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THE APPROXIMATE SYMMETRIC INTEGRAL 
D. PREISS AND B. S. THOMSON 

By a symmetric integral is understood an integral obtained from some kind of 
symmetric derivation process. Such integrals arise most naturally in the study of 
trigonometric series and in particular to handle the following problem. Suppose 
that a trigonometric series 

(1) AQ/2 + ^ cik cos kx + bk sin kx 

k=\ 

converges everywhere to a function/. It is known that this may occur without 
/ being integrable in any of the more familiar senses so that the series may not 
be considered as a Fourier series of/; indeed Denjoy [4] has shown that if bn is 
a sequence of real numbers decreasing to zero but with ^bnjn~ +00 then the 
function/(JC) = ^bnsinnx is not Denjoy-integrable. It is natural to ask then 
for an integration procedure that can be applied to / in order that the series be 
the Fourier series of/ with respect to this integral. 

A solution, based on symmetric integrals, follows from the well known ob­
servation of Riemann: the series 

+00 

(2) aox2/4 — /_\tf£ cos kx + bk sin kx)/k2 

obtained by two formal integrations of series (1) converges uniformly and ab­
solutely to a continuous function G from which the function/ may be obtained 
by a second order symmetric derivation, 

_, . r G(x + h) + G(x-h)-2G(x) 
f(x) = hm -z . 

h\o h2 

This suggests the development of an integral that can recover a function G from 
its second symmetric derivative. This program has been followed by Denjoy [4] 
and James [7] both of whom produce second order integrals from this derivation 
process, James by a Perron-type approach and Denjoy by a transflnite totalization 
process. Taylor [20] introduced his AP-integral to solve this same question when 
the series is given to be everywhere Abel-summable and he too uses a second 
order derivation process, but to produce a certain kind of first order integral. 
The articles of Cross [3] and Skvorcov [19] and [18] should be consulted for 
the relation between Taylor's integral and the James P2-integral. 
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THE APPROXIMATE SYMMETRIC INTEGRAL 509 

A first order integral that should integrate all everywhere convergent trigono­
metric series can be developed from the same principle by using the fact that 
the series of obtained by a single formal integration of the series (1), 

+00 

(3) F(x) = xao/2 + / ( £ * cos kx — ak sin kx)/k, 
k=\ 

converges in general only on a set of full measure, but then/ may be recovered 
from F by using either 

x+h 

Sf(f*-[,*Hw 

or 

r 1 r^F(x + t)-F(x-t). f( . 
lim - / dt~f{x). 
h\o h Jx It J 

This suggests an integration process that is based on these derivation notions 
and hence having the feature that indefinite integrals are defined only almost ev­
erywhere. First order integrals based on such considerations were advanced by 
Verblunksy [23], who used an approximate version of the Denjoy integral, and 
Burkill [1], who used a version of the Perron integral (Cesàro-Perron integral), 
but both require additional restrictions beyond the convergence of the series. 
Marcinkiewicz and Zygmund [13] introduced a Perron-type integral specifically 
for this problem and later Burkill [2] provided a "symmetric" version of his 
Cesàro-Perron integral, also following the Perron scheme, that solves the prob­
lem. 

For a first order integral that should integrate all everywhere convergent 
trigonometric series one might instead use this fact from Zygmund [24, The­
orem 2.22, p. 324]: if the trigonometric series (1) converges everywhere, then 
the series (3) converges on a set of full measure to a function F and / may be 
obtained from F by an approximate symmetric derivation. None of the previous 
approaches to this problem have utilized the fact that an everywhere convergent 
trigonometric series is the approximate symmetric derivative of its formally inte­
grated series, which is a deeper observation than the above-mentioned Riemann 
theory. Perhaps the main reason this derivation process did not sponsor an inte­
gration procedure to solve the trigonometric series problem lies in the fact that 
a monotonicity theorem for the approximate symmetric derivative has been long 
awaited and also somewhat controversial given that several false proofs have 
appeared. With the appearance of the work of Freiling and Rinne [5] we now 
have such a monotonicity theorem with an apparently valid proof. It is this work 
which has led to the present paper. 

In this article we develop an integral based on the approximate symmet­
ric derivative and which, in particular, integrates all approximate symmetric 
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derivatives and each everywhere convergent trigonometric series. The integral 
is defined as a limit of Riemann sums as in the Henstock-Kurzweil theory of 
integration; the key technical fact that allows the development of such an inte­
gral is the main covering theorem of Section 2 proving that partitions of almost 
every interval are available from any approximate symmetric covering relation. 
A number of descriptive characterizations of the integral are provided as well 
as a Perron type approach based on the monotonicity theorem of Freiling and 
Rinne. 

For readers interested mainly in the application of this integral to the trigono­
metric series problem, Section 11 gives a very simple Riemann sums definition 
of an integral of a 27r-periodic function over a period and an entirely elemen­
tary proof that this integral inverts the approximate symmetric derivative. Then 
Section 12 gives the application to trigonometric series. If one grants just two 
deep theorems (the covering theorem that justifies the integral and Zygmund's 
theorem on the approximate symmetric derivation of the formally integrated se­
ries) then a completely elementary and intuitive account for the solution of the 
trigonometric series problem is available. 

1. The approximate symmetric basis. Our study of the integral depends 
directly on the approximate symmetric derivative; for a measurable function 
F defined almost everywhere we define the A -derivative at a point x as the 
approximate limit 

A - DF(x) = ap-hm^o r . 

The extreme A-derivates are defined in the obvious way. We shall express this 
notion in the language of abstract differentiation bases (see [21] for example). 

An interval-point relation is a collection (5 of pairs (/, x) where / is a closed 
non-degenerate interval and x a point in /. For any interval-point relation /? and 
any set E we write: 

0(E) = {(/,*) € / ? ; / C E } , 

f][E] = {(I1x)e/3;xeE} 

and 

<T(/3) = U { / ; (/,*)€/?}. 

A finite interval-point relation TT is said to be a packing if for any distinct pairs 
(/i,*i) and (h-,^2) from n the intervals I\ and li do not overlap. A partition of 
an interval [a, b] is a packing 7r with 

[a,b]= ( J / . 
(/,-V)G7T 
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For the study of the approximate symmetric derivative one naturally considers 
interval-point relations containing pairs ([x — f,;c + t],x) for sufficiently many 
t > 0. The quantity measuring the asymmetry of an interval point relation /3 at 
a point x is given by the formula 

(4) p[(3](x) = lim sup |{/ G (0, h); ([x -t,x + t],x) £ (3}\/h 

where here and elsewhere \E\ denotes the Lebesgue outer measure of the set E. 
As will become clear from the example 3.1, the most natural definition of an 
"approximately symmetric interval-point relation", namely the requirement that 
p[0](x) — 0 for every x, is not the right one. What is missing is a measurability 
condition. (In general by measurability we mean Lebesgue measurability in one 
or two dimensions.) Therefore, we are led to the following definition. 

Definition 1.1. An interval-point relation (3 is said to be a measurable ap­
proximate symmetric interval-point relation if there is a measurable set T C 
R x (0, oo) such that 

(i) ([x — /,x + r], x) G (3 whenever (x, t) G 7, and 
(ii) for every x G R 

lim sup \{t G (0, h); (x, t) £ T}\/h = 0. 

The family of all measurable approximate symmetric interval-point relations is 
denoted by Si and we write as well Jl[E] = {/3[E];/3 Eft} and A(E) = 
{(3(E); peA}. 

The following five lemmas express the fundamental properties of the deriva­
tion basis A. The proofs of the first three are immediate and may be obtained 
directly from the definition; the main covering Lemma 1.6 follows directly from 
Theorem 2.1 whose proof appears in Section 2. 

LEMMA 1.2. If (3U(32 G A then fix H/32 e A. 

LEMMA 1.3. If E\,£2,£37 •• • is a sequence of disjoint measurable sets and 
Pu p2j(3?>T • • is a sequence of elements of A then 

00 

0 = \Jl3ilEi] 
7 = 1 

belongs to A [E] where E = \J°1{ £/. 

LEMMA 1.4. // (3 G A and G is open then (3(G) G Si [G]. 

LEMMA 1.5. If (3 G A then for almost every point x 

(5) lim sup \{t G (0, h); ([x,x + t],x + t/2) G (3}\/h = 1 
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and 

(6) lim sup |{/ G (0, h); ([x - t,x],x - t/2) G (3}\/h = 1. 

Proof. Let /3 G A and choose a measurable set T C R x (0, oo) such that 
([x — t,x + t],x) G /3 whenever (JC, 0 G T; let % be the characteristic function of 
R x (0, oo) \ T, and define the sequences of functions 

f„(x) = n\{te(0,l/n);(x,t)£T}\ 

and 

gn(x) = n\{te(0,\/n);(x + t,t)ïT}\. 

We compute on any interval [a,b], using the Fubini theorem and a change of 
variables, 

rb rb p\ln 

\ gn(x)dx = n / x(* + f, 0<Mr 
Jo Ja JO 

pb+\ p\/n rb+\ 

= n / x(u,v)dvdu= / fn{u)du. 
Ja JO Ja 

As 0 ^ fn S 1 and /w —• 0 (because of the density requirements on T) we 
conclude that Ja gn(x)dx —> 0 so that ^^ converges to 0 in measure. Consequently 
we may pass to a subsequence converging almost everywhere on [a,b]. This 
gives equation (5) at almost every point of fa, b] and hence almost everywhere 
on R; assertion (6) is similarly proved. 

LEMMA 1.6. For every sequence {/3n} C A there is a set B of full measure 
so that each (3n contains a partition of every interval [a, b] with endpoints in B. 

The dual basis to SI is denoted as A * and defined as follows: an interval-point 
relation (5 belongs to A * if and only if for every point x and every (3\ G A 

As before the families A*[E] and A*(E) are defined. Note that A* may also 
be described as the collection of all interval-point relations (3 with the following 
property: for some set T C R x (0, +oo) (not necessarily measurable this time) 
/3 contains every pair (/,x) with / = [x — h,x + h] and (JC,/I) G T and each 
Tx — {t\ (x, t) G T} has positive upper density on the right at 0. 

The basic properties of A * are similar to those for A except that, of course, 
there are no analogues for Lemmas 1.5 and 1.6. Note that, because of Lemma 1.2, 
A is a filterbase while evidently A * is not. Lemma 1.7 is a weak replacement. 
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LEMMA 1.7. If (3\ G ft and ^£ ft* then ^ n f t G ^ i * . 

LEMMA 1.8. Let E\,E2,Es,... be a sequence of disjoint sets and let /?i,/?25 

/?3,... 6^0 sequence of elements of ft*. Then 

oo 

/? = (J #[£.-] 

belongs to ft*[E] where E = (J°^ £/.. 

LEMMA 1.9. If (3 £ ft* and G is open then (3(G) G ft*[G]. 

2. Covering theorem. In this section we prove the key result enabling us 
to develop the notion of approximate symmetric integral. Lemma 1.6 follows 
directly from this. 

THEOREM 2.1. For every measurable approximate symmetric interval-point 
relation f3 there is a set N of measure zero such that every interval with endpoints 
in R\N has a partition contained in (5. 

The proof is obtained by a series of lemmas containing the main computations. 
Proposition 2.7 gives a covering property for approximate symmetric covering 
relations that are not necessarily measurable and then the proof of Theorem 2.1 
for the measurable case follows almost immediately by using Lemma 1.5. It is 
possible to prove this theorem under very slightly weaker density assumptions 
but we see no application at present. 

We begin with some notations. The interval concentric with a given bounded 
interval / and having length n\I\ is denoted K*I. The following special notations 
are needed just for the proofs in this section. 

Notation 2.2. Suppose that E is a measurable subset of the real line, i G R 
and/c G (0,1). 

(i) We denote by d+(E) the set of all x G R such that every neighbourhood 
of x contains points u < v < w with |(w, v) DE\ > 0 and |(v, w)\E\ > 0. 

(ii) We denote by d-(E) the set of all x G R such that every neighbourhood 
of x contains points u < v < w with |(w, V) \ E\ > 0 and \E D (v, w)\ > 0. 

(iii) We denote by <5(£,jt,ft) the supremum of the lengths of all those open 
intervals J containing x for which \J \E\ < K\J\. If there is no such interval, 
we let ^(£,x, «) = 0. 

