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We investigate interactions between two like-signed vortices over either an isolated
seamount or a basin (a depression in the bathymetry), using a quasi-geostrophic, two-layer
model on the f -plane. When the vortex pair is centred over the seamount, the vortices
are pushed together by the secondary flow generated in the bottom layer, facilitating
their merger. Over a basin, the deep anomalies are much stronger and their interaction
strains out the surface vortices. The results are supported by an analytical estimation of
the initial potential vorticity anomalies in the lower layer and by analysis of the linear
stability of a single vortex over the bathymetry. Similar phenomena are observed when
the vortex pair is displaced from the bathymetric centre and when the initial vortices are
initially compensated. Sub-deformation-scale vortices are less influenced by bathymetry
than larger vortices. The results help explain asymmetries noted previously in turbulence
simulations over bathymetry.
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1. Introduction
Vortices are masses of fluid in rotation and are key dynamical features in the oceans
(Carton 2001), at the surface (Chelton, Schlax & Samelson 2011) and in the interior (e.g.
Petersen et al. 2013). Among these, ‘mesoscale vortices’ are those whose horizontal size
is comparable to the Rossby deformation radius, of order 20 km. These are among the
most energetic features in the oceans (e.g. Grooms, Nadeau & Smith 2013; Byrne et al.
2016; Hidenori, Xiaoming & Greatbatch 2016). The vortices typically have modest Rossby
numbers, so they are amenable to study with a quasi-geostrophic dynamics (Vallis 2006).
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Vortices interact strongly with their surroundings: with other vortices, with currents
and jets, with coasts and with bathymetry. The present paper focuses on the latter. We
are specifically interested in mergers between like-signed vortices over isolated features,
seamounts and depressions.

Vortex merger is an important elementary interaction. It is associated with the inverse
energy and direct enstrophy cascades in large-scale geophysical flows. By merging,
vortices form larger structures, contributing in physical space to the inverse energy cascade
in spectral space. Mergers also generate filaments (and, occasionally, low-energy, small-
scale vortices), contributing to the direct cascade of enstrophy. Vortex merger has thus
been the subject of numerous studies. It was first investigated numerically in a two-
dimensional incompressible flow by Roberts & Christiansen (1972) and Rossow (1977). It
was shown that vortices merge provided they are closer than a critical distance. Overman &
Zabusky (1982) demonstrated that the merger of two co-rotating patches of uniform
vorticity in mutual equilibrium can be linked to an instability of the co-rotating vortex pair,
as suggested by Saffman & Szeto (1980) (see also Dritschel 1995). Mergers in viscous two-
dimensional flows have been studied (Meunier et al. 2002; Cerretelli & Williams 2003),
as have mergers in quasi-geostrophic, two-layer models (e.g. Polvani, Zabusky & Flierl
1989), with the so-called ‘surface quasi-geostrophic’ model (Carton et al. 2016), and in
three-dimensional, continuously stratified, quasi-geostrophic flow (von Hardenberg et al.
2000; Dritschel 2002; Reinaud & Dritschel 2005; Bambrey, Reinaud & Dritschel 2007;
Ozurgurlu, Reinaud & Dritschel 2008). Mergers have also studied with finite Froude and
Rossby numbers, where an asymmetry between the merger of cyclonic and anticyclonic
vortices is observed (Reinaud & Dritschel 2018). An external shear facilitates mergers
between like-signed vortices and impedes mergers otherwise (Carton, Maze & Legras
2002; Trieling, Dam & van Heijst 2010; Reinaud 2017). Mergers over a planar bathymetric
slope have also been studied in single (Carton et al. 2017) and two-layer flows (de Marez
et al. 2017).

Bathymetry has significant effects on vortices, see e.g. Zavala Sansón & Gonzalez
(2021). An axisymmetric seamount can stabilise a surface cyclone and destabilise an
anticyclone, and the opposite occurs over a depression (Benilov 2005; Zhao, Chieusse-
Gérard & Flierl 2019; Gonzalez & Zavala Sansón 2023). Isolated cyclones can self-propel
up a seamount while anticyclones move off (Carnevale et al. 1991a). Turbulent flow
over bathymetry can produce mean flows which are ‘prograde’, i.e. parallel to the
direction of topographic wave propagation: cyclonic in a basin and anticyclonic over a
seamount (Bretherton & Haidvogel 1976; Salmon, Holloway & Hendershott 1976). With
stratification, the flow is bottom intensified, with larger vertical extent for bathymetric
features larger than the deformation scale (Hogg 1973; Merryfield 1998; Venaille 2012;
LaCasce, Palóczy & Trodahl 2024). With a turbulent, barotropic initial state, the result is
often a topography-following prograde flow plus an isolated and oppositely signed vortex
in the centre (Solodoch, Stewart & McWilliams 2021; Siegelman & Young 2023). With
stratification, one can obtain a bottom-intensified prograde flow and an opposite-signed
vortex at the surface (de Marez, Le Corre & Gula 2021; LaCasce et al. 2024). The lone
vortex is evidently the result of an asymmetry in mergers.

The present goal is to investigate this merger asymmetry. We examine the evolution of
two displaced vortices over axisymmetric basins and seamounts (hereafter referred to as
circular basins and seamounts) and elliptical basins and seamounts. The results confirm
that the merger of cyclones/anticyclones is favoured over a seamount/basin, while the
opposite-signed vortices are sheared out. The asymmetry is intimately linked to surface
vortex stability, in line with Benilov (2005) and Zhao et al. (2019).
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The paper is organised as follows. Section 2 introduces the equations, initial conditions
and numerical method. Section 3 presents the main results. The results are analysed in
terms of potential vorticity (PV) anomalies induced in the lower layer, and of the stability
of a single vortex. We then consider various effects, including (i) basin asymmetry,
(ii) vortex scale relative to the deformation radius, (iii) the alignment of vortices and
bathymetry and (iv) the initial flow in the lower layer. Conclusions are presented in § 4.

