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COVERING GROUPS WITH SUBGROUPS

R.A. BRYCE, V. FEDRI AND L. SERENA

A group is covered by a collection of subgroups if it is the union of the collection.
The intersection of an irredundant cover of n subgroups is known to have index
bounded by a function of n, though in general the precise bound is not known.
Here we confirm a claim of Tompkinson that the correct bound is 16 when n is 5.
The proof depends on determining all the 'minimal' groups with an irredundant
cover of five maximal subgroups.

1. INTRODUCTION

A covering or cover of a group G is a collection of subgroups of G whose union
is G. We use the term n-cover for a cover with n members. The cover is irredundant
if no proper sub-collection is also a cover. Neumann [5] obtained a uniform bound
for the index of the intersection of an irredundant n-cover; see Tompkinson [7] for an
improved bound. We shall write f(n) for the largest index \G : D\ over all groups G
with an irredundant n-cover with intersection D. An immediate consequence is that
such a group G has a permutation representation of degree at most f(n), with kernel
corec (D). In particular G/ coreo (£)) is a finite group with an irredundant n-cover
whose intersection is core-free.

The groups with an irredundant core-free intersection covering are known precisely
when n = 3 (Scorza [6]) and when n — 4 (Greco [4, p.58]): see Propositions 2.3 and
2.4 below. Partial results are known for n = 5: Greco [3] lists all groups with an
irredundant 5-cover in which all pairwise intersections are the same; and Tompkinson
[7] claims that /(5) = 16.

The aim of the present article is to fill in some of the missing detail when n = 5.
We are concerned with irredundant, core-free intersection 5-covers in which all five
subgroups of the cover are maximal. A cover in which all subgroups are maximal we
shall call maximal.

THEOREM 1 . 1 . Let G be a group with a maximal irredundant cover of five
subgroups with core-free intersection D. Then either

(a) D — 1 and G is elementary Abelian of order 16; or
(b) D = 1 and G = Alt4; or
(c) \D\ = 3, |G| = 48 and G embeds in Alt4 x Alt4.
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THEOREM 1 . 2 . /(5) = 16.

. 2. PRELIMINARY RESULTS

The following results will be needed below. Where no proof is given it is either
very easy or a reference is given.

LEMMA 2 . 1 . Let {Ai: 1 ^ i ^ m} be a (maximal) irredundant covering of a

group G with intersection D. If N is a normal subgroup of G contained in D then

{Ai/N: 1 ^ i < m} is a (maximal) irredundant cover of G/N.

LEMMA 2 . 2 . (See [1, Lemma 2.2]) Let A = {At: 1 < i ^ m} be an irredundant
covering of a group G whose intersection is D.

(a) If p is a prime, x a p-element of G and \{i: x & Ai}\ = n then either
x £. D or p ^ m — n.

(b) f) Aj = D (l^i^m).

(c) If P| Ai — D whenever \S\ = n then P| .A*: .D ^ m — n+ 1 whenever

|r|e=n-i.
(d) If A is maximal and U is an Abelian minimal normal subgroup of G

then, if \{i: U < Ai}\ = n, either U C D, or \U\ ^ m - n.

PROPOSITION 2 . 3 . (Scorza [6]) Let {A{ : 1 ^ i ^ 3} be an irredundant cover

with core-free intersection D of a group G. Then D = 1 and G = C2 x C2-

PROPOSITION 2 . 4 . (Greco [4]) Let {A{: 1 ^ i ^ 4} be an irredundant cover

with core-free intersection D of a group G. If the cover is maximal then either

(a) D = 1 and G ^ Sym3 o r G S C 3 x C 3 ; or

(b) \D\ = 2, \G\ = 18 and G embeds into Sym3 x Sym3.

If the cover is not maximal then either

(c) D = 1 and G ^ Ds, or G S G4 x C2, or G ST G2 x C2 x C2; or
(d) |£>| = 2 and G ^ £>8 x G2.

LEMMA 2 . 5 . Let G be a group with a maximal irredundant 5-cover with core-

tree intersection D.