(iv) We denote by A+(Zs, JC, K) the supremum of all t > 0 such that 

\[(x,x + h)n(2x - E)]\E\ <Kh 

for every h G (0, t). It there is no such t, we let A+(£, Jt, K) — 0. 
(v) We denote by A_(£,x, K) the supremum of all f > 0 such that 

| [ ( j t , J c - / z ) n ( 2 j t - E ) ] \ £ | <Kh 
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for every h G (0, t). If there is no such /, we let A__(£,x, n) — 0. 

LEMMA 2.3. Suppose that E is a measurable subset of the real line. Then 

a) a_(E) - -d+(-£>, 
(ii) 77ẑ  sete 9+(£) a«d 3 - (£ ) «rf closed subsets ofR, 
(iii) /<9r ev<?ry open interval I on the real line I D d+(E) — ID d+(I P) E) and 

ind-(E) = ind-(inE), 
(iv) for every interval I = (a, b) on the real line I P) d+(E) = 0 if and only if 

there are c G [tf, b] and a set N C / of Eebesgue measure zero such that 

(c,b)\N CEC(c,b)UN, 

(v) for every interval I — (a, b) on the real line I D d-(E) = 0 if and only if 
there are c G [a, b] and a set N C I of Eebesgue measure zero such that 

(a,c)\N C £ C(a,c)UN, 

(\'i) for every K G (0, 1) and every 8 G R the set {x G R;6(£,*, /c) > 6} is 
open, 

(vii) A_(£,x , /c) = A+(—£, —x, Ac)/or ev^ry K G (0, 1) awd every x G R anJ 
(viii) A+(R\£,x , /c) = A_(£ ,x , /c) and A-(R\E,x, n) = A+(E,x, K) for every 

K G (0, 1) a/id every x G R . 

Proof. All statements of the lemma are obvious. 

LEMMA 2.4. Suppose that A and B are measurable subsets of bounded open 
intervals I and J, respectively, and that K G (0, 1) and 5 G (0, | / | ) . Then there 
is t G / — / such that 

\[A + s](lB\ è 
\B\ s-t\ 

2K / + 
\{xeI\6(A,x,K)>S}\ 

for every s G R. 

Proof. Since the statement is obvious if |A| = 0 or if | # | = 0 w e shall assume 
that the sets A and B have positive measure. Let Q be the family of all open 
subintervals K of I such that \K\ > S and \K \A\ ^ K\K\, and let G be the 
union of this family. Then G is an open subset of / each of whose components 
has length at least 6. Moreover, there is a (necessarily finite) subfamily of Ç 
covering G such that every point of / belongs to at most two of its members. 
Hence | G \ A | S 2K\G\. Since [G + t] DB = 0 if t £ J - / , and since 

/

oo 
\[G + t]HB\dt= \G\\B\, 

-oo 

there is t G / — / such that 

\[G + t]HB\ ^ |G| | f i | / ( | / | + |7|). 
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Since each component of G has length at least 6, 

\[G + t]\[G + s]\£\s-t\\G\/8 

for every ^ ç R . We also observe that 

G D {x eA;6(a,x,n) > 6}, 

since, if K is an interval, K \I ^ 0, and if K is a subinterval of / such that 
KHI CK and |AT| = min[|/^|71/|], then \K\A\/\K\ S \K\A\/\K\. 

Combining the previous estimates, we see that 

\[A + s]DB\ è \[G + t]nB\ - \[G + t]\[G + s]\ - \G\A\ 

> 

r \B\ 

[ \B\ 

\s — t\ 
— 2K 

— 2K 

r \B\ 

[ \B\ 

S 

\s-t\ 

— 2K 

— 2K 
i\l\ + \J\ S 

— 2K 

— 2K \{x eA;6(A,x,K)>6}\ 

for every ^ e R . 

LEMMA 2.5. Suppose that I is a bounded open interval, E is a measurable 
subset ofK and e G (0,1/2) . Suppose further that the center w of I belongs to 
the closure of the set 

Q = {xeI;A+(E,x,e)>3\I\}, 

that \J C\E\ ^ \J\/2 whenever J is a subinterval of 5 * / with left end point w, 
and that \J DE\ ^ \J\/2 whenever J is a subinterval 5*7 with right end point 
w. 

Then the following statements hold. 
(i) Whenever w belongs to the closure of a subinterval J of 5 * I then 

\J\/2-e\J\ û \JHE\ ^ \J\/2 + e\J\. 

(ii) Whenever J is a subinterval of 5 * / then 

| i | / 2 - 2 e d i a m ( { w } U i ) ^ | / n £ | ^ \J\/2 + 2e diam ({w} U / ) . 

(iii) Each component of I \ d+(E) has length at most 8e|/ | . 
(iv) Whenever x E Q then 

\(x-2\I\,x + 2\I\)n[(2x-E)E]\ ^ \6e\I\. 

(v) Whenever x,y E Q then 

\[2(y-x) + {lC\E)]\E\ ^ 2 8 e | / | . 
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Proof, (i) Assume first that / = (<2, w). For every r G (0, min(|/|, \J\/2) we 
find a point x G (w — r, vt> + r) D g , we let / = (#, x), and we use the inequality 

| [ ( 2 x - 7 ) n ( 2 j t - £ ) ] \ £ < | e | J | 

to conclude that 

| / | / 2 ^ | / D £ | ^ \JDE\+T= \(2x-J)n(2x-E)\+r 

^ \[(2x - J)n(2x - E)]\E\ + \(2x - J)HE\ +T 

^ \(2x-J)C\E\ + e\J\+2rû | / | / 2 + e | / |+3r . 

Hence 

| / | / 2â | / n £ | ^ | / | / 2 + C|7| + 3T, 

and 

| / | / 2è | ( 2 x - / ) n £ | ^ | / | / 2 - e | / | - 3 r , 

which shows that the inequality required in (i) holds provided that w is an 
endpoint of/. The general case follows easily by a decomposition. 

(ii) If w belongs to the closure of/, this follows from (i). Otherwise we write 
/ = J\ \ / 2 , where J\ and J2 are intervals with endpoint w, and we estimate 

| / n £ | = \JxnE\-\J2nE\ ^ \J\/2 + e(\J{\ + \J2\) 

è | / | /2 + 2ediam({w}U7) 

and 

|/n£| = | / in£|-| /2nE| ^ |/|/2-e(|/i| + |/2|) 
^ | / | /2 -2ediam({w}U/) 

(iii) According to 2.3(iv) every component L of I \d+(E) contains an interval 
/ such that | / | ^ \L\j2 and \J HE\ = 0 or \J \E\ = 0. Hence (ii) implies that 
\L\ ^ 2 | / | ^ 8e|/|. 

(iv) Since the interval (x — |/|,x + |/|) contains w, (ii) implies that 

|(jc,x + 2 | / | ) nE | ^ ( l+6e) | / | 

and 

|(x,x + 2 | / | ) n ( 2 j c - £ ) | ^ (1 - 6 e ) | / | . 

Recalling that A+(£,x,e) > 3| / | implies 

\[(x,x + 2|/|) H (2x - £)] \ £ | < 2e|/|, 
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we combine all these inequalities to get 

\(x,x + 2\I\)nEn(2x-E)\ = |(jt,jt + 2 | / | ) n ( 2 j t - E ) | 

- |[(jr,x + 2|/ |) H (2x - E)] \ E\ ^ (1 - 6c)|/ | - 2e| / | = (1 - 8e)|/ | . 

Hence 

\(x - 2\I\,x) H [(2x -E)\ E]\ = \[(x,x + 2|/ |) H E ] \ (2* - £ ) | 

= \(x,x + 2\I\)nE\-\(x,x + 2\I\)nEn(2x-E)\ 

^ ( l + 6 e ) | / | - ( l - 8 e ) | / | = 14e|/|, 

which immediately implies (iv). 
(v) From (iv) we see that there is a set N\ with measure at most 14e|/| such 

that 

2x-(inE)CEUN{. 

Using (iv) once more, we find a set N2 with measure at most 14e|/| such that 

(y-2\Ily + 2\I\)n(2y-E) CEUN2. 

Finally, we use that 2x - (I HE) C (y - 2 | / | ,y + 2|/ |) to infer that 

2(y-x) + E = 2y-(2x-E) 

C[(y-2\I\1y + 2\I\)n(2y-E)]U(2y-Nl) 

CEUN2U(2y-Nl). 

LEMMA 2.6. Suppose that E is a measurable subset of the real line, I is a 
bounded open interval with center w belonging to d+(E),c G (0, 1/2), and that 
the set 

Q = {xeind+(E);A+(E,x,e)>3\I\} 

is dense in I nd+(E). Let 7 be defined as the smallest nonnegative number such 
that 

\{z e / ;dist(z,/na+(£)) ^ 7}| ^ 3|/|/4. 

Then the following statements hold. 
(i) For every s in (—1/|/2, | / | /2 ) and every r > 0 there are x,y G / f l Q such 

that \{y -x)- s\< 2 7 + r. 
(ii) For every K G (0, 1/40 either 

\{z G/ ;S( /n£ ,z ,Av)>7/2} | è |/|/8 
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or 

| { z G 7 ; < 5 ( 7 \ £ , z , 5 ) > 7 / 2 } | ^ | 7 | / 8 . 

(iii) Whenever 6 G (0, | / | / 8 ) ,x G (0, 1/2), W * G (1 - SS/\I\) * / , f/œw 

£(7 H £ ,* ,« ; + e / 2 ) ^ 2(1 - «)£ 

provided that 6(1 H £,.*:, «) > 5, tfftd 

{ ( / \ £ , j c , / c + £ / 2 ) è 2 ( l - « ) J 

provided that 6(1 \ E,x, K) > <$. 
(iv) 7/y = 1,2, . . . w swc/z f/wf e è y"2 , */<5 G (0,2~-'-3 | / |) , ^ (/* * ^ 

( l - 2 ^ 3 < 5 / | 7 | ) * 7 , r/iew 

« ( / n £ , ^ , 0 " + l ) c / 2 ) > 2 / ' " 1 5 

provided that 6(1 P l £ , x , e/2) > 6 and 

6(I\E,x,(j+\)el2)>V-x6 

provided that 6(1 \ E,x, e/2) > 6. 
(v) 7/y = 1,2, . . . w SWC/Î r/zar e ^ j ~ 2 and such that 7 ^ 2~- / '_7|/| r/î w 

| { z G / ; W n E , z , 0 ' + l ) e / 2 ) > 2 ^ 2 7 } | ^ | / | / 16 

or 

\{z G / ;« ( / \ £ , z , ( y + l)e/2) > 2 ^ 2 7 } | ^ | / | / 1 6 . 

Proof, (i) Since the set Af = {z G / ; dist(z,7 C\Q) ^ 7} has measure at least 
3 | / | /4 , the assumption that M H(s + M ) = 0 would imply 

3 | / | /2 = \M U (j + M) | ^ |7 U (s + / ) | < 3 | / | / 2 . 

Hence there is u G M Pi (5 + M) and it suffices to consider x,y G 7 Pi Q such 
that | w - } ^ | < 7 + r / 2 and | ( W - S ) - J C | < 7 + r / 2 . 

(ii) Since this statement is obvious if 7 = 0 (one just notes, that the sets 
whose measure we are estimating contain all density points of 7 Pi E and I \E, 
respectively), we shall assume that 7 > 0. Let G be the union of all bounded 
components / of I\d+(E) having length at least 7 and satisfying | / n £ | ^ | ^ | / 2 
and let 77 be the union of all bounded components / of I\d+(E) having length at 

https://doi.org/10.4153/CJM-1989-023-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-023-8


THE APPROXIMATE SYMMETRIC INTEGRAL 519 

least 7 and satisfying \J \E\ ^ | / | / 2 . Noting that 7 is the smallest nonnegative 
number such that 

| { z G / ; d i s t ( z , ( / n G ) ) ^ 7 } | ^ 3 | / | / 4 

and that 7 > 0, we see that \GUH\ ^ | / | / 4 . Moreover, for every component / 
of G we may use that / Pi d+(E) = 0 and 2.3(iv) to conclude that 

6(inE,x,K)> \JHE\ ^ \J\/2 

for every x G / Pi E and every K > 0. Hence the first inequality from (ii) holds 
in case \G\ ̂  \GUH\/2. A similar argument shows that the second inequality 
from (ii) holds in case \H\^\GUH\/2. 