2. Methods
We consider a quasi-geostrophic (QG) two-layer flow over bathymetry. The bathymetric
height is denoted hb(x, y). We assume the Coriolis frequency is constant, f = f0, for
simplicity. The QG flow is fully described by the PVs, qi (x, y, t), in each layer i = 1, 2;
these are defined from the streamfunction, ϕi , i = 1, 2 as

q1 = ∇2ϕ1 − γ 2
1 (ϕ1 − ϕ2), (2.1)

q2 = ∇2ϕ2 − γ 2
2 (ϕ2 − ϕ1) + αb hb; (2.2)

(Vallis 2006). We make the ‘rigid lid’ assumption and neglect deflections of the sea’s
surface, which play a minor role at these scales. Layer i = 1 corresponds to the upper
layer while i = 2 to the bottom layer. The bathymetry lies fully in layer 2. Furthermore,
∇2 = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian, and

γi = f0√
g′Hi

αb = f0

H2
, (2.3)

where Hi is the mean depth of layer i and g′ ≡ g�ρ/ρ0 is the reduced gravity, with
�ρ ≡ ρ2 − ρ1 the density difference between the two layers and ρ0 = (ρ1 + ρ2)/2 the
mean density. For simplicity we set H1 = H2 = H , hence γ1 = γ2 = γ ≡ R−1

d , where Rd
is the Rossby deformation radius. The advecting geostrophic velocity field derives from
the streamfunction ϕi

(ui , vi ) =
(

−∂ϕi

∂y
,
∂ϕi

∂x

)
, i = 1, 2. (2.4)

In the absence of frictional and dissipative effects, the PVs are materially conserved on
the f -plane

Dq1

Dt
= 0,

Dq2

Dt
= 0. (2.5)

In layer 2, we also define the PV anomaly

qa
2 ≡ q2 − αbhb = ∇2ϕ2 − γ 2 (ϕ2 − ϕ1). (2.6)

The PV anomaly qa
2 is not materially conserved. For simplicity we hereafter refer to the

fields q1 and qa
2 as PV anomalies.

We solve the equations numerically using a pseudo-spectral method. Some details are
provided in Appendix A. Equations (2.5) are advanced in time using a second-order, semi-
implicit, leapfrog integration scheme. For numerical stability, weak bi-harmonic diffusion
is added to the right-hand size of (2.5), with a hyperviscosity coefficient ν = 2 × 10−9.
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Figure 1. Geometry of the initial conditions. Bathymetry (Gaussian seamount) of characteristic radius
hb(x, y) with Rb = 3Rd = 1 (black). The PV field in the upper layer q1 at t = 0 for Rv = Rd and
�R = 3Rd (red).

The time step is �t = K 2π/(Numax), where we use a Courant-Friedrichs-Lewy (CFL)
coefficient of K = 0.1 for higher accuracy, where umax is the maximum velocity at t = 0.
This choice of K also proved, in practice, to provide numerical stability to the leapfrog
scheme. Fields in spectral space are dealiased using the 2/3-rule. A note on numerical
convergence is provided in Appendix A.

By the symmetry of the QG equations on the f -plane, the evolution of cyclonic vortices
over a seamount (or a basin) is equivalent to that of anticyclonic vortices over a basin (or
a seamount). We therefore restrict our attention to cyclonic vortices in the upper layer and
consider both a basin and a seamount. The initial conditions are given by

q1(x, y, 0) = q0 e
−8

(
(x−xc,1)2+(y−yc,1)2

R2
v

)8

+ q0 e
−8

(
(x−xc,2)2+(y−yc,2)2

R2
v

)8

, (2.7)

qa
2 (x, y, 0) = 0, (2.8)

hb(x, y) = h0e−(x/dx )2−(y/dy)
2
, (2.9)

where (xc, j , yc, j ) is the centre of vortex j at t = 0, Rv is the common characteristic
radius of the two vortices in the upper layer and q0 is their common maximum PV.
Although the details of the interaction between two vortices depend on their initial
shape and their PV distribution, circular vortices are representative of generic vortices
and allow investigation of the influence of bathymetry on vortex mergers. We set
q0 = 1. This sets the problem time scale. For example, in the limit γ → 0, a uniform
PV axisymmetric vortex has a turnover period of T = 4π/q0 = 4π . The bathymetry
consists of a single elliptical Gaussian seamount/basin of length dx in the x-direction
and dy in the y-direction, and maximal height h0. Circular bathymetry has dx = dy .
The topographic height is varied, but we use h0 = ±1 = α−1

b for a seamount and basin,
respectively, such that αbh0 = ±q0 unless stated otherwise. The initial vortex spacing is
�R ≡ √

(xc,2 − xc,1)2 + (yc,2 − yc,1)2.
The vortex radius is Rv = Rd , unless stated otherwise. The vortices are, however, always

kept small compared with the domain, to limit the effects of the periodic boundary
conditions in the horizontal directions. Note too that, despite the vortex PV distributions
being physically separate, the streamfunctions overlap; thus the vortices interact. Figure 1
illustrates the geometry of the initial condition for a circular seamount with dx = dy =
Rb = 3Rd .
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Figure 2. Potential vorticity anomalies at t = 250 for deformation-scale vortices (Rv = Rd ) with an initial
separation of �R = 2Rv . Top row: q1 for (a) a flat bathymetry, (b) a circular basin and (c) a circular seamount.
Bottom row: qa

2 for (d) a flat bathymetry, (e) a circular basin and ( f ) a circular seamount.

The problem has four non-dimensional parameters: the initial distance between the two
vortices, the vortex radius, the bathymetry characteristic radius and the bathymetry height.
The main focus of the paper is on the effect of the first two parameters. We also conduct
additional numerical experiments to explore the effects of the radius and height of the
bathymetry.

3. Results

3.1. Circular bathymetry
We first consider a circular seamount/basin with dx = dy = Rb = 3Rd . We define a global
topographic beta, βt = f0h0/(Rb H) = αbh0/Rb = ±1 for the seamount/basin. The vortex
radius is set to the Rossby deformation radius so that Rv = Rd , and the initial spacing is
�R = 2Rv at t = 0.

Figure 2 shows the PV anomalies q1 and qa
2 at t = 250 for a basin (panels a and d), a

flat bottom (b and e) and a seamount (c and f ). With the flat bottom, qa
2 remains zero, as

expected. In all three cases, the vortices in the upper layer merge. With the flat bottom or
seamount, the merged vortices shed a small amount of filamentary PV. But with the basin,
the vortices have been almost completely strained out. What remains is an intricate pattern
of filamentary PV and two small PV cores. At the same time, the lower-layer PV anomaly,
qa

2 , has organised into a tripole, with cyclonic PV at the basin centre and anticyclonic
vortices on the side. The vortices have strong associated surface flows and these stir the
surface PV. A similar erosion of an anticyclonic vortex over a seamount was described by
Herbette, Morel & Arhan (2003). Finally, the qa

2 -pattern observed in figure 2( f ) resembles
one of the linear trapped Rossby waves obtained by Zavala Sansón (2010).

The evolution of the maximum and minimum PV anomalies at depth, i.e. |q−
2,m | =

|mindomainqa
2 | and q+

2,m = maxdomainqa
2 , are shown in panel (a) of figure 3 for the basin

and seamount cases. The initial increase in both cases is similar. Over the seamount, the
maximum plateaus to a value 6.6 % times the surface maximum, q0, but over the basin,
the values increase much more, to approximately ∼47 % of q0, reflecting the formation of
the deep tripole.
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Figure 3. Evolution of (a) the maximal PV anomaly in the bottom layer (in absolute value) |q−
2,m | (solid lines)

and q+
2,m (dotted lines) for Rv = Rd and �R = 2Rv , for a basin (black) and a seamount (red); (b) surface

circulation, Γm , of the PV anomaly q1 of the largest vortex over the total circulation of all vortices Γtot for a
circular basin (black), a circular seamount (red) and a flat bottom (blue); (c) distance between the centres of the
two largest vortices of the upper layer (same colours as in panel (b)); (d) trajectory of the vortex centres (same
colours as in panel (b) and the circles denote the initial vortex centre locations).

