
Proceedings of the Edinburgh Mathematical Society (2002) 45, 397–409 c©
DOI:10.1017/S0013091501000189 Printed in the United Kingdom

INFINITELY MANY SOLUTIONS TO THE NEUMANN PROBLEM
FOR ELLIPTIC EQUATIONS INVOLVING THE p-LAPLACIAN

AND WITH DISCONTINUOUS NONLINEARITIES

PASQUALE CANDITO

Dipartimento di Matematica, Università di Messina, Contrada Papardo,
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Abstract In this paper, we establish the existence of infinitely many solutions to a Neumann problem
involving the p-Laplacian and with discontinuous nonlinearities. The technical approach is mainly based
on a very recent result on critical points for possibly non-smooth functionals in a Banach space due to
Marano and Motreanu, namely Theorem 1.1 in a paper that is to appear in the journal J. Diff. Eqns
(see Theorem 2.3 in the body of this paper). Some applications are presented.
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1. Introduction

Throughout the sequel, Ω is a non-empty bounded open set of the real Euclidean space
R

n, n � 3, with boundary of class C∞, a belongs to L∞(Ω), with ess infΩ a > 0; α(x),
β(x) lie in L1(Ω) with min{α(x), β(x)} � 0 a.e. in Ω, and p ∈ ]n, +∞[. Consider the
following problem

∆pu − a(x)|u|p−2u = α(x)f(u) + β(x)g(u) in Ω,

∂u

∂υ
= 0 on ∂Ω,


 (Np)

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian, ν is the outer unit normal to ∂Ω and
f, g : R → R are two locally essentially bounded functions. Denote by Df (respectively,
Dg) the set of all discontinuity points of f (respectively, g).

397

https://doi.org/10.1017/S0013091501000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091501000189


398 P. Candito

Let us recall that a weak solution of problem (Np) is any u ∈ W 1,p(Ω) such that

−
∫

Ω

(|∇u(x)|p−2∇u(x)∇v(x)) dx −
∫

Ω

(a(x)|u(x)|p−2u(x)v(x)) dx

=
∫

Ω

(α(x)f(u(x)) + β(x)g(u(x)))v(x) dx, ∀v ∈ W 1,p(Ω).

To the best of our knowledge, no investigation has been devoted to establishing the
existence of infinitely many solutions to such a problem. Actually, we can only mention
the papers [10,13] (see also [1]). Both of them give a positive response to the question
whenever f and g are two continuous functions. Precisely, in [13] the goal is achieved by
a direct application of a general result on critical points due to Ricceri, see Theorem 2.5
of [12]; whereas in [10] the situation is rather different. There, the functions f and g

treated belong to L∞
loc(R). Moreover, Marano and Motreanu extend the above-mentioned

critical-points result to a family of functionals in a Banach space which are possibly non-
smooth (see Theorem 1.1 of [10] or Theorem 2.3 below, see also [11]). In this connection,
thanks to this latter result, the conclusion has been obtained by noting that problem (Np)
represents the special case of a variational–hemivariational inequality involving f and g,
provided that f and g belong to C◦(R).

The aim of the present paper is to prove Theorems 1 and 2 of [13] assuming, instead
of the continuity of f and g, a more general condition which is compatible with the fact
that the sets Df and Dg can be uncountable.

Exploiting the non-smooth framework developed in [10], the proof of our main results
will be performed in three steps. First, reasoning as in the proof of Theorem 2.1 of [10],
and using Theorem 2.3, we show that an appropriate locally Lipschitz functional J admits
a sequence of critical points (in the Chang sense, see [4]). Next, using concepts and results
from the critical-point theory for non-smooth locally Lipschitz functionals developed by
Clarke and Chang, see Proposition 2.1 below, we adapt the technique introduced to
prove Theorem 4.2 of [9] in solving a suitable multivalued version of problem (Np) (see
also [2,7] regarding the Dirichlet problem). Subsequently, under additional assumptions
in comparison with Theorems 2.1 and 2.2 of [10], we show that each critical point of
the functional J turns out to be a weak solution of the above problem. Finally, to the
end of emphasizing the usefulness of our results in solving several concrete cases, we will
present three examples with g = 0. The first of them deals with a function having an
uncountable bounded set of discontinuities of the first kind. The second one treats the
case of just one point of discontinuity of second kind. A function having a countable and
unbounded set of discontinuities of first kind is investigated in the last example.