(iii) We prove the first inequality only. The second inequality may be proved 
in a similar way, or one can note that 2.3(vii) and (viii) imply that each of the 
inequalities in question follows from the other one. 

Since the statement is obvious in case 6((I DE),X^K) > 2(1 — K)6 we may 
assume that 6((I(lE),x, K) G (£, 2(1 - K)6). 

Let r G (0, «) be such that 6((I H E), X,K-T)>S. We let 

a - min[7«/4,£((/ H E ) , * , « - r) - <5], 

and we find an open interval J = (a, /?) containing jt such that \J\E\ <(K—T)\J\ 
and | / | > S((I Plis),*, K-T)-CJ. Noting that 

|/| ^ a ( / n £ , J t , « ) ^ 2 ( l - / c # 

implies 2(6 - a + a) ^ 4(1 - K)8 + 2«« < 46, and that * G [(1 - 8£/ | / | ) * / ] P I / , 
we infer that (a,2b — a + a) C / . 

Let c denote the smallest number from [a, b] such that 

| { > > G £ ; c < . y < / > } | = 0 . 

Since \J\E\ < (K— T ) | / | , it follows that c > a + {\ — {n— r))\J\. Hence c — a > a 
and 

(c — a, c + a) C (a, 2b — a + a) C / . 

We claim that (c — cr, c + ( j )n9 + (£) ^ 0. Indeed, otherwise we could use 2.3(iv) 
and the fact that \(c — cr, c) Pi E\ > 0 to infer that E contains almost all of 
(c, c + a). But this would imply that c — b and 

|(a, b + &)\E\^\J\E\<(K- r)\J\ <{K- r)((b + a) - a). 

Consequently 

6((inE\x, K, -T) ^ (b + a) - a = \J\+ a > £((/ H £ ) , x , K - r), 

https://doi.org/10.4153/CJM-1989-023-8 Published online by Cambridge University Press

file:///J/E/
file:///J/E/
https://doi.org/10.4153/CJM-1989-023-8


520 D. PREISS AND B. S. THOMSON 

which would be a contradiction. 
Thus our claim is proved and we may use it together with the above obser­

vation that (c — a, c + o) C 7 to find a point z G (c — a, c + a) D Q. Then 

|(a,2z — a) | = 2 ( z - a ) > 2 ( | 7 | - (/c - r)|7 - a) > 2(1 - «)£, 

| ( f l , 2 z - a ) \ £ | = | ( f l , z ) \E | + | ( z , 2 z - û ) \ E | ^ | ( û , z ) \ £ | 

+ |(z, 2z - a) \ (2z - E)\ + |[(z, 2z - a) H (2z - E)\ \ E\ 

= 2|(a, z) \ E| + |[(z, 2z - a) H (2z - £)] \ E\ 

< 2((« - T ) | 7 | - (/? - c) + a) + e(|71 - (b - c) + a) 

^ {In + e)(z - a) + 2((1 + « + e)a - r|71) 

^ (2 /c + c ) ( z - f l ) , 

and 

x G (a, /?) C (tf, 2z — a) C / , 

which implies that 

W n £ , i , K + e / 2 ) ^ | ( a , 2 z - a ) | > 2(1 - K)L 

(iv) Using (iii) inductively, we see that 

£(/ H £ , J C , (/ + l)e/2) > 2'(1 - i2e/2)6 

for each / = 1,2, . . . ,7, provided that 6(7 H £ , JC, e/2) > 5. The second inequality 
is handled similarly. 

(v) This statement follows immediately from (iv) with K — e/2 and from (ii) 
with 6 = 7 /2 . 

PROPOSITION 2.7. There is a constant e > 0 with the following property: 
Whenever (5 is an interval-point relation on an interval (a,b) C R such that 

p[(3](x) < e for every x G (a, b), and whenever E is a measurable subset of 
{a,b), then for almost every v G (a,b) for which \(a,v)r\E\ > 0 there is 
u G (f l ,v)f lÊ such that the interval [w, v] admits a partition contained in (3. 

Proof We prove that the statement holds with e — 2~18 . We may clearly 
assume that the set E is open in the density topology. (A set is density open if 
it is measurable and has density 1 at each of its points.) Also, we may find sets 
Tx C (0, 00) open in the density topology such that, for each x G R the right 
lower density of Tx at 0 is greater than 1 — e and ([x — t,x + t],x) G (3 for every 
t G Tx. 

Instead of (3 it will be more convenient to consider the interval-point relation 
/? defined by the requirement (7, x) G /3 if and only if 7 = [x — t,x + t] for some 
t G Tx. Then we easily see that the set Ë of all v G (a, b) for which there is 
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u G E D (a1 v) such that the interval [w, v] admits a partition contained in ]j is 
density open. Consequently, Ë is measurable. We also observe that x +1 G Ë 
whenever x G (#, /?), £ G Tr Pi (0, min[/? — x,x — a]), and x — t £ Ë. Thus 
A+(£,x, e) > 0 for every x G (a, /?). 

From 2.3(iv) we see that the statement of the proposition is equivalent to 
d+(Ë) = 0. Thus, in order to find a contradiction, we shall assume that d+(Ë) ^ 0. 
Then we may use 2.3(H) and the Baire Category Theorem to find A > 0 and an 
open interval IQ C (a, b) such that IQ PI d+(Ë) ^ 0 and the set 

{x G /o H 3+(É); A+(£, x, e) > A} 

is dense in /Q H d+(Ë). 
Since /o H 3+(É) ^ 0, there are points wo G /o D Ë and vo G ïç, \ Ë such that 

VQ is a density point of Io\Ë and «o < vo < ô + A. Let w G [wo, vo] be a point 
at which the function x \—> \(uo1x)nË\ —X/2 attains its maximum on [wo? voL 
Noting that 

|(w, JC) n ^ l = (x — w)/2 whenever w ^ x ^ vo 

and 

|(x, w) H £| ^ (w — x)/2 whenever wo = * = w? 

we use the facts that UQ is a density point of Ë and vo is a density point of Io\E 
to deduce that w G (wo, v0) Pi 3+(É). 

Let / be an open interval with center w such that |/| < A/3 and 5*7 C («, v). 
The above inequalities imply that the assumptions of 2.5 hold. As in 2.6 and 
2.5 we denote 

e = {*G/;A+ (Ê,x,e)>3| / |} , 

and we let 7 be the smallest nonnegative number such that 

\{z G /;dist(z,/ nd+(Ê)) ^ 7}| ^ 3|/|/4. 

From 2.5(iii) we immediately see that 7 = 8e|/|. Letting y = 8 and noting that 
2/+77 = |/|, we deduce from 2.6(v) that either 

| { z Ç / ; W n Ë , z , ( / , + l ) e / 2 ) > r 2 7 P |/|/16 

or 

\{zeI\8(I\Ë,z,(j+l)e/2)>2/-2'y}\^\I\/16. 

https://doi.org/10.4153/CJM-1989-023-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-023-8


522 D. PREISS AND B. S. THOMSON 

Assume, for example, that the first of these alternatives holds. (To handle the 
second case, one just exchanges the notation A and B in the following argument.) 
Then we let A = / C\Ë,B = I \Ë, and we observe that 

\{z G/;«(/HA,z, 1/64) > 647}| ^ |/ | /16. 

Thus we may use 2.4 to infer that there is t G (—1/|, |/|) such that 

\B\ \s-t\ 
\[A + s]nB\ > 1/32 I/ /16 

_2\I\ 647 

for every 5GR. Consequently, if \s — t\ < 57 then 

\[A + s]HB\ ^ [1/4 - e / 2 - 5/64 - 1/32]|/|/16 > 2~7 | / | . 

On the other hand, 2.6(i) implies that there are*,y G Q such that \(y— x —t/2\ < 
57/2. Hence, letting s = 2(y — x), we use 2.5(v) to conclude that 

\[A + s]HB\ ^28e | / | <2~ 7 | / | . 

Since \s — t\ < 57, this gives the required contradiction. 

Proof of 2A. Let f3 G ft. We note first that for every r > 0 and for almost 
every x the sets 

A(x) = {ye(x~ r,x); (^, je], (x+y)/2) G 8̂} 

and 

B(x) = {y e (x,x + r);([x,y],(x + y)/2) e (3} 

are measurable and have positive measure. Their measurability follows imme­
diately from the fact that (3 G ft while the fact that they have, for almost every 
point x, positive measure follows from 1.5. 

Then, to finish the proof, we just observe that, whenever x < y,B(x) is 
measurable and has positive measure and A(y) is measurable and has positive 
measure, we may use 2.7 with E = (x,(x +y)/2) P\B(x) to find v G ((x + 
y)/2,y) C\A(x) and u G (x, (JC +y)/2) HB(x) such that the interval [w, v] admits 
a partition contained in /?. This partition can be, in an obvious way, extended to 
a partition of the whole interval [x,_y]. 

3. Measurability questions. There are a number of measurability problems 
that arise naturally in our study. We have already indicated (in Section 1) that 
the approximate symmetric covering relations that are to be used to define the 
integral must be taken to be measurable. The main covering Theorem 2.1 is not 
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valid without the measurability assumption; this is a consequence of 3.1 proved 
below. 

We wish too to know what measurability properties may be determined from 
statements about approximate symmetric limits. For the ordinary symmetric limit 
the situtation has been long studied and the results are satisfying. For example 
an everywhere symmetrically continuous function is a.e. continuous and hence 
measurable ([16]). An almost everywhere symmetrically differentiable function 
is measurable ([22]) as is its derivative. 

The situation for approximate symmetric limits may appear at first quite 
startling. Indeed, from 3.1 we shall see that an approximately symmetrically 
differentiable function need not be measurable. However from 3.4 we shall see 
that its derivative is necessarily measurable. Similarly striking facts one gets 
also in the general case. Again, 3.1 implies that the set of points at which an 
approximate symmetric derivative exists need not be measurable. However, from 
3.3 we see that the approximate symmetric derivative is always a measurable 
function with respect to this (possibly nonmeasurable) set. These measurability 
results will also play a role in Section 8 showing that all the functions that arise 
in the integration theory are measurable. 

Example 3.1. Under the Continuum Hypothesis the following two statements 
hold for an arbitrary linear subspace E of R over the field of rational numbers. 

(i) There is set Y C R such that both the sets Y and R \ Y are of full outer 
measure and such that for every x G E the set Y \ (2x — Y) is countable, and 
for every x G R \ E the set Y \ (2x — Y) is of full outer measure. 

(ii) There is a nonmeasurable function / : R \—* R such that for every x G E 
there is a countable set Sx such that f(x + h) —f(x — h) = 0 for every h ER\SX, 
and such that A — Df(x) = +oo and Si — Df(x) — —oo for every x eR\E. 

Proof. To simplify the notation, let Q[Z] denote the linear span of the set 
Z C R over the field of rational numbers. 

Under the continuum hypothesis we may arrange the set of all pairs (x1 C), 
where x G R and C is an uncountable compact subset of R into a sequence 
(xr, Cr) indexed by countable ordinals r. By transfinite induction we choose 
points yT and zT, and sets YT and ZT as follows. (As usual, to include the first 
step of the construction in the general description, we set the union over an 
empty family of indices to an empty set.) 

As yT we always choose an arbitrary point of 

Cr\Q {xT}u{jZa 

Then we define 

YT = Q[{yT} U {xa; a è r,xa € £}] \ | J Z„, 
a<r 
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we choose 

zTecT\Q 

and we put 

{xT1 yT} U | J ZA 
a<j 

zT = G {AY,3V,ZT }U|JZJ 

Let Y = Ua<WlYa. Observing that YT C ZT = Q[ZT] C Za and YaHZT = 0 
whenever r < a, we easily see that yT G F Pi CT and zT G ( R \ 7 ) n C T for 
each countable ordinal r. This implies that the sets R\Y and Y have full outer 
measure. 

If x G £, we find T such that x = xr and we obtain Y \ (2x — Y) is countable 
by showing that 

F\(2x-F)c|Jra. 

To prove this, assume that y £YV12xT — y £ Y, and v > r. Then _y and JCT belong 
to 

hence 

O l W U f c ^ ^ a ^ } ] , 

2 x T - j G (?[{)>„} U{x f f;<j ^ i / , ^ G £ } ] . 