Shown in figure 3(b) is the integrated surface PV anomaly of the largest coherent
structure divided by the sum of the same quantity over all structures in the upper layer,
denoted Γm . A coherent structure is defined as a region of contiguous PV in excess of
the root-mean-square value over the computational domain. A unit value of Γm indicates
there is only one coherent structure present. At t = 0, Γm = 0.5 as there are two identical
vortices in the upper layer. As the vortices merge, Γm → 1. The figure shows the vortices
merge very rapidly, by t � 5, in all three cases (basin, flat bathymetry, seamount). From
time to time, filaments detach from the main vortex, causing Γm to decrease below one;
but it returns to one as the filaments are either reabsorbed or dissipated. Note Γm � 1 at
t = 250 also for the basin; thus the mixture of filaments and small vortices by this measure
is like a highly deformed single structure.

Having identified the coherent structures, we can determine their geometric centres.
Figure 3(c) shows the evolution of the distance between the two vortex centres until they
merge at t � 4. The results indicate the merger is faster/slower over the seamount/basin
than over a flat bottom. Panel (d) shows the trajectory of the centres in the upper layer
until they merge. These are visually indistinguishable in the three cases.

The early evolution of the PV for the basin is shown in figure 4 while figure 5 shows
the same fields over the seamount. In both cases, qa

2 exhibits a quadrupole structure
initially, i.e. azimuthal mode m = 2. The pattern is reminiscent of seamount-trapped waves
(Brink 1990; Haidvogel et al. 1993), but the propagation direction differs, being counter-
clockwise over both bathymetries. Shortly thereafter the evolutions differ. Over the basin,
the cyclonic lobes merge and settle in the basin centre while the anticyclonic lobes circle
as satellites, and the resulting tripole intensifies. With the seamount this never happens;
instead, the deep quadrupole strains out and fails to intensify.

1020 A44-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
69

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10695


Journal of Fluid Mechanics

t = 12

Basin

(a)
1

0

–1

t = 12

Basin

(d )

0.5

0

–0.5

t = 62

Basin

(b)
1

0

–1

t = 62

Basin

(e)
0.5

0

–0.5

t = 100

Basin

(c)
1

0

–1

t = 100

Basin

( f )
0.5

0

–0.5

Figure 4. Potential vorticity anomalies for the circular basin case at earlier times, with Rv = Rd and �R =
2Rv . Top row: q1 at (a) t = 12, (b) t = 62 and (c) t = 100. Bottom row: qa

2 at (d) t = 12, (e) t = 62 and ( f )
t = 100.
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( f )
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Figure 5. Potential vorticity anomalies for the circular seamount at earlier times, with Rv = Rd and �R =
2Rv . Top row q1 at (a) t = 12, (b) t = 62 and (c) t = 100. Bottom row qa

2 at (d) t = 12, (e) t = 62 and
( f ) t = 100.

The deep tripole has no expression in the surface PV (as seen by the two blank regions
in surface PV in figure 4(b,c). This is as expected for topographic waves in two layers
(LaCasce 1998; LaCasce et al. 2024). However, the features do have surface flow, and the
strength of topographic wave surface flow depends on the wavelength; if comparable to the
deformation radius (as here), the flow approaches the bottom flow in strength. The result
is a strong interaction between the deep and surface anomalies. The effect is absent over
the seamount on the other hand. The merged vortex persists, gradually becoming more
axisymmetric.

Figure 6 shows the same PV diagnostics as in figure 3 but with a greater initial vortex
separation (�R = 3Rv). Here, differences over the three types of bathymetry are even
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Figure 6. Evolution of (a) the maximal PV anomaly in the bottom layer (in absolute value) |q−
2,m | and q+

2,m for
Rv = Rd , �R = 3Rv , with a circular basin (black) and a circular seamount (red); (b) surface circulation, Γm ,
of q1 of the largest vortex over the total circulation of all vortices Γtot for a basin (black), a seamount (red) and
a flat bathymetry (blue); (c) distance between the centres of the two largest vortices of the upper layer (same
colours as in panel (b)); (d) trajectory of the vortex centres (same colours as in panel (b) and the circles denote
the initial vortex centre locations).

more pronounced. While the surface vortices merge over the seamount (red curves in
panels c and d), the vortices over a flat bottom and basin co-rotate without merging
(blue and black curves). Indeed, in the latter case the vortices slowly migrate away from
each other. The fraction of PV in a single structure thus reaches one for the seamount but
stays near 0.5 for the other cases (panel b). However, as before, the formation of deep PV
anomalies is most pronounced over the basin (black curves in panel a); it is weaker over
the seamount (red curves).

The behaviour for a range of initial separations, �R, is summarised in table 1 and
illustrated in figure 7. Most significantly, the vortices must be closer than approximately
2.6Rv to merge over a basin while they can be as far apart as 3.2Rv above a seamount. For
reference, the critical merger distance is 2.7Rv over a flat bottom. Moreover, the core of
the merged vortex is much smaller over a basin than over a seamount, again as a large part
of the PV is strained out into filaments.

3.2. Initial production of qa
2

The generation of the deep anomalies initially can be estimated analytically. To do this, we
represent the vortices as two circular regions with uniform PV. We define the barotropic
PV, qb, and the baroclinic PV, qc, such that

qb = q1 + qa
2

2
, qc = q1 − qa

2
2

. (3.1)

The associated barotropic and baroclinic streamfunctions are ϕb and ϕc, such that

qb = ∇2ϕb, qc = ∇2ϕc − γ ∗2ϕc, (3.2)

where γ ∗ = √
2γ1 = √

2γ2, with equal layer depths.
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Bathymetry �R/Rv Evolution in the upper layer

Basin 2.55 Merger at t � 11. Partial straining out. A small central vortex remains.
Basin 2.6 Merger at t � 12. Merged vortex splits into two vortices at t � 56.
Basin 2.7 Merger at t � 61, splitting into two vortices at t � 110
Basin 2.8 Merger at t � 60, then split at t � 80.
Basin 2.9 Vortices touch at t � 53 to separate immediately.
Basin 2.95 No merger (occasional small filamentary bridge between the vortices).
Flat 2.7 Merger at t � 14
Flat 2.75 Merger at t � 16, split at t � 75. Quasi-periodic merger and splitting afterwards.
Flat 2.8 Merger at t � 24, split at t � 44. Quasi-periodic touch and separate afterwards.
Flat 2.9 Vortices quasi-periodically touch and separate from t = 54.
Flat 2.95 Vortices briefly touch and separate.
Flat 3.0 No merger
Seamount 3.0 Merger at t � 21
Seamount 3.05 Merger at t � 21, splitting at t � 63, merger again at t � 91.
Seamount 3.1 Vortices touch at t = 24 then separate. Quasi-periodically touch and separate

from t � 118.
Seamount 3.2 Merger at t = 97.
Seamount 3.3 Vortices touch and separate quasi-periodically from t = 95.
Seamount 3.4 Vortices touch and separate quasi-periodically from t = 171.
Seamount 3.45 No merger.