The paper is organized in four sections. Notation, basic definitions and preliminary
results are collected in § 2. The main results are presented in § 3. The last section is
devoted to explaining the examples.

2. Basic definitions and preliminary results

Let (X, ‖ · ‖) be a real Banach space. We denote by X∗ the dual space of X, while 〈·, ·〉
stands for the duality pairing between X∗ and X. A function J : X → R is called locally
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Lipschitz when to every u ∈ X there corresponds a neighbourhood U of u and a constant
LU � 0 such that

|J(u) − J(v)| � LU‖u − v‖ ∀u, v ∈ U.

Write, if ξ ∈ R,

F (ξ) :=
∫ ξ

0
f(t) dt, G(ξ) :=

∫ ξ

0
g(t) dt.

It is easy to prove that F and G are locally Lipschitz whenever f and g are two locally
essentially bounded functions. If u, v ∈ X, the symbol J◦(u; v) indicates the generalized
directional derivative of J at the point u along the direction v, namely

J◦(u; v) = lim sup
w→u, t→0+

J(w + tv) − J(v)
t

.

The generalized gradient of the functional J at u, denoted by ∂J(u), is the set

∂J(u) := {u∗ ∈ X∗ : 〈u∗, v〉 � J◦(u; v) ∀v ∈ X}.

We say that u ∈ X is a critical point of J if it fulfils the inequality

J◦(u; v) � 0 ∀v ∈ X. (2.1)

It is well known that if J is continuously Gâteaux differentiable at u, then ∂J(u) = J ′(u),
J◦(u; v) coincides with the directional derivative J ′(u; v) for each v ∈ X, and (2.1)
becomes J ′(u) = 0. Furthermore, it is easy to prove that each local minimum is also a
critical point of J (see Proposition 2.1 of [9]). In this framework the following proposition
collects some basic properties about the directional generalized derivative.

Proposition 2.1. Let I, J : X → R be two locally Lipschitz functions. The following
assertions hold.

(p1) (I + J)◦(u; v) � I◦(u; v) + J◦(u; v) ∀v ∈ X.

(p2) If I is continuously Gâteaux differentiable at u, then

(I + J)◦(u; v) = I ′(u; v) + J◦(u; v) ∀v ∈ X.

For a thorough treatment of this topic we refer to [4,5] and the references cited therein.
On the space W 1,p(Ω) we consider the norm

‖u‖ :=
(∫

Ω

(|∇u(x)|p dx + a(x)|u(x)|p) dx

)1/p

,

which is clearly equivalent to the usual one, while we equip the space C0(Ω̄) with the
norm ‖u‖C0(Ω̄) := supu∈Ω̄ |u(x)|. Since p > n, we have

c := sup
u∈W 1,p(Ω)\{0}

‖u‖C0(Ω̄)

‖u‖ < +∞. (2.2)

https://doi.org/10.1017/S0013091501000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091501000189


400 P. Candito

Moreover, if Ω is a convex set whose diameter is less than or equal to

n1/p

(
p − n

p − 1

)1−(1/p)

,

then the following upper bounded estimate holds

c �
(

2p−1

min{1, ess infΩ a}m(Ω)

)1/p

. (2.3)

For more details on the constant c see [3]. Let E be a subset of R
n, from now on,

‘measurable’ always means Lebesgue measurable and m(E) stands for the measure of E.
As usual, a function l : Ω × R → R is said to be ‘superpositionally measurable’ if, for
every measurable function u : Ω → R, the function l(x, u(x)) is measurable. If for almost
every x in Ω, l(x, ·) is locally essentially bounded, write

l−(x, t) := lim ess inf
δ→0+|t−z|<δ

l(x, z), l+(x, t) := lim ess sup
δ→0+|t−z|<δ

l(x, z)

for each t ∈ R. It is a simpler matter to see that l−(x, ·) and l+(x, ·) are, respectively,
lower semicontinuous and upper semicontinuous.

Proposition 2.2. Let u ∈ W 1,p(Ω) and let E be a measurable subset of R such that
m(E) = 0. Then ∆pu = 0 at almost all x ∈ u−1(E).

Proof. It is well known that there exists a set H of type Gδ such that E ⊂ H and
m(H) = 0. Thus, owing to Lemma 1 of [6], one has ∇u(x) = 0 a.e. on u−1(H). From
this the conclusion follows at once (see also [2] and the references cited therein). �

Now, for the reader’s convenience, we state a non-smooth version due to Marano and
Motreanu of a very recent result on critical points of Ricceri, which represents the main
tool to investigate problem (Np).