(a) G is a 2-group if and only if D — 1 and G is eiemenfcary of order 16.

(b) G is not a 3-group.

PROOF: Let G — Mi U M2 U M3 U M4 U M5 be a maximal irredundant cover for a
p-group G, with core-free intersection D. Now <J>(G) C D so D < G, therefore D = 1,
and G is elementary Abelian. By Lemma 2.2(b), (c), |M< DM,-n Mfc| 4 2 whenever
i, j , k are distinct. When p = 2, therefore, |G| ^ 16. Also |G| ^ 8 since otherwise G
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does not have five maximal subgroups. However \G\ — 8 is impossible. For, if \G\ = 8
and |Mi n Mi D Mz\ = 2 then G — Mi U Mi U M3, contradicting the irredundance of
the cover; and if M\ f~lM2 C\Ms = 1 then \M\ U M2 U M 3 | = 7, so G is covered by four
of the Mj , again a contradiction. Conversely if (a, 6, c, d) is elementary of order 16,
then (a, b, c), (a, b, d), (a, c, d), (6, c, d) , (aft, 6c, cd) provide a maximal irredundant
core-free intersection cover.

When p — 3 we conclude that Mi DMj f)M^ = 1 for all distinct i, j , k. \G\ > 9
since an elementary Abelian group of order 9 has only four maximal subgroups; in
particular, no pairwise intersection is trivial. Hence \MiC\Mj\ = 3 (i^j). By the
inclusion-exclusion principle \G\ — 5.9 - 1 0 . 3 +10.1 - 5.1 + 1 = 21 , which is not a power
of 3, a contradiction. D

LEMMA 2 . 6 . Let F be finite Reid with q elements. Suppose that

(2.1) F 2 = S i U S 2 U . . . U S m

where Si is a translate of a one dimensional subspace Ui (1 ^ i ^ m). Then m ^ q

and

(a) ifm = q,Ui = Ui (l^i^q);

(b) if m — q + 1 and the union (2.1) is irredundant, then the subspaces Ui

are distinct and, for some r € F, Si — Ui + r (1 < i ^ q + 1) ;

and

(c) if m = q + 2 and the union (2.1) is irredundant then the subspaces Ui
( 1 ^ 2 ^ 9 + 2) do not cover F2.

PROOF: Firstly note that mq ^ q2 so m ^ q. Now observe that F2 can be
thought of as an affine plane in which the lines are the translates of one-dimensional
vector subspaces. The result then has an easy, and presumably well known, geometrical
proof. We give a sketch.

(a) In this case the space is covered by the q lines Si, each containing exactly q

points. Hence these lines are parallel and one of them passes through the origin.

(b) We are to prove that q +1 lines have a common point if their union is irredun-
dant and equal to F2. There are at most q mutually parallel lines, so Si and S2 say,
meet at a point P. Let A = S\ US2. Every line Si (3 ^ i < q + 1) meets A in at least
one point. Since \F2 \ A\ = q2 - (2q - 1) = (q - I)2 no line Si (3^i^q + 1) meets
A in more than one point. If q = 2 then S3 is incident with P since neither Si nor
S2 is redundant. Hence we may suppose that q > 2. Now no two Sj (3 < i ^ q + 1)
meet outside A. Suppose P G Si but P g Sj for some i, j satisfying 3 ^ i, j ^ q+l.
Then Sj is parallel to just one of Si , S2, say to Si, and also parallel to just one of S2,
Si therefore to Si, a contradiction since Si and Si are not parallel. That is, if three of
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the lines Si (1 ^ i ^ q + 1) pass through P then all do, and we are done. Suppose that
none of Si (3 ^ i ̂  q + 1) is incident with P. Then all Sj (3 < j ^ d) are parallel to
Si and all 5jt (d + 1 ^ A; ^ q + 1) are parallel to 52, for some d satisfying 3 ^ d < q+l,
or else the union (2.1) is redundant. It follows that \Si n Sj\ = 1 if i £ {1, 3, . . . , d)

and j 6 {2, d + 1, ..., q + 1}, and is zero otherwise; in particular all three-fold inter-
sections are empty. Hence, counting points, q2 = q(q + 1) — (d — l)(q - d + 2) whence
q = (d — l)(q — d + 2). However, both right-side factors are greater than 1, and hence
have a prime common factor which therefore divides both q and q +1, a contradiction,