However, since 2xT — y does not belong to Yu, this can happen only if 

2xT-y G U ^ . 

Let r ^ r/ < i/ be such that 2xT — y G Z^. Then, since JCT G Z^ and since 
Z^ = Q[Zr)], we infer that _y G Z^. But this contradicts y EYU. 

We finish the proof of the first statement by showing that for every i G R \ £ 
the set Y\(2x — Y) intersects every uncountable compact subset C of R. To prove 
this, we find a countable ordinal r such that (x, C) = (xT, Cr). Since _yT G C Pi Y, 
we just need to prove that 2xT — yT ^ Y. But this is almost obvious, since 2xT — yT 

belongs to Zr but not to \Ja<TZa otherwise 

yr£Q j{xr}u(JzJ 
<7<T J 
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This means that 2xT — yT can be in Y only if it is in YT. However, since 

JriQ {xT}u|JZ, 

2xT — yr EYT implies that 

x = xT G Q[{xa',o ^r,xa G E}] C E. 

To prove the second statement of our remark, we let / be the characteristic 
function of the set Y. For each x £ E we put 

Sx = [(Y \ (2x - Y))-x] U [x - (Y \ (2x - Y))]. 

Then clearly each of the sets Sx is countable and the first statement follows from 
the observation that/(x + h) —f(x — h)^0 implies h G Sx. If x ÇÉ E, we observe 
that the sets 

U = {t e (0,oo);x + t G Y,x-t£Y} 

and 

V = {t G (0, oo); x + t<jLY,x-teY} 

have full outer measure in (0, oo), and that 

lim (f(x + t) —f(x — t))llt — +oo 
t\o,teu 

and 

lim (f(x + 0 -f(x - t))l2t = -oo 
t\o,tev ' 

which completes the proof. 
We obtain our measurability results as separation properties. Recall that sets 

A and B are said to be separated by a set M if A C M and B P\M — 0. 

LEMMA 3.2. Suppose that the subsets U and V of the reals cannot be sepa­
rated by a measurable set and that h is a positive function defined on U U V. 
Then there are a positive number e and a nonempty compact subset PofR with 
the following properties. 

(i) The intersection I HP has positive measure whenever I is an open interval 
meeting P. 

(ii) The sets {x G U HP;h(x) > e} and {x G V HP;h(x) > e} are both of 
full outer measure in P. 
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Proof. If for each k = 1,2,... the sets {x G U\h(x) > \/k} and {x G 
V;h(x) > \/k} could be separated by measurable sets, say, M*, then U and V 
would be separated by | J ^ 1 n* i /^*- Hence there is a positive number e such 
that the sets {x G U\h(x) > e} and {x G V\h{x) > e} cannot be separated by 
a measurable set. 

Next we observe that whenever E\,E2,... are measurable sets such that the 
sets A DEi and B Pi£/ are separated by measurable sets, say, M,, then the sets 
AHUEj and B DU£/ are separated by U(E; H Mi). From this we easily deduce 
that there is a measurable set A C R such that the sets {x G U Pi A; /z(x) > e} 
and { i G V flA;/j(i) > e} can be separated by a measurable set and that the 
set R \ A contains no measurable set B of positive measure for which the sets 
{x G U DB;h(x) > e} and {x G V DB;h(x) > e} would be separated by a 
measurable set. 

Since the set R \ A has positive measure, it contains a nonempty compact set 
P for which (i) holds. Clearly, P is the required set, since the assumption that, 
for example, the set P \ {x G U DP;h(x) > e} contains a measurable set B of 
positive measure immediately implies that the sets {x £ U nB;h(x) > e} and 
{x G V Pl#; h(x) > e] are separated by B. 

THEOREM 3.3. Let f be an arbitrary function defined on a measurable set S 
and let a < b be real numbers. Then the sets {x G S\A — Df(x) < a} and 
{x G S; A — Df(x) > b} can be separated by a measurable set. 

Proof Let us assume, to the contrary, that the sets 

U = {x eS;A -Df(x)<a} 

and 

U = {x eS;A -Df(x)<a} 

cannot be separated by a measurable set. For each x G U we choose h(x) > 0 
such that for every 0 < h < h(x) the set 

Item EA / ( * + ' ) - / ( * - ' > > 1 It G (0, h); — ^ a 

has outer measure at most h/72. Similarly, for each x G V we choose h(x) > 0 
such that for every 0 < h < h(x) the set 

{^(oV"";/"-"^} 
has outer measure at most h/12. 

Since U and V cannot be separated by a measurable set, we may use 3.2 to 
find a measurable set P of positive measure such that the sets 

UQ = {x G U nP;h(x)>e} 
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and 

V0 = {x£VnP;h(x)>e} 

are both of full outer measure in P. 
Let x G UQ be a density point of P and let y G Uo P\ (JC, X + e/2) be such that 

the set (x,y) \ /> has measure at most (y — x)/5. Then we can find a point z 
belonging to the set 

(3x/4 + y /4 , (x+j ) /2 )nV 0 . 

From the definition of the function /z(x) we infer that there is a measurable 
subset T of the interval (0,2(y — x)) with measure at least 

2(y-x)- 3[2(y-x)]/72 = 2(y - x) - (y-x)/\2 

such that for each t G T the inequalities/(jt+0-/(>-0 < 2at, f(y+t)—f(y—t) < 
2at, mdf(z+t)—f(z—t) > 2bt hold. Let N be the set of all points u G (y, 2y-x) 
such that w— y G T, 2_y — u — x G r , z — 2x + 2y — u G T, u — z G T,x — 2z + w G T, 
and y — 2x + 2z — u G 7\ Observing that for every u G (y, 2y — x) all the points 
« — _y, 2y — u — x, z — 2x + 2_y + w, w — z, JC — 2z + w, and _y — 2x + 2y — u belong to 
(0,2(y—x)), we easily infer that N has measure at least (y—x)—6[(y—x)/\2] > 0. 
We conclude that N ^ 0. On the other hand, using the above inequalities, we 
easily see that every u G N fulfils 

f(u) <f(2y - u) + 2*(M - >0 </(2x - 2^ + M) + 2a(y - x) 

</ (2z -2x + 2y -u) + 2a(y - x) - 2b(z - 2x + 2y - u) 

as well as 

f(u) >/ (2z - w) + 2ft(w - z) > / (2JC - 2z + u) + 2/?(z - w) 

— 2a(x — 2z + u) >f(2y — 2x + 2z — u) + 2b(u — z) — 2a(y — x). 

Thus 2b(u - z) - 2a(y - x) < 2a(y - x) - 2b(z - 2x + 2y - w), which is 
4/?(j — x) < 4a(y — x). This finishes the proof, since we know that a < b and 
y — x > 0. (These computations are closely related to those in [9, p. 590]). 

COROLLARY 3.4. / / ow almost everywhere defined function is almost every­
where approximately symmetrically differentiable, then its approximate sym­
metric derivative is a measurable function. 

Proof. The statement follows immediately from 3.3. 

4. The variation. By an interval function we shall understand a real-valued 
function h defined for all pairs (#, b) with a < b in a set of full measure on the 
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line. We write the values as h(a, b) or occasionally as h([a, b]) or //(/), / = [#, b]. 
We call such a function measurable provided the function 

(x,y)—>h(x,y) 

is measurable as a function of two variables. It is said to be A -continuous (or 
approximately symmetrically continuous) at a point x if 

ap-lim^ol^C* - y,x + y)\ = 0 

and to be A *-continuous (or weakly approximately symmetrically continuous) 
at a point x if 

ap-liminfy^ol^U ~ y,x +y)\ — 0-

By an additive interval function we shall mean an interval function H such that 
H(a,b) + H(b,c) = //(a, c) for all points a < b < c in a set of full measure. 
If F is a real function defined almost everywhere then the interval function 
(x,_y) —» F(y) — F(x) is an additive interval function that we denote as AF; of 
course every additive interval functionis of this form. 

These interval functions permit the ordinary manipulations; thus we can write 
h + k,c\h + cjK,hk,h/k etc. for interval functions h and k with obvious inter­
pretations. We have a special convention for the product of a real function / 
(defined everywhere) with an interval function h\ this is defined so that 

fh{a,b)=f({a + b)l2)h(a,b) 

for every pair for which h is defined. The inequality h ^ k for interval functions 
h and k shall mean that h{a, b) S k(a, b) for all pairs a, b in a set of full measure 
and the equality h = k that h(a, b) — k(a, b) again for all pairs «, b in a set of 
full measure. 

Definition 4.1. Let f3 be a collection of interval-point pairs and let h be an 
interval function defined at least for all / with (/,JC) G f3. Then we write 

Var(M) = sup,c/3 £ |A(/)| 

where the supremum is with regard to all packings IT contained in (5. 

Definition 4.2. Let h be an interval function and E a set of real numbers. 
Then we write 

V(h,A[E]) = inf Var(/z,/3[£]). 
pea 
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Definition 4.3. Let h be an interval function and E and A sets of real numbers. 
Then we write 

VA(h,A[E]) = inf Var(/z,/?[£]04)). 

The basic properties of the variation that we require in our development of 
the theory are produced in the ensuing statements. 

LEMMA 4.4 For any interval functions h\ and h2 and any set E of real numbers 

V(h^h2,A[E])^V(huA[E)) + V(h2,A[E)). 

Proof The proof follows directly from the property of Lemma 1.2. 

LEMMA 4.5. Let h be an interval function that is A -continuous at each point, 
let K be a finite union of closed intervals and let H be the complement of the 
interior of K. Then for any set E 

V(h, A [£]) - VK(h, A [E]) + VH(h, A [E]). 

Proof Let j3\ and (52 be arbitrary elements of A [E] and for any e > 0 choose 
a /33 e A so that Var(/i, fc[Kr\H]) < e. This is possible since K (1H is finite 
and h is everywhere A -continuous. The collection 

04 = (5l(K)U(33[KnH] 

is also an element of A [E] and hence 

V(h, A [E]) ̂  Var(/z, (34) ^ Var(/z, px(K)) + Var(/z, f32(H)) + e. 

Then, since e is arbitrary and (3\ and fi2 are arbitrary elements of A [E], 

V(A, A [E] S VK(h, A [E]) + VH{h, A [£]). 

The opposite inequality is clear and so the lemma is proved. 

LEMMA 4.6. Let h be an interval function that is A -continuous at each point, 
let e > 0 and suppose that V(h, A [E]) < +oo. For any element (5 G A [E] if the 
inequality 

Var(/z,/?)^ V(h,A[E]) + e 

holds, then for any set K that is a finite union of closed intervals, 

V^{h,(5{K))^VK{h,Am) + e. 
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Proof. If we have the inequality 

Var(/z,/3) ^ V(/z,J*[E]) + e, 

if K is a finite union of intervals, and if H is the complement of the interior of 
K then, by lemma 4.5, 

Var(/i, (5{K)) ^ Var(A, /J) - Var(/z, £(//)) 

= V^(/i,JÏ [£]) + c 

as required. 

THEOREM 4.7. Lef /z be an A -continuous interval function and suppose that 
f,g\,g2i>.. is a sequence of nonnegative measurable real functions with g\ ^ 
g2 = . . . and f ^ sup^gfl. Then for any measurable set E, 

V(fh,X[E])^ lim V(gnh,A[E]). 
n—H-OO 

Proof. We may suppose that V(gnh, A [E]) is finite for each n. Let e > 0 
and 0 < c < 1. Then for each point x there is a least integer n(x) for which 
cf(x) ^ gm(x) if m = n(x). Choose a sequence {/3n} from J^[£l with the 
property that 

Var(gnh,l3)£V(gnh,Sl[E]) + e/2n. 

By Lemma 4.6 this gives 

Var(£,7/z, f3(K)) è VK{gnh, A [£]) + e/2n 

for every finite union of intervals K. Define the sets 

Xn = {x G E\ n(x) — n} 

and define the collection 

oo 

P=\Jl3n[Xnl 
n=\ 

Since the sequence of sets X\, X2,... is disjointed, measurable and covers £, /? 
must be in A [E] by Lemma 1.3. We now estimate V(//i, J3 [£]) by computing 
Var(//2,/3). Let 7r denote an arbitrary packing contained in f3 and write Kn = 
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C(TT«) where irn = ir[Xn]. There is a first integer N so that irm is empty for all 
m> N. We compute 

N 

J2 \f(x)hd)\ = Y, E I/WWI 
(/,A)G7r / = 1 (7,x)G7r/7 

/V 

< 

^ec-l+c-l{V(gNh,ME])}. 

