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1. Our aim in this paper is to determine a necessary and sufficient condition 
for N^rlund summability of Fourier series and to include a wider class of 
classical results. A Fourier series, of a Lebesgue-integrable function, is said 
to be summable at a point by N^rlund method (N, pn), as defined by Hardy 
[1], if pn —* 0, X) pn —» oo, and the point is in a certain subset of the Lebesgue 
set. The following main results are known. 

THEOREM A. Let <f>(u) be even, 4>(u) G L( — ir, T), and let Sn denote the 
(n + l)st partial sum of its Fourier series at the origin. Then the assumption 

(1.1) *(0 = Jo |*(«)| du = ^(^-(Y/7)) ™ t -> + 0 

implies that Sn is summable (N, (n + l ) - 1 ) , or summable by harmonic means 
to the sum 0. 

T H E O R E M A'. If (1.1) is replaced by 

(1.1) ' Ht) = o(-ï=i ] ast -> + 0, 

\ri{(log)ç+1(lA)}/ 
\ Q=0 / 

/̂ ^w vn(P) is summable (H, p) to the sum 0 and <rn{p) is defined as follows: 

iis^it)/ f[(iogy(k + i)} 
°AP)~ {(log)p(«+l)i 

/(?r each positive integer p. 

THEOREM B. If <t>(u) is defined as in Theorem A, then the assumption 

(1.2) $(t) = o(t) ast-* + 0 

implies that Sn is summable to 0 by the Cesaro method (C, k), for any k > 0. 

*Received September 25, 1968. This work was carried out while the author was a Fellow 
at the Summer Research Institute at Queen's University and University of British Columbia 
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THEOREM C. Let a function P(u), tending to co with u, and a sequence {pn} 
be defined as follows in terms of p(u), monotonie decreasing and strictly positive 
for u ^ 0, 

nu 
(1.3) P(u)= p(x)dx, pn = P(n). 

«Jo 

Then (1.2) and 

(1.4) jU~x~dx = °lp(u^ a^-^°° 

ensure that either Sn is summable (N, pn) to 0, or 

(1.5) tn = \ i p r S n - r / Z ^ r f - ^ O OS ft 
\ r=0 ' r = 0 J 

0 0 . 

THEOREM D. Let pn be defined as in (1.3). A necessary and sufficient condition 
that the Nfirlund method (N, pn) should sum the Fourier series of <t>(u) to 0 
such that 

(L6) ^=4M) 
is that the sequence 

(L7) sScF+lîfef+i)-0'»-
Theorem A has been proved by Hille and Tamarkin [3], Iyengar [5], and 

Siddiqi [11], while I proved Theorem A' in [9]. Theorem B has been proved 
by Fejér, Lebesgue, and Hardy (see [15, p. 49]). Rajagopal [8] has proved 
Theorem C, and Theorem D is due to Varshney [13]. 

Rajagopal had to use the two alternative forms of Theorem C, from which 
he deduced Theorems A and B, respectively. He had indicated that condition 
(1.4) is violated in the application of Theorem C as Theorem A and 
Theorem A'. I have attempted to improve Theorems C and D in such a way 
that both Theorems A and B can be deduced from Theorem 1, which also 
generalizes Theorem D. 

2. The following is our main result. 

THEOREM 1. Let the sequence pn be defined as in (1.3) and let 

(2.1) $(t) = o (t/yp (1//) ) as t ~> + 0; 
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let yp{t) be positive, non-decreasing with t; then a necessary and sufficient condition 
to ensure (1.5) is that 

(2.2) \n^f\dx = 0(P(n)). 
Ji x\f/(x) JJ 

3. Proof of Sufficiency. We write the formula for the nth partial sum 
of the Fourier series as: 

o 1 CT , / \ sin(n + h)u 7 

7T J o Sill \U 

= ±f<i>(u)^±-^du + o(l). 
7T J 0 Sill fW 

Using (1.5) and the last equation, we obtain: 

(3.1) tn = ~jrf *(«) ± pn_r
S^r-t-^du + o(l) 

irrn *J o r=o S in -^U 

= 7P~ \ f + f8 1 I r è è Pn-r Sin(r + *)« d« + 0(1) 

irrn L «/o «Ji/n-l sin ^ r=0 

= 7i + ^2 + o(l) , say, 

by virtue of (1.3). 
Now (1.3) implies that mpm < Pm. If we choose m to be the integral part 

of 1/u and if we suppose that 1/n S u ^ b, we obtain m sin \u > mu/w. 
Now for u > 0 and m ^ n [10, Lemma] we have: 

X) A*-rsin(r + i)w (3.2) 

Furthermore, 

n 

X) A*-rSin(r + £)w 
(3.3) 

< P(ni) + ~K^ < cP(l/u). 
msm %u 

sin f u 

Considering Iiy we obtain: 