Let X̃ be a real Banach space such that X is compactly embedded in X̃, let Φ : X̃ → R

and Ψ : X → R be two locally Lipschitz functions. Write, provided ρ > infX Ψ ,

ϕ(ρ) := inf
u∈Ψ−1(]−∞,ρ[)

Φ(u) − inf(Ψ−1(]−∞,ρ[))w
Φ(v)

ρ − Ψ(u)
,

where (Ψ−1(] − ∞, ρ[))w stands for the weak closure of Ψ−1(] − ∞, ρ[),

γ := lim inf
ρ→+∞

ϕ(ρ), δ := lim inf ρ → (inf
X

Ψ)+ϕ(ρ).

Theorem 2.3 (Theorem 1.1 of [10]). Let X be reflexive and let Ψ be weakly
sequentially lower semicontinuous and coercive. Then the following assertions hold.

(a) For every ρ > infX Ψ and every λ > ϕ(ρ) the function Φ + λΨ has a critical point
(local minima) lying in Ψ−1(] − ∞, ρ[).
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(b) If γ < +∞, then, for each λ > γ, either

(b1) Φ + λΨ possesses a global minimum, or

(b2) there is a sequence {uk} of critical points (local minima) such that

lim
k→+∞

Ψ(uk) = +∞.

(c) If δ < +∞, then, for each λ > δ, either

(c1) Φ + λΨ has a local minimum, which is also a global minimum of Ψ , or

(c2) there is a sequence {uk} of pairwise distinct critical points (local minima) of
Φ + λΨ , with limk→+∞ Ψ(uk) = infX Ψ , which weakly converges to a global
minimum of Ψ .

3. Main results

We now establish the main results.

Theorem 3.1. Let f, g : R → R be two locally essentially bounded functions, which
are possibly discontinuous in a set having Lebesgue measure zero, namely Df and Dg,
respectively. Assume that the following assertions hold.

(d1) infξ∈R G(ξ) � 0.

(d2) There exist two sequences {ξk} ⊆ R and {rk} ⊆ R
+ with limk→+∞ rk = +∞ such

that

F (ξk) = inf
|ξ|�c(prk)1/p

F (ξ) ∀k ∈ N, (3.1)

1
p
‖a‖L1(Ω)|ξk|p + ‖β‖L1(Ω)G(ξk) < rk ∀k ∈ N. (3.2)

(d3)

lim inf
|ξ|→+∞

‖α‖L1(Ω)F (ξ) + ‖β‖L1(Ω)G(ξ)
|ξ|p < −1

p
‖a‖L1(Ω).

In addition suppose that the following hold.

(d4) The functions l−(x, t) and l+(x, t) are superpositionally measurable.

(d5) For almost every x ∈ Ω and every t ∈ Df ∪ Dg,

l−(x, t) � 0 � l+(x, t) =⇒ l(x, t) = 0,

where
l(x, t) := a(x)|t|p−2t + α(x)f(t) + β(x)g(t) ∀(x, t) ∈ Ω × R.

Then problem (Np) admits an unbounded sequence of weak solutions.
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Proof. We begin by taking X = W 1,p(Ω), X̃ = C◦(Ω̄). Since p > n, X is compactly
embedded in C◦(Ω̄). Set

Φ(u) :=
∫

Ω

α(x)F (u(x)) dx,

Ψ(u) :=
1
p
‖u‖p +

∫
Ω

β(x)G(u(x)) dx

and
J(u) := Φ(u) + Ψ(u)

for each u ∈ X. Clearly, f, g ∈ L∞
loc(R) ensures that the above functionals are locally

Lipschitz on X. So, it makes sense to consider their generalized directional derivatives Φ◦,
Ψ◦ and J◦, respectively. We claim that the functional J admits an unbounded sequence
{uk} ⊆ X of critical points (local minima). To this end, we apply Theorem 2.3 (b). It is a
simple matter to verify that Ψ is weak sequentially lower semicontinuous on X. Bearing
in mind that β(x) � 0 a.e. in Ω, by (d1) one has

Ψ(u) � 1
p
‖u‖p ∀u ∈ X. (3.3)

Hence, Ψ is coercive and infX Ψ = Ψ(0) = 0.
Now, using the notation of Theorem 2.3 and arguing as in the proof of Theorem 2.1 of

[10] we obtain that γ = 0. For this purpose, taking into account that limk→+∞ rk = +∞
and ϕ(ρ) � 0 ∀ρ > 0, it is enough to show that

ϕ(rk) = 0 ∀k ∈ N. (3.4)

Clearly, through (3.3) one has that

(Ψ−1(] − ∞, ρ[))w ⊆ {v ∈ X : ‖v‖ � (pρ)1/p};

consequently,

0 � ϕ(ρ) � inf
u∈Ψ−1(]−∞,ρ[)

Φ(u) − inf‖v‖�(pρ)1/p Φ(v)
ρ − Ψ(u)

∀ρ > 0.