Table 1. Qualitative descriptions of the evolution of the pair of cyclonic vortices in the upper layer for
Rv = Rd over a circular bathymetry for 0 � t � 250.

For a single patch of radius Rv of uniform PV q0 at (0, 0), (3.2) can be inverted to
give

ϕb =

⎧⎪⎪⎨
⎪⎪⎩

qbr2

4
, r � Rv,

qb Rv

2
ln(r/Rv) + qb

4
, r > Rv,

(3.3)

ϕc =

⎧⎪⎨
⎪⎩

qc

γ ∗2 (γ ∗ Rv K1(γ
∗ Rv)I0(γ

∗r) − 1), r � Rv,

qc

γ ∗2 (−γ ∗ Rv K0(γ
∗r)I1(γ

∗ Rv)), r > Rv,
(3.4)

where K0 and K1 are the modified Bessel functions of the second kind for zeroth and first
orders, while I0 and I1 are the modified Bessel functions of the first kind of zeroth and
first orders (e.g. Sokolovskiy & Verron 2014). The associated azimuthal barotropic and
baroclinic azimuthal velocities are

ub =

⎧⎪⎨
⎪⎩

qbr

2
, r � Rv,

qb R2
v

2r
, r > Rv,

(3.5)

uc =
{

qc Rv K1(γ
∗ Rv)I1(γ

∗r), r � Rv,

qc Rv K1(γ
∗r)I1(γ

∗ Rv), r > Rv.
(3.6)
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Figure 7. Evolution of the relative distance, d/Rv , between the centres of the upper-layer vortices with Rv = Rd
until they first touch for (a) a circular basin and �R/Rv = 2.55 (black), 2.6 (red), 2.7 (blue), 2.8 (green), 2.9
(cyan) and 2.95 (magenta); (b) a flat bathymetry and �R/Rv = 2.7 (black), 2.75 (red), 2.8 (blue), 2.9 (green),
2.95 (cyan); (c) a circular seamount and �R/Rv = 3 (black), 3.05 (red), 3.1 (blue), 3.2 (green), 3.3 (cyan),
3.4 (magenta) and 3.45 (yellow). In panels (a–c) a circle indicates merger and a cross a weaker interaction
not leading to merger. Panels (d–f ) show trajectories of the vortex centres for a basin and a flat bottom and
a seamount, respectively, using the same colour code as panels (a–c). The small circles indicate the initial
locations of the centres.

t = 250

Basin
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(d )

(b)

(e)

(c)

( f )

0
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–1

t = 250

Basin

0

0.5

–0.5

t = 250

Flat

0

1
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0

0.5

–0.5

t = 250

Seamount

0

1

–1
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Seamount

0
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Figure 8. Potential vorticity anomalies at t = 250 for Rv = Rd . Top row q1 for (a) a circular basin with �R =
2.55, (b) a flat bottom with �R = 2.7 and (c) a circular seamount with �R = 3.0. Bottom row, qa

2 for (d) a
circular basin, (e) flat bottom and ( f ) a circular seamount.
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0.02

–0.02

0

0.02

–0.02

0

0.02

–0.02

0

Figure 9. Tendency ∂qa
2 /∂t at t = 0 for two uniform circular patches with �R = 2Rv, 3.33Rv and 4.67Rv .

The black circles indicate the location of the upper-layer patches. Only the sub-portion of the domain [−2, 2] ×
[−2, 2] is shown.

Then, the flow azimuthal velocity induced in the lower layer by the surface vortex is u2 =
u2eθ , where

u2 = uc − ub =

⎧⎪⎪⎨
⎪⎪⎩

q0

2

(r

2
− Rv K1(γ

∗ Rv)I1(γ
∗r)

)
, r � Rv,

q0

2

(
R2

v

2r
− Rv K1(γ

∗r)I1(γ
∗ Rv)

)
, r > Rv,

(3.7)

where eθ is the azimuthal unit vector and we have used qb = qc = q0/2. By linearity of
the equations, the velocity u2 induced by two identical circular patches of radius Rv of
uniform PV q0 located at (±d, 0) is the sum of the velocities induced by each vortex
following (3.7) where r is replaced by r± = √

(x ∓ d)2 + y2 and the azimuthal unit vector
is defined locally relative to the centre of each vortex. Material conservation of the PV q2
in layer 2 at t = 0 implies that

Dq2

Dt
= ∂qa

2
∂t

+ u · ∇(αbhb) = 0, (3.8)

∂qa
2

∂t
= 2αbhbr er · u2, (3.9)

where er is the radial unit vector.
Figure 9 shows ∂qa

2 /∂t at t = 0 using the same parameters as in § 3.1. This confirms the
initial quadrupole pattern seen in § 3.1. It also demonstrates the sensitivity of the intensity
of qa

2 to the location of the surface vortices on the slope of the bathymetry.

3.3. Stability of a single vortex
The merged upper-layer vortex also has different stability properties over the bathymetry,
as shown by Benilov (2005) and Zhao et al. (2019). To see this, we consider a single upper-
layer vortex over a Gaussian bathymetry. Again, the vortex is assumed to have uniform PV,
q0, and radius Rv . We again assume equal layer depths, with γ1 = γ2 = γ .

The upper vortex is fully described by the radial coordinate of its boundary r1(θ, t), with
r̄1 = Rv the basic state vortex radius. The lower-layer PV, a perturbation on the bathymetric
contribution, q2 = α0hb, is discretised by Nt circular contours of radius r̄2,i , 1 � i � Nt ,
corresponding to constant jumps in q2.

The contours of q1 and q2 are then perturbed such that

r1(θ, t) = r̄1 + εRe
(
η1(t)ei(mθ−σ t)

)
, (3.10)

r2,i (θ, t) = r̄2,i + εRe
(
η2,i (t)ei(mθ−σ t)

)
, (3.11)
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0
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Figure 10. Normalised maximal growth rate σi /q0 vs the normalised vortex radius γ Rv for a single uniform
PV upper-layer vortex over a Gaussian basin for the perturbation mode of azimuthal wavenumber m = 2.

where m is the azimuthal wavenumber of the perturbation and εη1, εη2mi are the
perturbation complex amplitudes, σ = σr + iσi is the complex frequency and Re(·)
denotes the real part. The imaginary part of σ is the mode’s growth rate. The linearised
equations for the perturbations η1, η2,i yield an eigenvalue problem which we solved
numerically. The details of the numerical analysis are given in Appendix B. We set q0 = 1
and Nt = 8000.