(c) In this case q > 2. Two of the lines, say Sj. and 52, are parallel. It is
enough to show that there is another pair of parallels. If there is not, all the lines
Si (3 ^ i < q + 2) are incident in pairs, and each is incident with each of S\ and 52.
Since the complement of Si U 52 has cardinality q2 — 2q = q(q - 2), it follows that
Si Pi Sj C Si U 52 (3 ^ i < j ^ q + 2). If all these intersections are the same, say
lying in Si, then counting shows that S2 is redundant. Hence Si n 5/j ^ Si n 5* for
some h, fee {3, ..., q + 2}. Then 5^ n 5* is incident with 52, and there is some
St (3 < t ̂  q + 2) for which 5 2 D St ^ S2 D Sh. But then one of Sh n St or Sk n 5 t is
not incident with Si, a contradiction. D

LEMMA 2 . 7 . Let G be a group with the following structure: 03(G) is elemen-

tary Abelian of index 2 in G, and G has trivial centre. There does not exist a maximal

irredundant 5-cover of G.

PROOF: Let us suppose that the result is false, and that G is a minimal coun-

terexample. Note that \G\ > 6 since Sym3 is not a counterexample.

Let

(2.2) G = Mi U M2 U M3 U M4 U M5

be a maximal irredundant cover of G with core-free intersection D. Then |Mj| >

2 (1 < i ̂  5). Therefore either

(a) for some i, Mt = V := O3(G) and \G : Mj\ = 3 (j # i); or

(b) | G : M , - | = 3 forall j .

Now £> n V = 1 by Lemma 2.1 since D D V < G. Let a be an involution of G.

Since (a) is a Sylow 2-subgroup of G every 2-element of G is conjugate to o. Define

Si:={x€V:ax eMi}, 1 ̂  i ̂  5.

Either 5j = 0 or Si is a coset of Xt := V D Mj in V, and there is at most one of the
first type. For all x 6 V, there is an i for which ax 6 M< so

(2.3) ^ = Si U 52 U 5 3 U 5 4 U 5 5 .
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Prom Lemma 2.2(c) the intersection of every triple of the subgroups Xi (1 ^ i ^ 5)
is trivial. In the case (a) suppose that M5 = V, so that the pairwise intersections
Xi n Xj (1 ^ i < j < 4) are all trivial. In particular |V| = 9. Also S5 — 0 and

V = Si U S2 U 5 3 U 5 4 .

In this union all the 5< are essential since if, say, Si were omissible, then Mi would be
omissible in (2.2). However Lemma 2.6 now shows that the subgroups Xi (1 ^ i ^ 4)
are distinct. They therefore cover V making M$ redundant, a contradiction. This
shows that case (a) does not arise.

In case (b) we have V = Xx U X2 U X3 U X* U X5. From Lemma 2.5 this union
is redundant; and from Proposition 2.3 just one term, say Xi, is omissible. Since
1 = fl X j , by Lemma 2.2(b), it follows from Proposition 2.4 that |V| = 9 . Now we

apply Lemma 2.6. Firstly, by (c) of that result, the union (2.3) is redundant, and at
most two terms on the right are omissible. If omitting 5s say, leaves an irredundant
union then, by Lemma 2.6(b), V — Xi UX2 l)X3 U XA and M 5 is omissible from (2.2),
contradiction. If omitting 54 and 5s from (2.3) leaves V = S\U S2L) S3 then Lemma
2.6(a) yields Xi = X2 — X3 C D D V = 1, another contradiction. D

Finally we note the following well known fact which is used repeatedly, and without
explicit reference, throughout what follows: if M is a maximal subgroup, and U an
Abelian minimal normal subgroup, of a group then either U C M or U DM = 1.

