e,
or eg,; and the indices , , k are listed in such a manner that det(w;, wj, wy) = Lholds.
We now discuss each of these cases.
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Case | Pos. of w, | Pos. of wey; | Resulting X-relevant faces
1 M; M; V1,655 V3,5,6+1> V6,4,0+1
(2) Mg M3 V1,645 V1,6,6+1
(3) M: M3 Ye,3,5 V1,3,6+1> Ve,2,4
(4) M; M3 Y6,3,5 V1,6,+1> Y£,6,4> V€,3,2> Ye+1,3,1
Table 1

Case (1). Write wy = (x, y,z). Then det(w;, we, ws) = 1 implies that y = 1 and
det(ws, ws, wes1) = 1 gives x = dj — 1. Moreover, det(wg, wq, wps1) = 1leads to z = 1.
Thus, we arrive at w; = we41, W2 = Wy, which contradicts we € M.

Case (2). Write w, = (x,y,z). Then det(w;,wp,wy) = 1 implies y = 1. From
det(wy, we, wes1), we derive z = 0. Thus, we obtain

1 d1 -11]0 d] 0 dl X dl - X
(W1, w2, W3, Wa, Ws, We, We, Wes1] = | O 1 1 0(0 1|1 0
0 1 0 1|1 01O 1

The weights are arranged as follows, where w; lies on the dotted line, w, on the thickly
dotted line, and w,,; on the dash-dotted line.
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We remark that #n = 8 with wy, wg as in Case (2) is not possible. Indeed, otherwise,
we have u ¢ cone(wy, ..., wg, w7, wg ), where by Proposition 2.10, the latter cone con-
tains the moving cone X and thus u; a contradiction. Moreover, we note that for any
We, Weq1 of Case (2), we have

SAmple(X) € Q(y1,6,4) N Q(y1,e,4) N Q(y1,6,41)-

Case (3). Write w, = (x, y,z). Then det(w,, w3, ws) = 1 shows x = 1. Moreover,
det(we, wa, wy) = 1implies y = d;z. Finally, det(w;, w3, wey1) = 1leads to z = 0. We
arrive at w, = w; and thus w, ¢ M?, a contradiction.

Case (4). Write w, = (x, y,z). Then det(w,, w3, ws) = 1 and det(wy, we, wes1) = 1
show x = 1and z = 0. Now det(wg, wg, ws) = 1yields d;y = 0. We distinguish the
casesd; = 0and d; > 0.

Case (4.1): We have d; = 0. Here, we have the following situation, where, in the figure,
we = (1, ¥,0) lies on the dotted line and w,,; on the dash-dotted line.

1 -1/0 0|0 0]1 -1
[W1>W2)W3>W4)W5)W6:W€>W€+l] = 0 1 1 0 0 1 y 1_)/ >
0 0 1|1 0|0 1

Hs = Hg = M,

.'We

Applying Proposition 2.10 to the resulting X-relevant faces of the present case, we
arrive at

SAmple(X) € Q(y1,3,5) N Q(ye,3,5) N Q(ye3,2) N Q(Yes1,3,1)-

Case (4.2): Wehave d; > 0. Then y = 0 must hold. Thisimplies we = wy and wpi1 = w,.
For the semiample cone, we have

SAmple(X) € Q(y1,46) N Q(¥1,2,6)-

Moreover, the weights are arranged as in the figure below, where w, = w4 lies on the
dotted line.
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W2 = Weqr

. w1 = We
Ws Wy

Subsuming the discussion so far, we see that only the Cases (2) and (4) allow
weights w;, where i > 7. The remaining task is to check in which ways these cases can
be combined. So, let us go through the possible constellations of the pairs w;, w;,; for
i=7,9,...,n—-1L

(a) All pairsw;, wii1, wherei =7,9,...,n-1, are from Case (2). In the discussion
of Case (2), we have seen that n > 10 must hold. For odd i > 7, we have w; = (x;,1,0)
and w1 = (d; — x4,0,1), where we can assume x; > X9 > -++ > x,_1. Now, the ample
class u lies in the moving cone. Proposition 2.10 yields

o
u € cone(Wa, W3, ..., W1, Wy )°.