The maximum growth rate as a function of Rv is plotted in figure 10 for the basin case
with γ Rv ∈ [0, 5.5]. The largest growth rate corresponds to σi/q0 = 0.0345 for γRv =
1.43. There is a ‘short-wave’ cutoff as well, as vortices with γ Rv < 1 are stable. A similar
calculation for the same vortex over a seamount indicates it is neutrally stable.

The nonlinear evolution of a single vortex with Rv = 0.467 (γ Rv = 1.4) is presented
in figure 11. The upper vortex has the same PV profile as defined by (2.8) for the
two vortex-merger problem. The vortex has uniform PV, smoothed to avoid Gibbs
effects in our pseudo-spectral calculation. Mode m = 2 is initially excited by making
the vortex slightly elliptical, with an aspect ratio of 1.01. As expected, mode m = 2 is
unstable and the perturbation amplifies. The evolution bares a striking resemblance to
that of the merged vortex (figure 2); a deep tripole forms and the surface cyclone is
destroyed.

3.4. Other aspects

3.4.1. Elliptical bathymetry
In turbulent flows, anticyclones trapped over an asymmetric basin are smaller than over a
circular one (LaCasce et al. 2024). We thus consider mergers between surface cyclones
over an elliptical basin and an elliptical seamount. We set dx/dy = 1.5 while keeping
dx dy = 1 so that the elliptical basin or seamount covers the same area as the circular ones.
Figure 12 shows the PV anomaly in both layers at t = 250 for both cases, with �R = 2Rv

and Rv = Rd . The change in bathymetry from circular to elliptical is reflected in the final
PV distributions, which are similarly asymmetric and cover the bathymetry.
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Figure 11. Potential vorticity anomalies for a single vortex of radius Rv = 1.4Rd over a circular basin. Top
row, q1 at (a) t = 0, (b) t = 150 and (c) t = 300. Bottom row, qa

2 for (d) t = 0, (e) t = 150 and ( f ) t = 300.

1t = 250

Basin

t = 250

Seamount

t = 250

Basin

t = 250

Seamount

0
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(c)
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Figure 12. Potential vorticity anomalies at t = 250 for �R = 2Rv and Rv = Rd . Top row, q1 for (a) an
elliptical basin, (b) an elliptical seamount. Bottom row, qa

2 for (c) an elliptical basin, (d) an elliptical
seamount.

Table 2 summarises results from a suite of experiments. Notably, the vortices now
interact from further apart, apparently due to the increase in the bathymetric extent in
the x-direction. Over the circular basin, the smallest distance for which the vortices do not
interact is �R/Rv = 2.95 while it is 3.5 for the elliptical basin. The critical separation is
larger still for the seamounts, 3.45 for the circular seamount and 4.3 for the elliptical one.

The separation distance d between the vortex centres is plotted in figure 13. The results
confirm the vortices interact from further apart when over the elliptical bathymetry. With
both a basin and a seamount, the trajectories are more elliptical than in the circular case
(panels c, d). The trajectories over the seamount are also more convoluted; this is due to
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Bathymetry �R/Rv Evolution in the upper layer

Basin 2.8 Merger at t � 17. Partial straining out. Small central vortex remains.
Basin 2.9 Merger at t � 22. Splitting at t � 48. New merger t � 74.

Splitting t � 100. Vortices occasionally touch and separate afterwards.
Basin 3.0 Merge at t � 165. Splitting at t � 183.
Basin 3.1–3.4 Vortices touch and separate.
Basin 3.5 No merger.
Seamount 3.6 Merger at t � 39.
Seamount 3.9 Merger at t � 40, splitting at t � 83 and new merger at t � 91.
Seamount 3.9 Megre at t � 42, splitting at t � 79 and new merger at t � 96.
Seamount 3.9 Merger at t � 48, splitting at t � 76 and new merger at t � 122.
Seamount 4.0 Merger at t � 174, splitting at 212, about to merger at the end.
Seamount 4.1 Merger at t � 213.
Seamount 4.2 Merger at t � 241.
Seamount 4.3 Merger at t � 243.
Seamount 4.4 Merger at t � 243.
Seamount 4.5 No merger by t = 250.

Table 2. Qualitative description of the evolution of the pair of cyclonic vortices in the upper layer for
γ1 Rv = γ2 Rv = 1 over an elliptical bathymetry or an elliptical seamount for 0 � t � 250.

4.0
Basin Seamount

Basin Seamount

3.5

d/
R v

d/
R v

3.0

0 200

t

(a)

(c)
t

0 200

0.5

0y y

–0.5

–0.5 0.50

x
–0.5 0.50

x

4

3

0.5

0

–0.5

(b)

(d )

Figure 13. Evolution of the relative distance d/Rv between the centres of the two cyclonic vortices of the upper
layer in the case with Rv = Rd until they first touch for (a) an elliptical basin and �R/Rv = 2.8 (solid black),
2.9 (solid red), 3.0 (solid blue), 3.1 (solid green), 3.2 (solid cyan), 3.3 (solid magenta), 3.4 (solid yellow) and
3.5 (dashed back); (b) an elliptical seamount and �R/Rv = 3.9 (black), 4.0 (red), 4.1 (blue), 4.2 (green) and
4.3 (cyan). In panels (a–b) a circle indicates merger and a cross a weaker interaction not leading to merger.
Panels (c–d) show trajectories of the vortex centres for, from left to right, a basin and a seamount using the
same colour code as panels (a–b). The small circles indicate the initial locations of the centres.
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t = 250 1
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(a)

(c)

(b)

(d )

t = 250

0.01

0

–0.01

Basin

t = 250 1

0

–1Seamount
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0

–0.01Seamount

Figure 14. Potential vorticity anomalies at t = 250 for �R = 2Rv and Rv = 0.5Rd . Top row, q1 for (a) a
circular basin, (b) a circular seamount. Bottom row, qa

2 for (c) a circular basin, ( d) a circular seamount.

the formation of multipolar structures in the lower layer which act back on the surface
vortices.

3.4.2. Vortex radius
Previously, we focused on deformation-scale vortices. We now investigate varying the
vortex radius. We will retain the circular bathymetry as the results are qualitatively the
same as over an asymmetric bathymetry.

With vortex radii of half the deformation radius (γ1Rv = γ2Rv = 0.5) there is much
less difference between the basin and seamount (figure 14). Merger occurs over both
bathymetries and the flow generated in the lower layer is weak. The energetic tripole for
the basin base seen previously is now absent. As inferred from the vortex separations
(figure 15), the critical separations for mergers are similar to those with deformation-scale
vortices, both for the basin and seamount. The trajectories too are more similar between
the bathymetries, indicating less interaction with the deep flows than previously.