As the embedding constant c is finite, ‖v‖ � (prk)1/p produces

|v(x)| � c(prk)1/p in Ω.

Equation (3.1) then implies that F (v(x)) � F (ξk) for each x ∈ Ω. Moreover, owing to
(3.2) one has ξk ∈ Ψ−1(] − ∞, rk[). Thus,

Φ(ξk) = inf
‖v‖�(prk)1/p

Φ(v)

(α(x) � 0 a.e. in Ω). Therefore, (3.4) holds.
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In applying Theorem 2.3 the last step is to verify that J is unbounded below. To do
this take

η ∈
]
1
p
‖a‖L1(Ω), − lim inf

|ξ|→+∞

‖α‖L1(Ω)F (ξ) + ‖β‖L1(Ω)G(ξ)
|ξ|p

[

and choose a sequence {σk} ⊆ R such that

lim
k→+∞

|σk| = +∞, ‖α‖L1(Ω)F (σk) + ‖β‖L1(Ω)G(σk) < −η|σk|p ∀k ∈ N.

Bearing in mind that ‖σk‖p = ‖a‖L1(Ω)|σk|p, an easy computation shows that

J(σk) <

(
1
p
‖a‖L1(Ω) − η

)
|σk|p.

Therefore, limk→+∞ J(σk) = −∞. Choosing λ = 1, Theorem 2.3 gives a sequence {uk} ⊆
X such that limk→+∞ Ψ(uk) = +∞, as well as, for each point uk,

J◦(uk; v) � 0 ∀v ∈ X. (3.5)

Furthermore, Ψ is bounded on bounded sets, so {uk} is unbounded. At this point, pick
k ∈ N and take into account that the functional

h(u) :=
1
p
‖u‖p ∀u ∈ X

is continuously Gâteaux differentiable with

h′(u)(v) =
∫

Ω

(|∇uk(x)|p−2∇uk(x)∇v(x) + a(x)|uk(x)|p−2uk(x)v(x)) dx. (3.6)

Then the preceding inequality (3.5) implies

−
∫

Ω

(|∇uk(x)|p−2∇uk(x)∇v(x)) dx �
∫

Ω

(a(x)|uk(x)|p−2uk(x)v(x)) dx + T ◦(uk, v),

(3.7)
for each v ∈ X, where T is the locally Lipschitz functional defined in X by putting

T (u) :=
∫

Ω

(∫ u(x)

0
α(x)f(t) + β(x)g(t) dt

)
dx ∀u ∈ X.

On the other hand, the integral∫
Ω

(a(x)|uk(x)|p−2uk(x)v(x)) dx

represents the derivative at uk of the continuously Gâteaux differentiable functional

h1(u) :=
∫

Ω

dx

∫ u(x)

0
a(x)|t|p−2t dt
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for each u ∈ X. Thus, owing to Proposition 2.1, the right-hand side of (3.7) becomes the
generalized derivative of the following locally Lipschitz functional H, defined in X by
setting

H(u) :=
∫

Ω

(∫ u(x)

0
l(x, t) dt

)
dx ∀u ∈ X.

Hence,

−
∫

Ω

(|∇uk(x)|p−2∇uk(x)∇v(x)) dx � H◦(uk, v) ∀v ∈ X,

which actually means
−∆puk ∈ ∂H(uk).

Moreover, through standard arguments on regularity (see for instance Theorem 6.1 of [8])
one has

−∆puk ∈ W 1,p′
(Ω),

while Theorem 2.1 of [4] yields

−∆puk(x) ∈ [l−(x, uk(x)), l+(x, uk(x))] a.e. in Ω.

Finally, by continuity we have

−∆puk(x) = l(x, uk(x)),

whenever x ∈ Ω\u−1
k (Df ∪ Dg). Whereas Proposition 2.2 produces

−∆puk(x) = 0 a.e. in u−1
k (Df ∪ Dg).