As this holds for all packings 7r C /3, we have 

V ( A *[£] ) ^ Var(A/3) ^ ec"1 +C"1 {supNV(g„h, A [E])} . 

Letting e \ 0 and c f 1 in this inequality we obtain the result. 

COROLLARY 4.8. Let h be an A-continuous interval function. Then 

V(h,a[E]) = suVVj(h,R[E]) 
j 

where the supremum is taken over all intervals J. 

Proof. Take gn as the characteristic function of the interval [—«, n] and apply 
Theorem 4.7. 

COROLLARY 4.9. Let h be an Si -continuous interval function and suppose that 
f,g\,g2,..- is a sequence of measurable functions such that 

CO 

0 =2 |/(x)| ^ 5>„(x)| 
n=\ 

everywhere in a measurable set E. Then 

oo 

V{fh,ME])^^2V{Sn^ME]) 
n=\ 
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Proof. This is evidently true for finite sums and the extension to infinite sums 
requires merely an application of 4.7. 

Dual versions of the above variational concepts are also defined using the 
dual basis SI* and we use the notation V(/z,Sl*[E]). Most of the results stated 
above hold true for this variation with minor changes. Note that Lemma 4.4 
does not have an analogue here since the basis SA* is not filtering; this means 
too that Corollary 4.9 also cannot hold for this basis. Otherwise all the other 
properties hold: the results in 4.5, 4.6 and 4.7 hold for interval functions h that are 
at least weakly approximately symmetrically continuous and the measurability 
assumptions on the functions may be dropped. 

5. Variational measures. For integration theories developed along the lines 
we follow here there is an associated measure theory that is frequently required. 
We present this here. 

Definition 5.1. Let h be an interval function. Then we define the outer mea­
sure h* on the class of Lebesgue measurable sets by writing, for any Lebesgue 
measurable set E, 

h*(E) = V(h,A[E]). 

Definition 5.2. Let h be an interval function. Then we define the outer mea­
sure h* on the class of all subsets of the real line by writing, for any set E, 

h*(E) = V(h,A*[E]). 

Note here that the set function h* is defined for all subsets of the real line 
whereas we wish h* to be defined only on measurable sets; both are outer mea­
sures subject to this interpretation, i.e., each is a countably subadditive, mono­
tone set function on its domain. For additive interval functions E the measure 
F* represents a generalization of the Lebesgue-Stieltjes measures; indeed if / 
is continuous and monotonie and F is its associated interval function it can be 
shown that this measure (and F* too) is precisely the usual Lebesgue-Stieltjes 
measures associated with/. The interval function I defined by setting 1(1) — |/| 
generates a measure £* that gives exactly the Lebesgue measure (see 5.6 below). 

LEMMA 5.3. Let h be an interval function and XQ a real number. Then 

h*(xo) = ap — lim sup \h(xo — t,XQ + t)\ 
t\o+ 

and 

h*(xo) = ap — lim inf \h(xo ~ t,*o + 0|-
t\0+ 
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Note that a measurable function F defined almost everywhere is approximately 
symmetrically continuous (^-continuous) at a point xo if and only if AF*(jto) = 
0, and is weakly approximately symmetrically continuous (.#* -continuous) at a 
point xo if and only if AF*(x0) = 0. 

LEMMA 5.4. For every Lebesgue measurable set E, h*(E) ^ h*(E). 

The set functions h* and /z* associated with an interval function h are genuine 
outer measures on the real line that have nice topological properties. We develop 
these ideas next. 

THEOREM 5.5. For any interval function h the set functions h* and h* are 
metric outer measures. 

Proof It is clear that the set function h* is nonnegative and monotone and 
thus, to show that it is an outer measure, we need to show that it is countably 
subadditive on the class of Lebesgue measurable sets. Let X, Fi, F2, F3, . . . be a 
sequence of measurable sets for which X C ( J ï i ^- We may suppose that the 
sequence of sets Fi,F2 ,F3,. . . is disjointed. Suppose that a positive number e 
has been given and choose /?/ G A [F/] in such a way that 

Var(/2,A)^/z*(F,) + e/2\ 

Define f3 as the union of the families /?/ then, by Lemma 1.3, (3 G -#[X]. 
Therefore 

00 00 

h\X) ^ Var(/z, fi) £ Y,Var(/*'ft) = E h*W + e-

As e is an arbitrary positive number we have then the inequality h*(X) è 
]Cï i h*(Y() as required to establish that h* is an outer measure on the mea­
surable sets. In precisely the same manner it may be shown that h* is also an 
outer measure. 

To see that h* is a metric outer measure suppose that two measurable sets 
Xi and X2 are separated in such a way that there are open sets G\ and G2 with 
Xi C GbX2 C G2, and G{ HG2 = 0. Then if /3 G -#[XiU2] chosen in such a 
way that 

Var(A,/3)^/z*(X1UX2) + e7 

then we may define the collections (3\ — (3{G\) and ft = ftG2) which, by 
Lemma 1.4 belong to -#[Xi] and J3[X2]. Now we compute 

A*(Xi) + A*(X2) ^ Var(A, ft) + Var(ft, ft) 

^ Var(/i,ft 

^//*(XiUX2) + e. 
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Since e > 0 is arbitrary we must have the equality 

h\XxUX2) = h\Xx) + h\X2) 

as required. 
The same arguments apply to /z* and so the proof is complete. 

THEOREM 5.6. The measure I* is precisely Lebesgue measure and £* is the 
Lebesgue outer measure. 

Proof. This is a direct consequence of the Vitali covering theorem for 
Lebesgue measure. 

6. Differential equivalence. Most of the results that we discuss concern 
derivatives and integrals of interval functions, and are identical for those in­
terval functions that belong to the same "variational" equivalence class. The 
terminology for this equivalence relation and the general idea of exploiting it 
are due to Kolmogorov [8]. Henstock [6] uses the same idea in his concept of 
"variational equivalence" and Leader [11] and [10] exploits this notion to define 
a class of "differentials". 

Definition 6.1. Let h\ and h2 be interval functions. We say that h\ and h2 are 
differentially equivalent and we write hx = h2 provided that 

V( /n -A 2 , ^ [R] ) = 0. 

This is evidently an equivalence relation because of 4.4. We develop now some 
of the more immediate properties of this equivalence relation. Throughout h\ 
and h2 are interval functions and/ is a real function defined everywhere. Recall 
that the product fh is defined as an interval function (0, b) -^f((a + b)/2)h(a, b). 

LEMMA 6.2. If h\ = h2 then, for any measurable real function\f, the equiva­
lence fh\ =fh2 holds. 

LEMMA 6.3. Let hx = h2 and k be an interval function for which 

g(x) = ap—limsup \k(x — h, x + h)\ < +00 

everywhere. Then, if g is measurable, kh\ = kh2. 

Proof Evidently 6.2 is included in 6.3; to prove the equivalence relation in 
the latter let Xn denote the set of points x at which g(x) < n and let (5n be the 
collection of all interval-point pairs (I,x) for which \k{I)\ < n, if A: G Xn and x 
the midpoint of /. We easily check that f5n E ft[Xn] and hence, for any other 
/3 G JZ, we have 

Var(^! - kh2, (5 D /3„[X„]) Û nVar(hx - h2, (5). 
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From this we obtain V{kh\ — kh2-, J%[Xn]) = 0 for all integers n and, since the 
sets Xn evidently cover the real line and are measurable, the conclusion of the 
lemma will follow. 

THEOREM 6.4. For any interval function h and any measurable function f the 
relation f h = 0 holds if and only if f{x) — 0 for h*-almost every point x. 

Proof. Let Xn denote the set of points x at which \f(x)\ > n~l. Then it is 
easy to show that Vifh^lXn]) ^ n~lh*(Xn) for each n. Since we assume here 
that V(fh,Jl[Xn]) = 0 and that each Xn is measurable it follows from the fact 
that h* is an outer measure that h* must vanish on the set of points at which / 
differs from 0. 

THEOREM 6.5. For any interval function h and any measurable function f the 
relation f h = gh holds if and only iff(x) = g(x) for h*-almost every points x. 

Proof. This follows from 6.4. 

THEOREM 6.6. For an additive interval function H the relation H = 0 holds 
if and only if H = 0. 

Proof. Recall that H — 0 means that there is a set of full measure B so that 
H{a,b) = 0 for each pair in B. If H = 0 then for every integer n there is an 
element (3n G !A with Var(//,/3w) < \jn. By Lemma 1.6 there is a set B of full 
measure so that every (3n contains a partition of any interval with endpoints in 
B. Evidently then, since H is additive, 

\H(a,b)\ ^Vâr(H,/3)<n~l 

for all a,b G B so that H (a, b) = 0 for each pair in B as required. 

THEOREM 6.7. For any interval functions h and k if h = k then the variational 
measures for h and k are identical: h* = k* and /z* = k*. 

Proof If h = k then for any measurable set E, 

V(h-k,A[E]) = 0. 

Let e > 0 and choose (3 G A[E] so that 

Var(h-k,P)<e. 

Then if /?, G A [E] the collection /3i n/? is in A [E] and 

Var(/z, /? H /?i ) ^ Var(£, f3 H fa ) + Var(/z - k, /3) 

< Var(/:,/3i) + e. 

This shows that h*(E) ^ k*(E) and so, by symmetry, equality must hold. Simi­
larly the identity h* — k* may be proved. 
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THEOREM 6.8. Let h and k be interval functions andf a measurable function. 
If h = fk and k* is a-finite on a measurable set E then so too is h* and h* 
vanishes on every subset of E of k* -measure zero. 

Proof. This is immediate i f / is bounded, otherwise just apply this to each 
of the measurable sets {x\ \fix)\ < n} for n = 1, 2 , . . . . 

THEOREM 6.9. Let h and k be interval functions, f a real function and suppose 
that h =fk. Then at k*-almost every point x, 

h(x-t,x + f) 
ap-lim = fix). 

F t\ok(x-t,x + t) J 

Proof. For each integer n let f3n denote the collection of pairs ([x — t, x + r], x) 
satisfying the inequality 

\h(x - t,x + t) -f(x)k(x - t,x + t)\ ^ \k(x - t,x + t)\/n 

and let Yn denote the set of all points x such that (3n is in !A *[{*}]. Let Y denote 
the union of the sequence of sets Yn\ we shall show that k*(Y) = 0 and that for 
every point x not in Y the limits stated in the theorem must hold. 

Let e > 0. Since h=fk we may select an element a € A so that 

V a r ( / i - / f c , o O < e . 

Each collection an(3n is in - ^ j Y J and hence 

h{Yn) = V{k,A*[Yn\) 

^ Var(£ ,an/3„) 

£\M(n(h-fk),ani3n) 

^riVzr(h-fk,a) 

^ ne. 

Consequently each Yn has ^-measure zero and so k*(Y) — 0 as stated. 
Now for each x £ Y and for each integer n the set Vt of t for which 

\h(x -t,x + t) -f(x)k(x - t,x + t)\ < \k(x -t,x + t)\/n. 

has density 1 at 0 and from this at each point x in R \ Y we easily verify the 
required limits. 

THEOREM 6.10. Let h and k be measurable interval functions, let f be a 
measurable function, suppose that the measure k* is a-finite, and suppose that 
the limit 

h(x-t,x + t) 
ap- hm — = f{x) 

t\o k(x -t,x + t) 
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holds at h*-almost every and k*-almost every point x. Then h = fk. 

Proof. Let X be the set of points x at which the above stated limits hold. 
Then for every integer n the collection j3n of pairs {[x — t,x: + t],x) satisfying 
the inequality 

\h(x -t,x + t) -f(x)k(x - t,x + 0| ^ n~x \k(x - t, x + 0| 

must be in A [X]. From this we may deduce 

V(h-fk,A[Y])^n-{k*(Y) 

for every subset Y of X. As n is arbitrary and k* is cr-finite on X we must have 
V(h -fk, A [X]) = 0, and this gives 

V(h -fk, A [R]) ^V(h -fk, A [X]) + /z*(R \X) + (fh)*(R \X) = 0 

which is equivalent to the relation h=fk that we wished to prove. 