On the other hand, the case with larger vortices (Rv = Rd .5) reveals more pronounced
asymmetries than with Rv = Rd (figure 16). Merger produces a central vortex over both
bathymetries, but the structure is weaker over the basin than over the seamount. Likewise,
there is more filamentation over the basin and a strong tripole appears again at depth.

Even when the large vortices do not merge over the basin, there is significant
topographic influence. An example, with an initial separation �R/Rv = 3.2, is shown in
figure 17. The vortices are strongly deformed and an energetic deep flow is generated
at depth. This splits into a central cyclonic core and two anticyclonic satellites, and the
latter couple with the surface cyclones and translate away. Such baroclinic coupling is an
example of a ‘baroclinic modon with a rider’ (Flierl et al. 1980), or more commonly a
‘heton’ (Hogg & Stommel 1985). The result is that the cyclones are ejected from over the
bathymetry, leaving a predominantly cyclonic circulation in the basin.

These results are in line with sub-deformation-scale vortices being stable over
bathymetry and for cyclones over a seamount (§ 3.3). The merger of two half-deformation-
scale vortices is accordingly similar over the basin and seamount, while with radii equal
to or larger than the deformation radius, a strong tripole appears at depth following an
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Figure 15. Evolution of the relative distance d/Rv between the centres of the two cyclonic surface vortices with
Rv = 0.5Rd until they first touch for (a) a circular basin and �R/Rv = 2.6 (black), 2.7 (red), 2.8 (blue), 2.9
(green), 3.0 (cyan), 3.1 (magenta), 3.2 (yellow); (b) a circular seamount and �R/Rv = 2.7 (black), 2.8 (red),
2.9 (blue), 3.0 (green), 3.1 (cyan), 3.2 (magenta), 3.3 (yellow), 3.4 (dashed black), 3.5 (dashed red). In panels
(a–b) a circle indicates merger while a cross indicates a weaker interaction not leading to merger.
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Figure 16. Potential vorticity anomalies at t = 250 for �R = 2Rv and Rv = 1.5Rd . Top row, q1 for (a) a
circular basin, (c) a circular seamount. Bottom row, qa

2 for (c) a circular basin, (d) a circular seamount at
the same time.

m = 2 instability. Thus strong bathymetric interactions occur only when the vortices are
deformation scale or larger.

3.4.3. Horizontal offset
The previous examples began with vortices placed symmetrically over the bathymetry,
but this does not change the qualitative evolution. Here, one vortex is placed over the
bathymetric centre and the other is displaced relative to that. We revert to circular
bathymetry and deformation-scale vortices (γ1Rv = γ2Rv = 1).

An example, with �R = 2Rv , is shown in figure 18. The primary difference from the
aligned case (figure 2) is that the deep vortices are now asymmetric. The tripole is gone,
replaced by a distorted dipole. However, the anomalies are comparably strong, indicating a
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Figure 17. Potential vorticity anomalies with �R/Rv = 3.2 and Rv = 1.5Rd over a basin. Top row: q1 at the
times indicated in the panels, bottom row: qa

2 .
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Figure 18. Potential vorticity anomalies at t = 250 with �R = 2Rv for an offset pair of vortices and Rv = Rd .
Top row: q1 for (a) a circular basin, and (b) a circular seamount. Bottom row: qa

2 for (c) a circular basin, and
(d) a circular seamount.

significant vertical energy transfer. As before, however, the final surface cyclone is small,
with significant filamentation. Over the seamount the cyclones merge successfully and the
deep field is markedly weaker than with a basin.

In these cases, the cyclones are drawn together over a seamount, even with separations
up to 5 times the vortex radius (figure 19). In contrast, vortices separated by more than 3
radii are expelled over a basin. The same effect has been seen in turbulence experiments,
where anticyclones experience mutual attraction over a basin but not cyclones (LaCasce
et al. 2024). In those experiments, the asymmetric attraction led to the formation of a lone
anticyclone over basins and a lone cyclone over seamounts.
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Figure 19. Evolution of the relative distance d/Rv between the centres of the two cyclonic vortices with
Rv = Rd for horizontally offset vortices and (a) a circular basin, (b) a circular seamount.

3.4.4. Bathymetry height and radius
Changing the topographic slope alters the initial strength of the deep anomalies, as
inferred from (3.8). Changing the slope also impacts baroclinic instability, for example
over a planar slope (LaCasce 1998). In the present cases the slope is altered both by the
bathymetric height and its width. Thus we conducted additional experiments varying both,
using the axisymmetric Gaussian bathymetry.

The results indicate that both effects are important. Increasing the height while holding
the width fixed led to more rapid mergers over seamounts and slower mergers over basins.
In some cases, where the cyclones would merge over a basin for a given slope, they
would be ejected when the slope was doubled. The more rapid merger over seamounts
with steeper slopes illustrates how the deep anomalies generated by the initial flow alter
the mutual approach. The anomalies are stronger when the slopes are steeper. Similarly,
the deep tripole generated over a basin by instability is stronger with steeper slopes, and
the satellite anticyclones force the surface cyclones away. On the other hand, if the basin
is shallow enough, the cyclones can merge and even persist as a single vortex. This is the
case for example for �R = 2Rv and αbh0 = −0.5q0 and keeping Rv = Rd and Rb = 3Rd ,
corresponding to βt = −0.5.

Increasing the radius Rb for a fixed height, h0, has an additional effect, viz. increasing
the horizontal range over which vortices can merge. This is in line with the experiments
over an elliptical bathymetry, where the critical merger distance was increased along the
major axis. Thus, for example, with �R = 2Rv and Rb = 1.5Rd and keeping αbh0 = −q0,
Rv = Rd , the cyclones merged and a portion of the final vortex persisted.

Thus it is the strength of the topographic slope which dictates the evolution. Thus
smaller features with reduced amplitudes can produce comparable surface perturbations to
larger, higher structures. But the bathymetric features must still exceed deformation scale.

3.4.5. Surface-trapped flow
In QG turbulence simulations (LaCasce et al. 2024) and observations (de La et al. 2016;
Ni et al. 2023), surface vortices have weak or zero flow at the bottom in the presence of
bathymetry. The vortices considered thus far have zero PV at the bottom initially and so
do have deep flow. This results in the generation of anomalies, as described in (§ 3.2). This
effect is absent if the initial vortices are compensated.