3. P R O O F OF THEOREM 1.1

We have already determined the 2-groups which have maximal irredundant core-

free intersection 5-covers. The next lemma addresses non-2-groups

LEMMA 3 . 1 . Suppose that the intersection of a maximal irredundant cover of

five subgroups of a group G is core-free. If G is not a 2-group then every minimal

normal subgroup of G has order 4.

PROOF: By Lemma 2.2(a) G is a {2, 3}-group. Since G is soluble, by Burnside's
Theorem, every minimal normal subgroup U of G is Abelian. Moreover, by Lemma
2.2(d), \U\ ^ 4.

If \U\ — 2 then, again by Lemma 2.2(d), U is contained in at most three of the
subgroups At, say U <£ A4UA5. Since U is central, and since G = A4U = A5U, every
3-element of G is in A\ D A j . However if 1 ^ u € U and if y is a 3-element, then
uy £ A4 U A5. Hence uy 6 A^U A2U A3 and therefore y € A\ U A2 U A3. It follows
that a Sylow 3-subgroup 5 of G is in Ax U A2 U A3 and therefore, by Proposition 2.3,
in one of Ai (1 ^ i ^ 3), say in A3. Therefore 5 C A3 n At D A5 and so, by Lemma

https://doi.org/10.1017/S0004972700034109 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034109


474 R.A. Bryce, V. Fedri and L. Serena [6]

2.2(c), S C D. Since, therefore, every 3-element of G is in D so is the subgroup T

which they generate. Of course T < G so T = 1. But this contradicts the fact that G

is not a 2-group. Therefore G has no normal subgroups of order 2.

If \u\ — 3 then U is contained in at most two of the subgroups Ai, say U £

A3 U Aj U A5. It follows that G = UAi (3 ^ i < 5). An argument similar to that of the
last paragraph shows that every 2-element of C := CQ{U) is in D. Since the subgroup
they generate is normal it is 1, and we see that C is a 3-group. Also, $(C) C <3>(G) C D,

so $(C) = 1. That is, C is elementary Abelian. By Lemma 2.5(b) C ^ G. That is,
no minimal normal subgroup of G is central. However \G : C\ — 2, and so G satisfies
the hypotheses of Lemma 2.7, contradiction. D

P R O O F OF T H E O R E M 1.1: Let G be a group with a maximal irredundant cover
5
IJ Ai with core-free intersection D. By Lemma 2.5 we may suppose that G is not a

2-group. Suppose that U is a minimal normal subgroup of G. It follows from Lemma
3.1 that \U\ = 4. Also, by Lemma 2.2(d), U is in at most one of the subgroups Ai, say
U <£ A2UA3UA4U A5. A familiar argument gives that C :— CG(U) is an elementary
2-group. Moreover G/C embeds into Aut(C/) = Sym3, and O3(G/C) ^ 1. As G/C-

module, C has no non-trivial fixed points for the action of Os(G/C), using Lemma
3.1. It follows that C is the first or second nilpotent residual of G. Therefore C is
complemented in G, using the result in [2, (5.18) p.383], say G = CH where H = C3
or H = Sym3. As if-module C is completely reducible, and every minimal normal
subgroup of G is of order 4.

If C = U then G = Alt4 or G = Sym4. The first case is (b) of the theorem.
The second does not arise because Sym4 has no maximal irredundant cover of five
subgroups. For, D is core-free, does not contain the monolith of Sym4 so, by Lemma
2.2(d), four of the five subgroups of the cover are copies of Sym3 whilst the fifth,
therefore, contains all the elements of Sym4 of order 4. However this is a contradiction
because these elements generate Sym4.

If C ^ U then CA.(U) ± 1 (2 < i ^ 5), and C = U x CAi(U). Since D is
core-free, it follows from Lemma 3.1 and Lemma 2.2(d) that 1 = CAi(U) n CA-(U)
(2 ^ i < j 4. 5). Then, for i^j,

\CAj(U)\ \U\ = \C\ > \CAi(U)CAj(U)\ = \CA.(U)\ \CAj(U)\

so that \U\ ^ 10^(17)I ^ \U\. It follows that each CA.(U) is minimal normal in G.