< cPJXM < CTP(1/U) cP{l/u) 

sin %u 
< 

(3.4) ri = —^- ) ijZ-ïT 2^ ^n-r sm(r + \)u du irrn «/ o sin -^u r=o 

= 0\~) j 1*(«)I(2« + 1)P.dM 

= 0(2,+ l).(^f/7y)o
1/n 
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Next, by (3.3), we have: 

(3.5) -4)/' 
\rn/ Ui/n 

l * (w) l 
X) pn-rsin(r + \)u 

sin \u 
du 

= o(i)/'|*(»)|^.» 
\rn/ •Ji/n u 

in \ UTp{u) 

p ( l / « ) " 

=
 "V(«)P(K)/

 + °\J(n)) 

VPn/ J i / n \yp(l/u)/ u\p(l/u) 

Z' 1 ^ , ( 1 \ , m ÇS d*(l/u) 
~ °\Hn)) + °\Kn)PÏn)) + ° ( 1 ) JVn \Hl/u)}2 

+ 0(±)fudU<^± 
\PJ J1/n \uyp(l/u) 

+ o\pJ\lu w*a/«)-L Ji/ 
p ( i / « ) 

'w^(l/w)Ji/« J I / « uip(l/u) 

by virtue of (2.2). 
Thus 4 —> 0, and this completes the proof. 

4. Proof of Necessity. The proof of sufficiency shows that all we need 
to prove here is that 

(4.1) oU) f -a 
\Pj Jim * (1 / 

^o/4 = 0(1). 
i/n yp(l/u) K u ' 
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Considering the left hand side, we have: 

(4.2) o(i-)X'»45^*(V») 

= 0 

Pj JIM U<A(1/M) ) iKV«) 

n( ^ fS ,Jp(1/u)\ + n(±) fS uPQ-MdMi/u) U\PJ J1/n
ua\u4>(i/u)f + u\pJ J1/nut(i/u) *(i/«) 

\PK/L M^(1/M)JI/« \PJ J1/nu\l>(l/u) 

+ 0 ( 1 )J1 M{/(1/J)}3 

\4>(n)/ \P(n)/ \P(n)/ JiinuMl u) 

+ 0(1) Ua/ l /n 

. o( i ) + 0(jJ~) + o U - ) f ^ U , 
\yp(n)/ \P(n)/ \P(n)/ J1/n u\l/(l/u) 

Hence from (4.1), we have: 

0( i ) + 0( i ) + o(-f.) f PSgfLiu - 0(i). 
\\l/(n)/ \P(n)/ \P(n)/ J1/nu\l/(l/u) 

But the first two terms tend to a constant with large n and the last equation, 
in that case, will reduce to (2.2), which proves the desired result. 

5. Theorem 1 has the advantage over Rajagopal's result in two ways. 
First, it gives a set of necessary and sufficient conditions, while Rajagopal 
has proved only the sufficiency part. Secondly, Theorems A (Theorem A' 
also) and B can be deduced directly from Theorem 1, which was not possible 
in his case. 

If we consider the case \p(u) = log u and pn = l/(w + 1), we obtain 
Theorem A, while the case 

*(«) = ff log 5 + V) and pn = ( fflog«(n + 1)) ' 

is Theorem A'. By choosing yj/{u) = 1 and pn = T(n + a)/T(n + l ) r ( a ) 
for 0 < a < 1, we obtain Theorem B. 

The particular cases yp(u) = log u and $(u) = 1 are Theorems C and D, 
respectively. 

6. Iyengar [4] has shown that harmonic summability of Fourier series 
implies Valiron summability of Fourier series, and Varshney [12] has shown 
that harmonic summability of Fourier series implies Riesz summability of 
first order and of type exp(na), 0 < a < 1. Hardy and Littlewood [2] proved 

https://doi.org/10.4153/CJM-1970-011-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-011-3


N0RLUND SUMMABILITY 91 

that the conditions Sn — 5w_i = 0(na~l) for 0 < a < 1 along with the Valiron 
summability imply convergence of Sn. Later on, Wang [14] and Iyengar [5] 
used the same conditions to prove the convergence of Snj the former via 
Riesz summability of the type exp(na) and the latter via harmonic 
summability. Jurkat [7] has discussed the advantage of Wang's method and 
proved that under a condition similar to (1.1)' (see [7]), the Riesz summability 
of Sn of any positive order and a certain type [7] along with the appropriate 
Tauberian condition implies the convergence of Sn. In the same way we can 
introduce in either Theorem A or Theorem A' the Tauberian condition 
appropriate to N0rlund summability of that theorem and establish the 
convergence of Sn. One such Tauberian condition, as given by Iyengar, is 
Sn - 5n_i = 0(na) for 0 < a < 1. 
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