Thus we conducted additional experiments with ϕ2 = 0 at t = 0. Then the initial surface
and bottom PVs are

q1 = ∇2ϕ1 − γ 2
1 ϕ1, qa

2 = γ 2
2 ϕ1. (3.12)
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Figure 20. Potential vorticity anomalies with �R = 2Rv and Rv = Rd with ϕ2(t = 0) = 0. Top row: q1 for
(a) a circular basin/seamount at t = 0, (b) a circular basin at t = 250, (c) a circular seamount at t = 250. Bottom
row: qa

2 for (d) a circular basin/seamount t = 0, (e) circular basin at t = 250, ( f ) a circular seamount at t = 250.

Note that qa
2 at t = 0 is independent of the bathymetry. With two cyclonic vortices in the

upper layer, there are corresponding negative PV anomalies (qa
2 < 0) at depth (figure 20d).

This dipolar structure replaces the quadrapole seen early on in the previous experiments
(e.g. figure 4d).

Over both the basin and seamount, the vortices merge. An example, with �R = 2Rv ,
is shown in figure 20. As before, the cyclones experience strong filamentation while the
anticyclones do not. An energetic tripole forms again over the basin, but the deep flow
under the anticyclone is dominated by a single cyclone. The latter follows the merging of
the two initial cyclonic anomalies. Unlike the surface anticyclone, the deep cyclone largely
follows the isobaths. The counter-clockwise circulation is prograde and thus consistent
with the mean flow predicted by Bretherton & Haidvogel (1976) and Salmon et al.
(1976).

Interestingly, the merger characteristics are much more similar than with qa
2 (t = 0) = 0

(figure 21). With �R less than the critical separation, the distance decreases at early times
and more slowly than over a flat bottom. But with larger separations, �R increases for
both the basin and seamount while still decreasing with a flat bottom. Thus the primary
difference between the basin and seamount is the robustness and size of the merged
vortex.

While the present experiments were conducted with equal layer depths, additional
experiments indicate that increasing the bottom-layer depth yields qualitatively similar
results, albeit with some weakening of the bathymetric influence (not shown). Thus, in
much of the ocean, where the surface layer is typically 4–5 times shallower than the deep
ocean, one would still expect merger asymmetry over the bathymetry.

4. Summary and discussion
The present study confirms that mergers of cyclonic surface vortices are favoured over
a seamount and thus anticyclonic vortices are favoured over basins. Interacting cyclones
over a basin are disrupted, yielding extensive filamentation and smaller vortices. The effect
pertains to deformation-scale vortices or larger; mergers between smaller vortices are
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Figure 21. (a) Evolution of the distance between the vortex centres with an initially surface-trapped flow, for a
basin (black), a seamount (red), a flat bottom (blue), with various �R/Rv = d(t = 0)/Rv . (b) Trajectory of the
vortex centres in the upper layer until they merge, using the same colours as in (a).

largely the same over bathymetry. The results do not depend on the initial alignment of
the vortices with the bathymetry nor whether the vortices are compensated, and similar
results are obtained with unequal layer depths.

The primary factor behind the asymmetric mergers is the baroclinic instability of
cyclones over basins (and anticyclones over seamounts) (Benilov 2005; Zhao et al.
2019). The fastest growing mode has an azimuthal wavenumber of 2, observed in these
experiments as an intensifying quadrupole at depth. The deep PV anomalies which form
resemble topographic waves in that they have zero PV in the upper layer. However, they
do have surface flow and as such can disrupt the upper-layer vortices. The strength of the
surface flow depends on the horizontal scale of the deep anomalies and is only substantial
if the scale exceeds the deformation radius. As such, the instability is reminiscent of
that in Eady’s model (Eady 1949), where (density) anomalies on the upper and lower
surfaces fail to interact when smaller than deformation scale. Eady waves have zero PV
in the fluid interior and have a vertical extent identical to that of topographic waves. In
Eady’s model, the baroclinic instability has a short-wave cutoff whereby modes with
wavenumbers exceeding a critical wavenumber, kc, proportional to the inverse Rossby
deformation radius, are stable.

At finite amplitude the deep anomalies evolve to a tripole structure in a basin, with
a cyclonic central vortex and two satellite anticyclones. In some cases the latter couple
with surface cyclones to form baroclinic modons or ‘hetons’ (Flierl et al. 1980; Hogg &
Stommel 1985), resulting in the expulsion of the cyclones from the basin. The central deep
cyclone is left behind. As such, this fundamental interaction – the baroclinic instability of
a surface cyclone over a basin – may be an important factor in the generation of deep
cyclonic circulation in a basin and the expulsion of surface cyclones. The deep flow is
predicted by a minimum enstrophy calculation in two layers (LaCasce et al. 2024), but
the mechanism for the formation has been unclear until now. The vertical energy transfer
may also be important in terms of the global energy balance, by moving energy from the
surface to the bottom where it can be dissipated (Wunsch & Ferrari 2004).

The present results help explain the frequent and puzzling appearance of lone surface
anticyclones over submarine basins, both in ocean observations (e.g. the Lofoten vortex
in the Nordic Seas; Köhl 2007; Søiland & Rossby 2013; Bosse et al. 2019; Trodahl
et al. 2020b) and in baroclinic turbulence experiments (Solodoch et al. 2021; LaCasce
et al. 2024). It was speculated previously that anticyclonic vortices congregate over
basins due to self-advection, as isolated barotropic anticyclones experience a ‘β-drift’

1020 A44-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
69

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10695


Journal of Fluid Mechanics

toward deeper water just as such vortices drift southwards on the planetary β-plane (e.g.
McWilliams & Flierl 1979; Carnevale et al. 1991b; Zavala Sansón et al. 2012). Such
self-propulsion results from the generation of secondary ‘β-gyres’ which act back on the
primary vortex (McWilliams & Flierl 1979). The same can occur in two layers if the vortex
has a sufficiently strong bottom flow (LaCasce 1998). However, the surface vortices in
these experiments have very weak or zero bottom flow. Indeed, mergers favour a surface
anticyclone over a basin even when the surface vortices are initially compensated (§ 3.4.5).
Thus, it is unlikely that anticyclones like the Lofoten vortex self-propel toward deeper
water. Simulations (e.g. Trodahl et al. 2020a and LaCasce et al. 2024) suggest vortices of
both signs spread off away from the continental shelf and out into the Lofoten basin; the
anticyclones merge with the central vortex while the cyclones are sheared out. Thus it is
the merger asymmetry and baroclinic stability, both of which favour anticyclones, that are
the most likely explanations.

LaCasce et al. (2024) speculated that merger asymmetry favours anticyclones over
a basin. Cyclones were observed to enter and leave the basin without merging while
anticyclones merged. The effect commenced only after the vortices reached deformation
scale; prior to that, mergers between cyclones and anticyclones were comparable. The
present experiments confirm this asymmetry. We have also seen that cyclones tend
to be expelled over basins. In the experiments with initially offset vortices (§ 3.4.3),
the generation of intense deep anticyclones beneath the surface cyclones led to the
formation of baroclinic dipoles (‘hetons’). These subsequently propagated out of the
domain. This gives yet another reason to expect anticyclones over a basin rather than
cyclones.