7. Integrable interval functions. We define a general notion of integral for 
interval functions. For any interval function h we define a notion of integrability 
and an integral Ja dh. This is then specialized in Section 8 for interval functions 
of the more traditional form (x — t,x + t) —» 2f(x)t. We prefer the notation 
J f dh for an integral of the interval function///. 

Definition 7.1. A real-valued interval function h is said to be A-integrable if 
for every e > 0 there is an element (3 G A such that for every pair of partitions 
7Ti, 7T2 C (3 of the same interval 

^ h(I)- J2 W) 
(/,JC)G7TI (/,A-)e7r2 

< e . 

Our fundamental lemma now gives a useful necessary and sufficient con­
dition for integrability and provides the tools needed for defining the integral 
itself. We use this lemma below to define the notion of "indefinite integral". 

LEMMA 7.2. Let h be an interval function. Then h is A - integrable if and only 
if there is a set B of full measure and an additive interval function H defined on 
all pairs {a, b) with a,b G B so that for every e > 0 there is an element /3 G A 
that contains a partition of every interval with endpoints in B and such that for 
every packing TT C (3, 

] T \H(y,z)-h(yJz)\<e. 
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Proof. If this condition holds for such a function H then for every e > 0 
there is an element /} G A so that Var(// —/*,/?)< e/2. Then for every pair of 
partitions 7Ti, 7T2 C /3 of the same interval 

Y, w)- Y h{1) 
(/ ,A-)e7r, (/,.V)G7T2 

< E w>- E w<'> + 
(/,-X')e7r! (/,-OG7ri 

E *<'>• E "o 
(/,-OG7T2 (/,.V)G7T2 

^2Var ( / / - / z , / 3 )<e . 

And this shows that /z is integrable as required. 
In the other direction let us choose, for each n, an element (3n G A in such a 

way that for every pair of partitions 7Ti, 7T2 C /?„ of the same interval 

Y Hi)- Y w) 
( / rV)€7r , (/,A)G7T2 

< 1/rt. 

In view of Lemma 1.2 we may suppose that always (3n C f3n-\. By Lemma 1.6 
there is a set B of full measure so that each (5n contains a partition of every 
interval with endpoints in B. For such an interval [a,b] let Sn(h,[a,b]) denote 
the closure of the set of all sums ]T\7 v)G7r h(I) for any partition n C f3n of [<2, /?]. 
These sets form a decreasing sequence of nonempty closed sets with diameter 
shrinking to zero. Let H(a,b) denote the limit point. 

We claim that H is an additive interval function (defined on intervals with 
endpoints in B), and that Var(// — /z, (5n) ̂  2/n. Certainly H is defined for all 
such intervals and for these intervals 

H{a,b)-YhV) ^2/n 

for all partitions 7r of [a,b] from /3». Take then three intervals [a,b], [b,c] and 
[a, c] with endpoints in B\ we may choose partitions TX\ and TT2 of [a,b\ and 
[a, c] respectively from f3n. Then 71-3 = i\\ U 7n is a partition of [0, c] and the 
three sums J^ /z(/) for / = 1, 2, 3 are within 2/n of//(a, /?), //(/?, c) and //(#, c) 
respectively. Consequently |//(tf, b)+H(b, c)—H(a, c)\ S 6/n for all A?. It follows 
that H is additive and that Var(// — h,(3n) ^ 2/«. It is clear now that H and B 
satisfy the conditions stated in the lemma and so the proof is complete. 

We shall say for any such pair that H is an indefinite integral of h. In that 
case we write 

w / dh = H(a, 
J a 

b) 
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with the understanding that this is defined for all a, b in a set of full measure. 
Note that there is no canonical choice of the set B for any choice of h and so 
the indefinite integral is simply an interval function defined almost everywhere. 
The lemma gives a procedure whereby the value H (a, b) may be determined but 
the set B may not be prescribed. The prefix (Si ) may be dropped where it is 
clear so that we may write Ja dh. 

This lemma may also be expressed more briefly. 

LEMMA 7.3. Let h be an interval function. Then h is SA -integrable if and only 
if there is an additive interval function H so that H = h. 

We now develop the most basic properties of the integral. Lemmas 7.4-7.6 
are immediate. 

LEMMA 7.4. If h is A -integrable with an indefinite integral H then H—h is SA -
continuous at every point. H is [weakly] approximate symmetrically continous 
at any point at which h is. 

LEMMA 7.5. If h\ and hi are SA -integrable then so too is any linear combi­
nation c\h\ + c'2/22 and 

dh? 
pb pb pb 

/ d(c\h\ + C2/Z2) = c\ / dh\ + c'2 
Ja Ja Ja 

for all a and b in a set of full measure. 

LEMMA 7.6. Let h be SI-integrable. Then for every interval [a,b] with end-
points in a set of full measure there is a sequence of Riemann sums 

mn çb 
l i m V ^ , ^ ) ^ / dh 

n->°° ~{ J a 

where {x^n\x\n\ . . . , -x^} is a partition of [a, b] and mfdx{xjn) — xj^ } —-> 0. 

8. The integral. We investigate now an integral that directly generalizes the 
Riemann integral by specializing the integral of the preceding section and we 
develop the basic properties. 

Definition 8.1. A real-valued function/ defined everywhere is said to be SA-
integrable if for every e > 0 there is an element (3 G SA such that for every pair 
of partitions TT\ , 1T2 C (3 of the same interval 

< e . 

LEMMA 8.2. A real-valued function f is SI-integrable if and only if there is 
a set B of full measure and an additive interval function F defined for pairs in 

https://doi.org/10.4153/CJM-1989-023-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-023-8


540 D. PREISS AND B. S. THOMSON 

B so that for every e > 0 there is an element f3 G A that contains a partition 
of every interval with endpoints in B and such that for every packing -K C (3, 

J2 |F(y ,z) - / ( (y + z ) / 2 ) ( y - z ) | < c . 

We shall say for any such pair that F is an indefinite integral of F. In that 
case we write 

(*) [ f(x)dx=F(a,b) 
Ja 

for any pair of numbers a and b with a,b G B. The prefix {Si ) may be dropped 
where it is clear so that the integral is simply written ja f(x)dx; this will not 
interfere with classical notations since when the integral exists in any of many 
well-known senses (Riemann, Lebesgue, Denjoy-Perron) it will exist in this 
present sense and with the same value. In the case of periodic functions (with 
period p say) this evidently allows integration over a period J^+Pf(x)dx for 
almost every a. For periodic functions the integral may be presented in an 
essentially simpler way that more closely mimics the definition of the Riemann 
integral. See the material in Section 11 for a complete discussion. 

As we shall see the integrability of a function in this sense will require that it 
be measurable (see Theorem 8.3). Two measurable functions that are Lebesgue 
equivalent (i.e., equal almost everywhere) are interchangable as far as integra­
bility and the integral are concerned (see Theorem 8.6) thus it will be natural to 
require for an integral f f(x)dx only that / is measurable and defined almost 
everywhere. 

THEOREM 8.3. If a real-valued function f is A-integrable with an indefinite 
integral F then f and F are measurable and F is A -continuous at every point. 

Proof. By 6.9 and 5.6 the function/ is almost everywhere equal to the ap­
proximate symmetric derivative of F. Hence the measurability of / follows 
immediately from 3.4. That F is approximately symmetrically continuous ev­
erywhere follows directly from Lemma 7.4. 

Assume for the moment that F is not measurable. Then there are real numbers 
a < b such that the sets 

U = {x eR;F(x)>b} 

and 

V = {x £R;F(x)<a} 

cannot be separated by a measurable set. Thus 3.2 with h— 1/(1 +1/|) provides 
us with a measurable set P of positive measure and with a positive constant c 
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such that the sets {x e U HP; \f(x)\ < c} and {x G V HP; |/(JC)| < c} are 
of full outer measure in P. Since/ is measurable, we infer that \f(x)\ < c for 
almost all x £ P. 

Using 8.2 with e = (b — a)/4, we find an element (3 G A such that for every 
([y,zlx)e/3, 

\F(y) - F(z) -f((y + z)/2)(y - z)\ < (b - a)/A. 

From 1.5 we may take a density point x of P which has the property that the 
set 

{t\([x,x + t],x + t/2) G/3} 

has upper density 1 on the right at 0. We find j G ( i , x + ( f t - a)/4c) such that 
\PH(x,y)\ >(y-x)/4and 

\{u G (x,y);{[x,yUx + u)/2) G f3}\ >(y -x)/4. 

Let N be the set of all those points u G Pn(x,y) such that ([x,_y], (x-\-u)/2) G /? 
and |/((JC + H)/2) | < c. Then N is a measurable subset of F of positive measure. 
However, for every u G N we have 

\(F(u) - F(x))\ < \(F(u) - F(x)) -f((x + u)/2)(u - x)\ 

+ \f((x + u)/2)\(u-x) 

< (b - a) IA + c[(ib - a)/4c] = (b - a)/2. 

But this implies that at least one of the sets U Pi N and V Pi /V is empty, which 
contradicts that they both have full outer measure in P. This contradiction shows 
that F is measurable and completes the proof. 

THEOREM 8.4. Iff and f2 are A-integrable then so too is any linear combi­
nation c\f\ + cifi and 

f>b rb rb 

/ (c\f\(x) + c2f2(x))dx = ci / f(x)dx + c2 / h(x)dx 
Ja Ja J a 

for all a, b in a set of full measure. 

THEOREM 8.5. Letf be integrable. Then for every interval [a, b] with endpoints 
in a set of full measure there is a sequence of Riemann sums 

lim V / ((*£>, +x<"»)/2) (*<"> -*£>,) = / f(x)dx 

where {xfÇ\x\n\ . . . ,x{^} is a partition of [a, b] and max{jt(w) — xj^ } —> 0. 
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THEOREM 8.6. If f — g almost everywhere and f is A-integrable then g is 
Si -integrable and 

b çb 
f{x)dx = / g(x)dx 

J a 

for all a,b in a set of full measure. 

Proof We know that / is measurable and that f£=Ffor some additive 
interval function F. By 6.5 and 5.6 we have g I =fl and consequently g I = F. 
By Lemma 8.2 then g is integrable and also has F as an indefinite integral. 

THEOREM 8.7. Iff and g are Si -integrable functions for which 

b çb 
f(x)dx = / g(x)dx 

J a 

for all a1 b in a set of full measure then f = g almost everywhere. 

Proof We know that / and g are measurable and, because of the indentity 
of the two indefinite integrals, f£ = gl. By Lemmas 6.5 and 5.6 then/ = g 
almost everywhere. 

THEOREM 8.8. In order for a function f to be A -integrable with an indefinite 
integral F it is necessary and sufficient that the following hold: 

1. F is a measurable, additive interval function that is everywhere Si -
continuous. 

2. f is almost everywhere the approximate symmetric derivative of F. 
3. F* is a-finite and vanishes on every set of Lebesgue measure zero. 

Proof. These conditions are necessary and sufficient in order that F =ft. 
See Theorems 6.9, 6.8 and 8.3. 

COROLLARY 8.9. In order for a function f to be Si -integrable with an indefinite 
integral F it is sufficient that F is a measurable, additive interval function for 
which any one of the following hold: 

\.f is everywhere the approximate symmetric derivative of F. 
2.f is the approximate symmetric derivative of F at all but denumerably many 

points and F is everywhere Si -continuous. 
3. / is almost everywhere and F*-almost everywhere the approximate sym­

metric derivative of F. 

THEOREM 8.10. Iff is integrable on every finite interval in the sense of Rie-
mann, Lebesgue or Denjoy-Perron then f is SL -integrable and the integrals 
agree. 

Proof. Iff is Denjoy-Perron integrable with an indefinite integral F then for 
every e > 0 there is a positive measurable function 6(x) so that every sum of 

/ 
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the form 

n 

over a partition of an interval [a,b] with £, 6 fx,_i,X/] and x, — JC/_I < £(£/) 
must be within e of F(/?) — F(#) (see [15], for example, for a proof). We write 
H(a1b) = F(b) — F (a) so that H is a measurable, additive interval function. 