We conclude w; € Q(y1,6)° and wy, € Q(y1,4)°. This in turn implies that x; > d; and
Xn-1 < 0. Moreover, Q(y7,,) is a bounding face of the moving cone. Thus, we obtain

ueQ(y1,7,4)° N Q(yr6,n)° N Q(y1,7,n) € Q(y7,2,0)°.

We conclude that y7 , , is X-relevant. Applying Proposition 2.8(iii) and the estimates
for x; and x,, just obtained, we arrive at a contradiction, showing that the present
setting cannot occur:

1= det(W7,w2,w,,) = dl —Xp-1t+ X7 — dl +1>2.

(b) There is an even 7 < k < n such that for i = 7, ...,k — 1, the pairs w;, w;, are
from Case (4.1) and for all odd j = k +1,...n —1, we have w; = w3 and wj,; = wy.
Then, for the odd i = 7,...,k — 1, we have w; = (1, ;,0) and w;4; = (-1,1- y;,1),
where we can assume y7 > --- > yi_;. Set

o =max(0,y7), W :=(1a,0), B:=min(0, yx-1), Wg:=(-1,1-4,1).

Then w; and Wy, are degrees of variables, and they are closest to w3 in the sense that
W € cone(ws, w;) and Wy € cone(ws, w;,1) holdsfori =1landi=7,...,k—1;see the
figure in Case (4.1). Recall that the semiample cone is contained in the intersection of
Q(y1,3,5) and cone(d, w;, ws). We even claim that

SAmple(X) = cone(w, w3, ws) N cone(wy, ws, Wy ).

By the definition of w; and Wy, we only have to show that both cones are images of
X-relevant faces. For the first one this is clear. We discuss the second one. Observe
that we have

u € cone(Wy, ws, Wy ) U cone(Wy, wy, W)
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Thus, according to Proposition 2.11, the task is to show that cone(#;, wy, Wy ) is not
the image of an X-relevant face. Indeed, this would contradict Lemma 5.8 applied to
an X-relevant face projecting onto

cone(Ww,, w3, Wi_1), Wy = (-L1-a,1), Wiy :=(Lp,0).

Now, the coordinate change on K = Z? given by the following unimodular matrix and
suitably renumbering of variables leads to the setting of Theorem 1.4:

1 0 1
-1 a-p-1{.
0 0 1
(c) Thereis an even7 < k < n such that fori =7,...,k — 1, the pairs w;, w;,; are

from Case (4.1) and for all odd j = k +1,...,n —1the pair wj, wj,, is from Case (2).
Note that we have d; = 0 and the weights are of the form

wi=(1,9:,0), wia=(-L1-y;1), wj = (xj,1,0), wju = (-x;,0,1),

where we can assume that y; > -+ > y;_; and xg4; > --- > x,_;. The weights are
arranged as follows, where the w; for i = 7,...,k—~1land the w; for j=k+1,...,n-1
lie on the dotted line:

wy s W3, W¢

The discussion on the Cases (4.1) and (2) performed so far shows that for all odd
i=7,....,k—1land j=k+1,...,n -1, the semiample cone of X satisfies

SAmple(X) € Q(yss5,i1) N Q(y1,4,5) € Q(Ys,i,5)-
Since the semiample cone is full-dimensional, we see that ys ; ; is X-relevant. Thus,
we can apply Proposition 2.8 and obtain
1=det(ws, wi,w;) =1- yix;.

This leaves us with y; =0fori=7,...,k-lorx;=0for j=k+1,...,n—1 Ifall the
x;j vanish, then we are in the case just treated. So, assume that all the y; vanish. Then
we have w; =wyand wij  =wafori=7,...,k -1 Set

o :=max(0,xk41), Ws:=(a,1,0), B:=min(0,x,-1), Wy, :=(-,0,1).