So, according to (d5) one has

−∆puk(x) = 0 = l(x, uk(x)) a.e. in u−1
k (Df ∪ Dg).

In any case we achieve

−∆puk(x) = l(x, uk(x)) a.e. in Ω.

This completes the proof. �

Now, arguing in the same way as in Theorem 3.1, by Theorem 2.3 (c) and replacing
both rk → +∞ with rk → 0+ and |ξ| → +∞ with |ξ| → 0+ it is possible to prove the
following theorem.

Theorem 3.2. Let f, g : R → R be two locally essentially bounded functions, which
are possibly discontinuous in a set having Lebesgue measure zero, namely Df and Dg,
respectively. Assume that the following assertions hold.

(d∗
1) infξ∈R G(ξ) � 0.
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(d∗
2) There exist two sequences {ξk} ⊆ R and {rk} ⊆ R

+ with limk→+∞ rk = 0+ such
that

F (ξk) = inf
|ξ|�c(prk)1/p

F (ξ) ∀k ∈ N, (3.8)

1
p
‖a‖L1(Ω)|ξk|p + ‖β‖L1(Ω)G(ξk) < rk ∀k ∈ N. (3.9)

(d∗
3)

lim inf
|ξ|→0+

‖α‖L1(Ω)F (ξ) + ‖β‖L1(Ω)G(ξ)
|ξ|p < −1

p
‖a‖L1(Ω).

In addition suppose that the following assertions hold.

(d∗
4) The functions l−(x, t) and l+(x, t) are superpositionally measurable.

(d∗
5) For almost every x ∈ Ω and every t ∈ Df ∪ Dg,

l−(x, t) � 0 � l+(x, t) =⇒ l(x, t) = 0,

where
l(x, t) := a(x)|t|p−2t + α(x)f(t) + β(x)g(t) ∀(x, t) ∈ Ω × R.

Then problem (Np) admits a sequence of non-zero weak solutions which strongly con-
verges to 0.

Remark 3.3. We now explicitly observe that Theorems 3.1 and 3.2 extend the main
results of [13].

4. Examples

Here, we give three examples which show how the results presented in the preceding
section are successfully applied in solving problem (Np) in several concrete cases.

Example 4.1. Let C be a closed subset of ]0, π/2[ such that m(C) = 0. Then the
set ]0, π/2[ is non-empty and open. So, it has at most countably many connected (open)
components, namely {]ak, bk[}k∈N. Without loss of generality we can assume that bk <

ak+1 for each k ∈ N. Define, for every t ∈ R,

f(t) :=




et(sin t + cos t − 1) if t ∈ [π/2, +∞[,

yk if t ∈ ]ak, bk[,

0 otherwise,

where {yk}k∈N is a bounded sequence complying with infk∈N yk > 0, and g(t) := 0.
Moreover, suppose that

‖a‖L1(Ω) = 1/cp. (4.1)

Then the conclusion of Theorem 3.1 holds.
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Proof. Obviously, one has G(ξ) = 0 for each ξ ∈ R and a straightforward computation
yields

F (ξ) :=




0 if ξ ∈ ] − ∞, a0],
k−1∑
j=0

yj(bj − aj) + (ξ − ak)yk if ξ ∈ ]ak, bk[,

eξ(sin ξ − 1) + s if ξ ∈ [π/2, +∞[,

where

s =
+∞∑
k=0

yk(bk − ak) < +∞.

Now, setting, for each k ∈ N,

ηk := 3
2π + 2kπ, µk := 5

2π + 2kπ, rk :=
1
p

(
µk

c

)p

.

we obtain, for some ξk ∈ ] − ηk, ηk[,

inf
|ξ|�c(ηk)1/p

F (ξ) = inf
|ξ|�c(prk)1/p

F (ξ) = F (ξk),

together with limk→+∞ rk = +∞. So, by using (4.1), condition (3.2) can easily be drawn.
Thus, (d2) holds. Moreover, we achieve

lim inf
|ξ|→+∞

‖α‖L1(Ω)F (ξ) + ‖β‖L1(Ω)G(ξ)
|ξ|p � −‖α‖L1(Ω) lim

k→+∞

2eηk − s

ηp
k

= −∞,

which implies (d3), while (d4) follows from elementary arguments on measurability. Let
us note that

Df = C.