Let /? be the collection of interval-point pairs 

U[x-t,x + tlx);0<t<6Qc)}. 

This is clearly an element of A and for any partition ix C (3 of an interval [a, b] 
the sum 

(/,A-)GTT 

may be expressed in the form 

n 

^/(eofe-x,-!) 
/=i 

over a partition of an interval [a,b] with £,- G [jt/-i,Jt/] and JC,- — JC/_I < £(£/) 
merely by using the identity 

f(Xi)\[Xi - thXi + ti\\ =f(Xi)\[Xi - //, Jf/]| +f(Xj)\[Xj,Xi + / / ] | . 

From this we can deduce Var(/£ — H,(3) < e ; and hence that/7 = / / . The 
theorem evidently follows now from Lemma 8.2. 

THEOREM 8.11. If a function f is JA-integrable and nonnegative then f is 
Lebesgue integrable on every finite interval. 

Proof. If F is an indefinite integral for/ then it is easy to see, from Lemma 
8.2 for example, that F(a,b) ^ 0 for all pairs in a set B of full measure. 
Thus we may extend F to a continuous monotonie function defined everywhere 
and, since / is almost everywhere the approximate symmetric derivative of F, 
evidently F' = f almost everywhere. Consequently/ is Lebesgue integrable on 
each interval. 

9. Integration by parts. While an adequate integration by parts formula 
is available for the A -integral there are a number of differences between this 
theory and others. The integral here is very fragile; for example a function/ may 
be integrable without the product fg having an integral even for very smooth 
functions g. Thus if F(x) — x~2 then F'(x) is integrable but F\x) sin x and F(x) 
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are not. We focus then on the validity of the usual integration by parts formula 
rather than on conditions that supply integrability. 

The integration by parts formula is obtained from a trivial identity. Let F 
and G denote functions defined everywhere and let AF and AG denote the 
corresponding interval functions. We use the following elementary computation 

G(x)[F(x + h)- F{x ~ h)] + F(x)[G(x + h) - G(x - /?)] 

- [F(x + h)G(x + h) - F(x - h)G(x - h)\ 

= [F(x - h) - F(x)][G(x -h)- G(x)] 

+ [F(x + h) - F(x)][G(x + h)- G(x)\ 

to obtain the identifity 

(7) GAF +/AG - AFG = LFG - RFG 

where the interval functions Lfc and RFG are defined by the statements 

LFG(x -h,x + h) = [F(x -h)- F(X)][G(x - h) - G(x)] 

and 

RFG(x -h,x + h) = \F(x + h)- F(x)][G(x + h)G(x)}. 

From this identity we obtain immediately that the condition under which the 
integration by parts formula holds is merely that V(LFG — RFGlA[R]) = 0. 
It is easy to prove that V(LFG, A [E]) = V(RFGlA[E]) if F is approximately 
continuous at every point of F and if G has bounded variation (or even if G 
is VBG*) and this may be used to obtain special conditions under which the 
forumla is valid. 

LEMMA 9.1. Let the functions F and G be defined everywhere. Then, on the 
assumption that the integrals exist, the integration by parts formula 

b rb 

F(x)dG(x) = F(b)G(b) - F(a)G(a) - / G(x)dF(x) 
J a 

holds for a and b in a set of full measure if and only if 

V(LFG-RFGlA[R]) = 0. 

For a further application we obtain another variant under certain natural con­
ditions; of course other versions are possible. 

LEMMA 9.2. Let the real functions f and g be integrable where the functions 
F and G are their indefinite integrals. Suppose that the following integrals 

L 
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exist and that G has bounded variation on every compact interval. Then the 
integration by parts formula 

rb pb 

(8) / F(x)g(x) = F(b)G(b) - F(a)G(a) - / G(x)dF(x) 
J a J a 

holds for a and b in a set of full measure if and only if the measure (AFG)* 
vanishes on every set of Lebesgue measure zero. 

Proof. The necessity is clear, If (8) holds then AFG = Fgl + Gfl = 
FAG + GAF. Thus for any set N of Lebesgue measure zero (i.e., with l*(N) — 
0)(FAG)*(A0 = (Fg£)*(N) = (Fgl)*(N) = 0 and (GAF)*(N) = (Gfl)*(N) = 0 
so that (AFG)*(N) = 0. 

For the sufficiency F is approximately continuous on a set of full mea­
sure B and so V(LFG,A[B]) = V(RFG,A[B]) = 0 since G has bounded 
variation. If N = R \ B then, since N has Lebesgue measure zero (i.e., 
t*(N) = 0),(FAG)*(N) = (Fgl)*(N) = 0), (FAG)*(N) = (Fgl)*(N) = 0 
and (GAF)*(A0 = (Gfl)*(N) = 0. Thus if, in addition, (AFG)*(N) = 0 it 
follows from the identity (7) that V(LFG — RFG,J?L[N]) = 0. Consequently 
V(LFG — RFGl J2[R]) = 0 and the present integration by parts formula follows 
from Lemma 9.1. 

10. The A -Perron integral. The fact that a monotonicity theorem is avail­
able for the approximate symmetric derivative allows a Perron type approach to 
the integral. In this section we sketch out how such an integral could be defined 
(a number of variants are possible) and show that the resulting integral is in­
cluded in the A -integral. We will define the A -Perron integral for an arbitrary 
measurable interval function h in such a way that applied to such a function of 
the form (/,x) —»/(jt)|/| it will produce a direct generalization of the classical 
Perron integral as defined in Saks [17]. 

There are two natural approaches to a Perron-type integral in this setting. 
For a measurable function / we can say that an additive, measurable interval 
function H is a majorant of/ provided that the lower approximate symmetric 
derivative of H exceeds / everywhere; alternatively we might require formally 
less of a majorant by asking that the lower approximate symmetric derivative 
of H exceeds / almost everywhere but that it is greater than — oo everywhere. 
Minorants G are then defined so that —G is a majorant of —/ and the Perron 
integral is defined by taking extremes over all majorant of —/ and the Perron 
integral is defined by taking extremes over all majorants and minorants. Of 
course here the extremes are interval functions defined on intervals [a, b] for all 
a, b in a set of full measure. 

Such an approximate-symmetric Perron type integral would be justified by 
either of the following two monotonicity theorems. 

LEMMA 10.1. [Freiling-Rinne] An additive, measurable interval function H 
that has everywhere a nonnegative lower approximate symmetric derivative is 
nonnegative. 
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Proof. Under these assumptions the collection 

Pn = {([x -t,x + t],x);H(x-t,x + t) > -t/n} 

is an element of A for every integer n. If (3„ contains a partition of [a, b] then 
evidently //(a, b) > —(b — a)/(2n). Thus, using 1.6, choose a set of full measure 
B so that every (3„ contains a partition of every interval with endpoints in B. 
Then F(a, b) ^ 0 for all such intervals which is what it means for F ^ 0. 

LEMMA 10.2. An additive, measurable interval function H that has almost 
everywhere a nonnegative lower approximate symmetric derivative and every­
where a lower approximate symmetric derivative greater than —oo must be 
nonnegative. 

Proof The proof here is similar to the proof of 10.1 but requires handling 
this set of measure zero. Let / be the lower approximate symmetric derivative 
of F and define the sets E0 = {x;f(x) ^ 0},£i = {x;0 > f(x) ^ - 1 } , 
E2 = {x;— 1 > f(x) ^ —2} and so on. These are measurable sets since, by 
hypothesis, for n è 1 each En has measure zero. 

Let e > 0 and choose open sets Gn containing E„ for n = 1,2,... so that 
\Gn\ < e/n2n. Let /?0 be the collection {(/,*)); F(I) > -e\I\} and, for each 
n — 1,2,... let f3n be the collection {(/,x)); F(I) > —n\I\}. The collections 
f3n(G„) are in Si[En] (using for convenience Go = R). Thus 

P=\JPn(Gn) 

belongs to A. If /3 contains a partition of an interval [<a, b] then evidently 

oo 

F(a, b) ^ -e(b - a) - ] T ne/nT = -2e(b - a). 
l 

The proof may now be completed as in the proof of 10.1. 
We develop the integral in some greater generality since there are few extra 

complications that arise. Let / be a measurable real function defined almost 
everywhere and let h be a positive measurable interval function. We shall assume 
always that h* is a-finite, i.e., that there is a sequence of measurable sets covering 
the real line on each of which h* is finite. 

An additive, measurable interval function H is said to be an A -major function 
for/, A if 

. H(x-t,x + t) 
ap- urn inf = fix) 

t\o h(x-t,x + t) 
for almost every point x and 

. H(x-t,x + t) 
ap- hm inf > — oo 

r\o h(x -t,x + t) 
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everywhere. Similarly an additive, measurable interval function G is said to be 
an ft -minor function for / , h if 

G(x -t.x + t) . „ 
ap- hm sup S fix) 

t\o h(x-t,x + t) 
for almost every point x and 

G(x -t,x + t) 
ap- hm sup < +00 

t\o h(x — t,x + t) 
everywhere. 

For such functions/,// we define the functions 

fdh — inf{//; H a major function for/, h} 

and 

fdh = sup{//; H a minor function for/, h} 

We claim that these functions are well defined interval functions in our sense. 
The extrema are taken in the complete lattice of measurable interval functions 
and may hence be realized as the limit of a sequence. (See, for example, [12, 
Example 23.3(iv), p. 126].) This allows the limit functions to be defined on all 
intervals [a,b] with endpoints in a set of full measure. Lemma 10.3 below will 
show that invariably fdh_ ^ fdh. 

We say that/,/* is ft-Perron integrable if 

—00 <fdh_ —fdh < +00 

i.e., if the functions agree and are finite valued almost everywhere. In this case 
then either is taken as the indefinite integral in the ft -Perron sense. If/,/z is 
ft -Perron integrable then the integral Ja fdh = fdh(a, b) is defined for all a1 b 
in a set of full measure. 

To justify the definition of the ft -Perron integral in general we require the 
following "monotonicity" lemma. If F is an ft -major function for / , /z and G 
is an Si -minor function for /,/z then, because of Lemma 10.3 below and the 
approximate continuity of F and G on B we must have 0 ^ F(a1 b) — G(a, b) 
for every interval with endpoints in a set of full measure. 

LEMMA 10.3. Let f be a measurable function and let h be a measurable 
positive interval function for which H* is a-finite. If F is an Si-major function 
for f ', h and G is an A -minor function for /z, h then F ^ G. 

Proof. Let e > 0 and suppose that {En} is a disjointed sequence of measurable 
sets covering the line with each h*(En) finite. Choose a sequence of positive 
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numbers {cn} so that J ^ l i cnh*(En) < e. For each n choose an element (3n of 
SA [En] so that 

Var(/z,A)</z*(£J + e/(2VJ 

and so that both inequalities 

F(I) ^ (/(*) - cn)h(I) 

and 

G(I)£(f(x) + cn)h(I) 

hold for all pairs (7,x) G /3n. Note that this means that 

F(I) - G(I) ^ -2cnh(I) 

for such pairs. Then, by Lemma 1.3, the collection 

oo 

0=\j0n[En] 

is an element of A. For any interval [#, b] for which (5 contains a partition we 
compute 

oo 

F (a, b) - G(a, b ) ^ - ^ 2cnh\En) + e/2n ^ -3e . 
«=i 

As e is arbitrary we may pass as before to a set of full measure with the property 
that 0 ^ F(<2, b) — G(a1 b) for every interval with endpoints in that set. 

THEOREM 10.4. Let f be a measurable function and let h be a measurable 
positive interval function for which h* is a-finite. Iff,h is Si-Perron integrable 
then fh is Si -integrable and the integrals agree. 

Proof. Let e > 0 and let //(a, b) — Ja fdh for this integral. Let F and G be 
major and minor functions for/ , h with 0 ^ F(a1 b) — G(a, b) < e for a fixed 
pair <2, b. 

We give the proof for h* finite but if h* is only cr-finite a proof using the 
ideas of the proof of Lemma 10.2 may be fashioned. The collections 

(3l={(I1x);F(I)^(f(x)-e)h(I)} 

and 

/Î2 = {( / , Jc ) ;G( / )^( /W + e)/i(/)} 
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are elements of fr. Choose (5 C (3\ Pl/32 in SA. so that Var(/z, (3) < A*(R) + 1. For 
pairs ( / ,*)£/? 