Then w3 and w,, are the degrees of the variables sitting closest to w; and among the
wjand wj with j =3 or j = k+1,...,n — 1. We claim that the semiample cone is
given by

SAmple(X) = cone(wy, W3, w,) N cone(wy, w3, W, ).
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As in the preceding case, we only have to show that both cones are projected
X-relevant faces. For the first one this is clear. We turn to the second one. For sure
we have
u € cone(wy, W3, W, ) U cone(Ws, wy, Wy, ).

We verify u ¢ cone(ws, w,, W, ). Otherwise, because of det(ws, w,, w,) =1+ a - f3,
Proposition 2.8(iii) yields « = = 0, a contradiction. Thus, cone(w;, w3, W, ) is the
image of an X-relevant face.

Now, the coordinate change on K = Z? given by the following unimodular matrix
and suitably renumbering of variables leads to the setting of Theorem 1.4:

0O 1 0
1 - «f.
0 0 1
(d) Thereisaneven7 < k < n such that for i =7, ...,k — 1, the pairs w;, w;, are
rom Case (4.2) and for all odd j = k +1,...n — 1 the pair w;, w;,, is from Case (2).
J p Wi

This means
wi = (1,0,0), Wit1 = (dl _lals 1); W] = (xj)I) 0)) Wj+l = (dl _.xj,o,l),

A coordinate change on K = Z? given by the following unimodular matrix and suit-
ably renumbering of variables leads to the preceding case:

0 1 -1
1 0 1-4d{. |
0 0 1

Proof of Theorem 1.4, Part II Let X arise from Construction 2.4 with the input data
specified in Theorem 1.4. Consider the toric embedding X < Z provided by Construc-
tion 2.4. From Remark 2.7, we infer 7x = 7 for the semiample cones. Thus, for the
divisor class w = (1, a + 1, 1), a representing toric divisor E on Z and its restriction D
on X, we obtain a commutative diagram

X c Z
X(D) < Z(E) = P(Op_(b1)® o O0p_ (b))

where the inclusions are closed embeddings, [ is the number of coordinates of Z =
K" of degree wy = (0,1,0), call them fi,..., f;, and k is the number of coordinates
whose degree is located on the line segment cone(ws, wg ), call them Ay, . .., hg. Then
we have n = 21 + 2k and deg(h;) = (1,0;,0) with 0 = b; < b, < --- < by = a.
Using local trivializations, we see that X projects onto the base Z(E), which means
X(D) = Z(E). Moreover, on each fiber ¢3'([z]), the relation g becomes a linear
form in the coordinates T; different from f; and ; and thus cuts out a hyperplane of
95 ([2]) 2 Pjyx_1. Consequently, pp: X — X(D) is as claimed. ]

Corollary 6.1 Let X be a Fano smooth full intrinsic quadric of Picard number three.
Then every numerically effective divisor on X is base point free. In particular, X fulfills
Fujita’s freeness conjecture.
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Proof We can assume that X arises from Construction 2.4 with the input data speci-
fied in Theorem 1.4. As in the proof of Corollaries 4.3 and 4.4, we consider the monoid
of base point free divisor classes and its combinatorial description:

BPEC) = () QpnZ?).
yoecov(X)

Again the task is to show that for all y € cov(X), the monoid

Q(yo nE) € Q(lin(yg) NE)

is saturated. For three-dimensional yy, this is due to Proposition 2.8(iii). If yo €
cov(X) is not three-dimensional, then we have yo = y; is1,j,j+1 With w; = (0,1,0),
Wiy = (La-11),and w; = (0,b,1), wjy1 = (1,a — b,0) for some 0 < b < a. One
directly checks that the corresponding monoid Q(yo N E) € Q(lin(yo) N E) is satu-
rated. ]
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