Then, since f(t) � 0, provided t ∈ ]0, π/2[ and f(0) = 0, we obtain l(x, t) � θ > 0 a.e. in
(x, t) ∈ Ω×]0, π/2[ and l(x, 0) = 0 for each x ∈ Ω. This actually means

l(x, 0) = 0 < l−(x, ak) < l−(x, bk),

for each k ∈ N and a.e. in Ω. In any case condition (d5) is fulfilled. This completes the
proof. �

Example 4.2. Let f, g : R → R be defined by setting

f(t) :=




t

|t| (e
|t| − 1)p−1

(
e|t| sin

1
|t|p−1 − (p − 1)

p

(e|t| − 1)
|t|p cos

1
|t|p−1

)
if t 
= 0,

0 otherwise,

and g(t) := 0 for every t ∈ R. Assume that

‖a‖L1(Ω) =
1
cp

< ‖α‖L1(Ω). (4.2)

Then the conclusion of Theorem 3.2 holds.
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Proof. Clearly, (d∗
1) and (d∗

4) are trivial. Furthermore, we have

F (t) :=




1
p
(e|t| − 1)p sin

1
|t|p−1 if t 
= 0,

0 otherwise.

Thus, writing

ak =
(

1
(2k + 1)π

)1/p−1

, bk =
(

1
2kπ

)1/p−1

, k ∈ N
∗,

results in
inf

|ξ|�bk

F (ξ) = inf
|ξ|�ak

F (ξ) = F (ξk)

for some ξk ∈ [−ak, ak]. Now, set

ξ0 := 0, r0 := 1, rk :=
1
p

(
bk

c

)p

, k � 1,

and observe that rk → 0+ as k → +∞. According to the above results and bearing in
mind (4.2) we can assert that (d∗

2) holds. Moreover, write, for each k ∈ N,

µk =
(

2
(4k + 3)π

)1/(p−1)

. (4.3)

It is easy to verify that

lim inf
|ξ|→0+

F (ξ)
|ξ|p � lim

k→+∞

F (µk)
µp

k

= −1
p
,

from which we obtain (d∗
3). Let us note that Df = {0}. Next, a trivial verification show

that
l−(x, 0) = −p − 1

p
α(x), l+(x, 0) =

p − 1
p

α(x) a.e. in Ω.

So l(x, 0) = 0 implies (d∗
5). Since all the assumptions of Theorem 3.2 are satisfied, the

conclusion follows. �

Example 4.3. Let Ω be a convex set, whose diameter is less than or equal to

n1/p

(
p − n

p − 1

)1−(1/p)

.

Let {ak}k∈N be a real sequence such that ak+1 = 4ak for each k ∈ N, with a0 = 2. Put
a(x) = α(x) = 1 for almost every x in Ω and define, for every t ∈ R,

f(t) :=

{
ap−2

k (1 − 2p−1)(t − ak) − ap−1
k if t ∈ [ak, 2ak],

0 otherwise,

and g(t) := 0. Then the conclusion of Theorem 3.1 holds.
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Proof. It is now evident that (d1) and (d4) are true. An easy verification show that
∫ ak+1

ak

f(t) dt = −2p−1 + 1
2

ap
k.

Indeed, we obtain

F (ak+1) = F (2ak) = −
k−1∑
j=0

2p−1 + 1
2

ap
j .

Now, let us define, provided that k ∈ N,

ξk := 2ak, rk :=
1
p

(
ak+1

c

)p

.

Clearly, we have rk → +∞ as k → +∞ and, taking into account that F is non-increasing,
one has

F (ξk) = inf
|ξ|�c(prk)1/p

F (ξ).

In addition, (2.3) produces m(Ω)cp < 2p−1. From this, (3.2) follows. So (d2) holds.
Indeed, it results in

F (ξk) < −2p−1 + 1
2

ap
k ∀k ∈ N.

Thus, we achieve

lim inf
|ξ|→+∞

F (ξ)
|ξ|p � lim

k→+∞

F (ξk)
ξp
k

= −2p−1 + 1
2p+1 < −1

p
,

which implies (d3). Finally, we verify (d5). Let us note that

Df = ∪k∈N{ak, 2ak}. (4.4)

Furthermore, a straightforward computation yields

0 = l−(x, ak) = l−(x, 2ak) = l(x, ak) = l(x, 2ak)

for each k ∈ N and a.e. x ∈ Ω. Since all the assumptions of Theorem 3.1 are satisfied,
the conclusion follows. �
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