\H(I) -f(x)h(I)\ ^ F(I) - G(I) + eh(I) 

so that 

Var(// -fh, (3{[a, b])) ^ e(2 + A*(R)). 

From this it follows that V[fl,ft](i/ -fh, A [R]) = 0 and then finally that V(H -
fh, SI [R]) = 0. Since H =fh the result now follows from 7.3. 

11. The periodic integral. Let / be a 27r-periodic function. We may directly 
define a Riemann-type integral as a limit of Riemann sums over a partition of 
any period; here the limit is taken in an "approximate symmetric" sense but 
otherwise the integral is very much a familiar looking Riemann integral that 
generalizes the classical integral. 

Recall that a measurable approximate symmetric interval-point relation j3 (def­
inition 1.1) is a collection of pairs ([x — t,x + t], x) satisfying the requirement 
that there is a measurable set T C R x (0, oo) such that ([x — t,x + f],x) G f3 
whenever ( i , 0 G r , and for every x G R 

lim sup \{t e (0, h); (x, t) £ T}\/h = 0. 

A finite sequence 

Xo <X\ < . . . <Xn^i <Xn 

such that xo = a and xn = b is a partition of [a, fr] subordinated to /3 if 

([Xi-uXilOci+Xi-Ofàep 

for every / = 1,2,...,«. The main result of Section 2 asserts that for every 
such (3 there is a partition of [a, fr] subordinated to (5 for all a, b in a set of full 
measure. This observation allows us to define a simple Riemann-type integral 
for 27r-periodic functions. 

Definition 11.1. Let/ be a 27r-periodic function. We say that/ has aperiodic 
integral if there is a number c such that for every e > 0 there is a measurable 
approximate symmetric covering relation (3 such that, for any partition 

Xo < X\ < . . . < X„_i <Xn = Xo + 27T 

that is subordinated to /?, 

^ / ( ( x / _ i +X()/2)(xi -Xi-\) • <e. 
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Because such partitions exist this number c, if it exists, is unique and we may 
write it as Ja f(x)dx. It is immediately clear that a 27r-periodic function that is 
Riemann integrable is integrable in this sense and to the same value. This justifies 
using this simple notation for the concept; as we shall see this integral generalizes 
most familiar integration procedures and is in fact precisely the integral defined 
in Section 8. Directly from the definition it is possible to see that the integral 
has some considerable generality in that it integrates the exact approximate 
symmetric derivative of measurable functions; in particular then it integrates 
exact ordinary derivatives. Indeed iff is a 27r-periodic measurable functions with 
/ everywhere the approximate symmetric derivative of a measurable function F 
then the collection 

0= \(lx -h,x + h\x); 
F(x + h) - F(x - h) 

2h 
-fix) <e 

is, for every e > 0, a measurable approximate symmetric covering relation. For 
this any sum 

]T]/((•*/-! +Xi)/2)(Xi -Xi-i) 

taken over a partition of length 2iv subordinated to (3 cannot differ from F(2ir + 
t) — F(0) by more than 27re. 

THEOREM 11.2. Let f be a 2n-periodic function that has a periodic integral. 
Thenf is Si -integrable and 

J f(x)dx = (A)l f(x)dx 

for all c in a set of full measure. 

Proof By definition, since/ has a periodic integral, for every e > 0 there is 
an element (3 G A so that 

(9) / f{x)dx-Y\f{x)\l\ 
Jo " 

< e 

for every partition 7 of an interval of length 2TT from /3. Let B be a set of full 
measure such that (3 contains a partition of every interval with endpoints in B ; 
we may assume that f3 contains only pairs ([a, Z?], (a + b)/2) with a and b in B. 

If 7i and 72 are partitions of the same interval and both are contained in 
(3{[a, a + 2TT]) where both a and a + 2TT are in B then there is a packing 73 so 
that oc\ — 7i U73 and a2 = I2 U73 are partitions of [a, a + 27r]. Consequently, 
by (9), 

£/(x)|/|-^/(*)|/| è2e 
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which gives 

|£/(*)i/i-£/(, 
72 

^ 2 e . 

If we now argue as in the proof of Lemma 7.2 but just on the interval / = 
[a, a + 27r] we may obtain an additive interval function F defined for almost 
all pairs in that interval and with Vj(f£ — F,A [R]) = 0. We can extend F by 
periodicity and additivity to an additive interval function defined for all pairs 
in a set of full measure on the real line. For this Vj(f£ — F,.#[R]) = 0 for 
every interval / of length 2TT so that, by Corollary 4.8, V(f£ —F,A [R]) = 0 
and consequently / is J3 -integrable. Certainly JQ

 7Tf(x)dx = F (a + 2TT) — F (a) 
for almost all a. 

For an arbitrary function / one can define a "periodic integral" over an arbi­
trary interval [a, b] by extending / from [a, b] to a function g so as that f — g 
there and g is (b — a)-periodic. We could write Ja f(x)dx for J g(x)dx if g 
has a periodic integral in this sense. Such a scheme is not entirely satisfying 
but serves to define an integral defined on all intervals which at first sight might 
seem to recommend it. Note the following disadvantage of such an "integral". 
The function F' where F(x) = \x\~l would be integrable by such a method on 
the interval [—1,1] and not so on the intervals [—1,0] and [0,1]. This kind of 
non-additivity is considered a defect in any proposed integration theory. 

This procedure may be shown to be equivalent to the following limit pro­
cess which can be considered a kind of approximate-symmetric principal value 
computation: iff is A -integrable then the above periodic integral of/ may be 
written as 

rb rb—h 

/ f(x)dx = a p - lim(*) - / f(x)dx. 
Ja h\° Ja+h 

12. Coefficient problem for trigonometric series. Our main application 
of the integration theory developed in this article is to show that, with this 
definition of the integral, an everywhere convergent trigonometric series is the 
Fourier series of its sum. Note, however, that not every A -integrable function 
has a Fourier series in this sense. For example the function F(x) — \x\~x is an 
indefinite A -integral but F'{x) sin nx is not integrable for any n. 

THEOREM 12.1. Let the trigonometric series 
oo 

<2o/2 + 2_\ ak cos kx + bk sin kx 
lc=0 

converge everywhere to a finite value f(x). Then f is A -integrable, and the 
series is the A -Fourier series for f, i.e., for each n 

rp+2it 

iran = (A ) / f{t) cos t dt 
Jp 
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and 

rp+2lT 

7rbn = ift) / f(t)sintdt 
Jp 

for all p in a set of full measure. 

Proof The formally integrated series 

oo 

F(x) — xao/2 + 2_"(bk coskx — ak sinkx)/k 
k=0 

converges on a set B of full measure and has everywhere fix) for its ft -derivative 
(see [24, Theorem 2.22, p. 324]). Consequently, by Lemma 8.9,/ is ft -integrable 
and AF is an indefinite integral. Moreover, if we integrate through a period we 
evidently obtain the formula for a$. 

In much the same way we obtain a formula for the remaining coefficients; we 
multiply the series 

oo 

ao/2 + V^ an cos nx + bn sin nx 
n=0 

by cos kx, use elementary trigonometric identities for cos nx cos kx and for 
sin nx cos kx, and rearrange the series to obtain a trigonometric series that 
converges everywhere to/(x) cos kx. For example the term corresponding to an 

cos kx cos nx is replaced by 

an(cos(n + k)x + cos(« — k)x)/2. 

As before, its formalloy integrated series converges on a set B of full measure 
and has everywhere fix) cos kx for its ft -derivative. Consequently/(x) cos kx is 
ft -integrable and we may integrate it over a period [p,p + 2ir] for an appropriate 
choice of p. Since the constant term in the series for f(x) cos kx is a^/2 this 
gives the required formula for a^. A similar argument supplies the formula for 
bk. 

13. Relations to other integrals. In this section we wish to point out the 
relations that hold among the various symmetric integrals that have been defined. 
Recall that on the one hand we have the (SCP)-integral of Burkill, the r é ­
intégrai of Marcinkiewicz-Zygmund, and the P2-integral of James all related 
to the second order symmetric derivative, while our ft -integral arises from the 
approximate symmetric derivative. 

Let us say at the outset that while these other symmetric integrals are based 
on quite similar underlying principles the ft -integral, because it is based on 
the approximate symmetric derivative, belongs to a different family of integrals. 
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Accordingly one need not expect any close relationship even though all of these 
integrals are sufficient to integrate everywhere convergent trigonometric series. 

Our first observation is that the A -integral is neither contained in nor does 
it contain the two first order integrals of Burkill and Marcinkiewicz-Zygmund. 
This arises merely because of the continuity requirements of these integrals and 
elementary examples suffice to illustrate. Let F(x) — x~2 and f(x) — —2x~3 

its derivative. Because of the symmetry of the function F at the origin and 
that fact that F' = / everywhere else it is clear that / is A -integrable and that 
F(y)—F(x) = J^ f(i)dt for all x1 y in a set of full measure. But this same relation 
cannot hold in either of the senses of Burkill or Marcinkiewicz-Zygmund simply 
because in such a case F would have to be integrable, Denjoy integrable for the 
Burkill (SCP)-integral and Lebesgue-integrable for the Marcinkiewicz-Zygmund 
integral. Also the function G(x) = —x~l would represent a (not normalized) 
second order indefinite /^-integral of / on any interval excluding the origin; 
but no adjustment is possible to obtain a continuous such function for intervals 
that contain the origin and indeed there are no major or minor functions for 
/ in the sense of the P2-integral. In summary A -integrability does not imply 
integrability in the sense of any other symmetric integral. 

This behaviour at a single point is also enough to cause this problem in the 
other direction. We may define a function F that is everywhere differentiable 
except at the origin and such that 

lim \jh I f F{t)dt - J F{t)dt\ = 0 

and yet F is not approximately symmetrically continuous at the origin. In this 
case F' is (SCP)-integrable and hence also P2-integrable but certainly not A-
integrable. 

For example let each interval [\/{n + 1), l/n] be split into the three adjacent 
intervals I\nihn and !$„ (in that order) by choosing a small centered interval lin 

of length 2~n times the length of [l/(w + 1), l/n]. Define F(x) = (-1)" on each 
I\n, F(x) — (—1)"+1 on each I3n, and choose F on I2n so that \F(x)\ ^ 1, F is 
continuously differentiable on [l/(n+ 1), l/n] and 

r\/n 
/ F(t)dt = 0. 

J\/(n+\) 

This defines F on (0,1); extend F by writing F(—x) = —F(x) and F(0) = 0. 
We evidently have 

rh rO 

lim \/h / F{t)dt = lim \lh / F(t)dt = 0 
h\0 Jo h\0 J0h 

and F' exists except at 0. But the set {h > 0; \F(h) — F(—h)\ ^ 1} has density 
1 at 0 and so F is far from symmetrically approximately continuous here. Thus, 
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while F serves as an indefinite (SCP)-integral of its derivative, F' cannot be 
A -integrable. 

While these trivial differences separate the integrals there is still a compat­
ibility problem: if a function / is integrable in two different symmetric senses 
then do the integrals computed by the two different procedures yield the same 
values? The answer is, perhaps surprisingly, that they do not. We may produce 
a function / integrable in both the A -sense and in the (SCP)-sense but with 
different indefinite integrals in the two senses. Again this is not deep but is 
just a reflection of the fact that the continuity requirements of the two integrals 
differ. 

To construct such an example we again let I\n, I2n and hn denote the intervals 
defined above; let F vanish on each interval I\n and /3/2 and be defined on l2n so 
as to be nonnegative and continuously differentiable on [\/)n+ 1), \/n] with 

r\/n 
/ F{t)dt= \/n-\/(n+\). 

J\/(n+\) 

We set F\ to vanish on [—1,0] and to equal F on (0, 1] and we define F2 to 
have the constant value 1 on [—1,0] and to equal F on (0,1]. Note that F\ 
has been choosen so as to be approximately continuous at 0 while F2 has been 
chosen so as to be (SC)-continuous in Burkill's sense. Le t / = F[ = F'2. Then 
F\ is an indefinite A -integral for/ and F2 is an indefinite (SCP)-integral for/ 
which exhibits the essential incompatibility of the integrals. This same example 
illustrates compatibility problems with the /^-integral and the Marcinkiewicz-
Zygmund integral. 
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