That is, C is the direct product of two minimal normal subgroups of G. If H were
isomorphic to Sym3 then C, as H-module, would contain just three proper non-zero
submodules instead of the (at least) five it does contain. Hence \H\ = 3 .

Now we examine the nature of this cover for G. Choose a € G of order 3. Then
(a) is a Sylow 3-subgroup of G, and every 3-element of G is conjugate either to a or
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to a2. Define 5* := {w e C: aw € A{} (1 ^ i s£ 5) and A^ := At (lC (1 ^ t < 5) . S4

is a coset on iVj in C: it is not empty since otherwise Ai would contain no 3-element,
would therefore be equal to C , and some Nj would be in two of the Ak whence, by
Lemma 2.2(d), in D, which is core-free. We have

(3.1) C = Si U 5 2 U S3 U S4 U S5

since every aw is in some Ai. We may regard C as a space of dimension 2 over the
field F of 4 elements, where (a) is the multiplicative group of F, and apply Lemma
2.6(b). If the union (3.1) is irredundant then Si = NiC (1 < i < 5) for some c € C.
Hence ac € Ai (1 ^ i ^ 5), so |Z)| = 3 and G has the structure required by (c) of the
theorem. If, however, (3.1) is redundant then, by Lemma 2.6, at most one term, say

4 4
S5, is omissible and N{ = Ni (1 ^ i < 4). This gives Nx - f) Ni C f| Ai - D, a

»=i t=i

contradiction to the core-freeness of D. D

4. PROOF OF THEOREM 1.2

If the result is false, let G be a group with an irredundant cover C of five subgroups,
with core-free intersection D, for which \G : D\> 16. In the light of Theorem 1.1, C is
not maximal. Suppose C chosen from among such 5-covers of G with as many maximal
subgroups as possible. Let C* be a cover of G got from C by replacing one of its non-
maximal subgroups by a maximal subgroup containing it. Write D* for the intersection
of C*: D* 2 D. C* is redundant; for, if not, D* - D by Lemma 2.2(b), and so is
core-free, while C* has more maximal subgroups than does C. It follows that we may

5
write C = (J Ai where Ai is not maximal, and if A\ is a maximal subgroup containing

i-l
it, then C* — {A\, A2, A3, A4, A5} is redundant as a cover for G.

If G is an irredundant union of four of the subgroups in C*, then we may suppose
that

(4.1) G = A\ U A2 U A3 U A4

since A\ is certainly essential. If D\ := A\ C\ A2 n A3 n A4 then it follows from
Proposition 2.4 that \G : £>i| ^ 9 with equality only if A\ f~l A{ = Dr (2 ̂  i ^ 4). If
we have equality therefore, it follows that

(4.2) A*1=A1UDi\J(A5nA[),

an irredundant union. However from (4.1) we deduce that \A\ : D\\ — 3, and from (4.2)
and Proposition 2.3 that \A\ : Di\ = 2, a contradiction. Hence \G : D\\ < 8. Then,
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since D\ — A2 D A3 D A4, we have \Di : D\ ^ 2 by Lemma 2.2(c), so \G : D\ ^ 16, a
contradiction.

Lastly, if G is an irredundant union of three of the subgroups in C*, we may
suppose that

(4.3) G = A\ U A2 U A3

since A[ is surely included. Let us write N :— A2 D A3 (— A\C\ A2 = A\C\ A3). Now

(4.4) A[ = AiUNU{AlnA4)U(AlnAs).

If the union (4.4) is irredundant then \A\ : D\ = \A\ : A\ n N n A4 D A5\ ^ 9 . However,
by (4.3), \A{ : A2 n A3| = 2, so |̂ 4J : £>| ^ 9. Hence |G : D| = \G : A\\ \A\ : D\ <
16, a contradiction. On the other hand if the union (4.4) is redundant then three of
the subgroups on the right side are essential, and the possible intersections / satisfy
\I: D\ < 2, using Lemma 2.2(c). Hence \G : D\ = |G : A\\ \A\ : I\ \I: D\ < 2.4.2 = 16.
This contradiction completes the proof of Theorem 1.2. D
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