While isolated, quasi-stationary anticyclones are frequently observed at the ocean
surface over basins, quasi-stationary cyclones are not seen over seamounts. This is likely
because the bathymetry must exceed deformation scale in extent. Such seamounts are rare.
One might expect surface cyclones over a submarine mountain range, like the mid-Atlantic
Ridge, but observations thus far are lacking.

Isolated anticyclones are also observed over basins in barotropic turbulence, where
baroclinic instability is absent (Solodoch et al. 2021; Siegelman & Young 2023; LaCasce
et al. 2024). However, isolated cyclones are also unstable over a basin in a single layer
fluid (Gonzalez & Zavala Sansón 2023). Therefore, the merger asymmetry also applies
evidently to single layer systems and is related to vortex stability.

As noted, QG turbulence experiments with sufficiently steep bathymetry yield surface
vortices with near zero bottom flow (LaCasce et al. 2024). However, oceanic vortices
frequently do have deep flow, for example in the Lofoten basin (Bashmachnikov et al.
2017; Bosse et al. 2019; Trodahl et al. 2020a) and elsewhere (Ni et al. 2023). While
the present experiments yield qualitatively similar merger asymmetry for vortices with
zero deep flow, it is the simulations with zero deep PV which most closely resemble the
turbulence simulations in LaCasce et al. (2024). Thus the zero deep PV condition may
well be more relevant for oceanic vortices than compensation.

The present work focused on the QG evolution of the flow. The study of the influence of
gravity waves induced by the interaction between the flow and the bathymetry is a possible
extension. Such interactions likely enhance further the transfer of energy from the surface
mesoscale features to depth.

Acknowledgements. We are grateful to three anonymous reviewers for constructive criticism of the
manuscript.
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Figure 22. Potential vorticity anomalies at t = 250 for deformation-scale vortices (Rv = Rd ) with an initial
separation of �R = 2Rv as in figure 2(b,e) at three resolutions of N = 512, 1024 and 2048.

Appendix A. Resolution and numerical convergence
The computational domain is doubly periodic in the horizontal with normalised
dimensions L2, where L = 6π Rd = 2π , with N = 2n points in each direction. All fields
are represented by their truncated Fourier series. We denote with k the wavenumber in the
x-direction and l the wavenumber in the y-direction. The Fourier coefficient of any field
a corresponding the wavenumber pair (k, l) is denoted âk,l . Simulations are performed
using N = 1024 = 210 unless otherwise stated.

Equations (2.1), (2.2) become

q̂1,k,l = −(k2 + l2 + γ 2)ϕ̂1,k,l + γ 2ϕ̂2,k,l , (A1)

q̂2,k,l − αbĥb ≡ q̂a
2,k,l = −(k2 + l2 + γ 2)ϕ̂2,k,l + γ 2ϕ̂1,k,l , (A2)

a set of simultaneous linear equations which can be explicitly inverted to find ϕ̂i,k,l from
q̂i,k,l , i = 1, 2. We have checked the influence of the grid resolution on the results. To
that purpose we compare three simulations of the same flow at increasing resolutions
N = 512, 1024, 2048. The flow simulated consists in a pair of cyclonic vortices (q0 > 0)
over a basin. The two vortices are sheared by the flow induced in the bottom layer, creating
a large number of small-scale features. Figure 22 shows the upper- and lower-layer PV
fields q1 and qa

2 at t = 250. They are remarkably similar for such a highly complex flow,
developing fine-scale structures. This indicates that using N = 1024 is enough to achieve
high accuracy while limiting the computational cost of the simulations. An analysis of
the evolution extrema of qa

2 over the domain is indistinguishable on a graph (not shown).
Separate tests using both N = 512 and N = 1024 for a pair of vortices with �R = 0 over
a basin showed that results are very little affected by an increase in the CFL coefficient
K from 0.1 up to 0.5 (results not shown). This confirms that our main simulations using
K = 0.1 are very well resolved in time.

Appendix B. Linear stability of a single vortex
In the limit ε → 0, the perturbation of the PV contours leads to a perturbation of the PV
field

q ′
1(r, θ, t) = εRe

(
η1(t)ei(mθ−σ t)

)
δ(r − r̄1), (B1)
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qa′
2 (r, θ, t) =

Nt∑
i=1

εRe
(
η2,i (t)ei(mθ−σ t)

)
δ(r − r̄2,i ), (B2)

where δ is the Dirac distribution

Dr1

Dt
= ε

DRe
(
η1ei(mθ−σ t)

)
Dt

= v1, (B3)

Dr2,i

Dt
= ε

DRe
(
η2,i ei(mθ−σ t)

)
Dt

= v2,i , (B4)

where v1 and v2,i are the radial velocities which can be obtained by contour integration.
Linearising with respect to ε, we obtain the eigenvalue problem(

σ − mū1

r̄1

)
η1 = q0η1K(r̄1, r̄1) + �q2

Nt∑
j=1

η2, jK(r̄1, r̄2, j ), (B5)

(
σ − mū2, j

r̄2,i

)
η2,i = q0η1K(r̄2,i , r̄1) + �q2

Nt∑
j=1

η2, jK(r̄2,i , r̄2, j ), (B6)

where σ is the eigenvalue, (η1, η2,i ) the eigenvector, ū1 and ū2,a are the azimuthal
velocities at the contours from the basic state, e.g. of the unperturbed vortex of the upper
layer, and K(r, s) gives the influence of the contour at radius s on the contour at radius r .
To obtain K we define the barotropic PV anomaly perturbation q ′

t and the baroclinic PV
anomaly perturbation q ′

c as in § 3.2

q ′
t = q ′

1 + qa′
2

2
, q ′

c = q ′
1 − qa′

2
2

, (B7)

and their associated barotropic and baroclinic streamfunctions

ϕ′
t = ϕ′

1 + ϕ′
2

2
, ϕ′

c = ϕ′
1 − ϕ′

2
2

, (B8)

ϕ′
1 = ϕ′

t + ϕ′
c, ϕ′

2 = ϕ′
t − ϕ′

c. (B9)

Following Flierl (1988), the corresponding barotropic and baroclinic influence functions
K for the azimuthal mode m are given by

Kt (r, s) =

⎧⎪⎪⎨
⎪⎪⎩

−1
2

(r

s

)1+m
, r < s,

−1
2

(r

s

)1−m
, r � s,

(B10)

for the barotropic part and by

Kc(r, s) =

⎧⎪⎨
⎪⎩

−m
r

s
Km(γ ∗s)Im(γ ∗r), r < s,

−m
r

s
Km(γ ∗r)Im(γ ∗s), r � s,

(B11)

for the baroclinic part, where Im and Km are the m th-order modified Bessel functions of
the first and second kinds, respectively.
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