Bull. Austral. Math. Soc. Vol. 55 (1997) [469-476]

COVERING GROUPS WITH SUBGROUPS

R.A. BRYCE, V. FEDRI AND L. SERENA

A group is covered by a collection of subgroups if it is the union of the collection. The intersection of an irredundant cover of n subgroups is known to have index bounded by a function of n, though in general the precise bound is not known. Here we confirm a claim of Tompkinson that the correct bound is 16 when n is 5. The proof depends on determining all the 'minimal' groups with an irredundant cover of five maximal subgroups.

1. Introduction

A covering or cover of a group G is a collection of subgroups of G whose union is G. We use the term n-cover for a cover with n members. The cover is irredundant if no proper sub-collection is also a cover. Neumann [5] obtained a uniform bound for the index of the intersection of an irredundant n-cover; see Tompkinson [7] for an improved bound. We shall write f(n) for the largest index |G:D| over all groups G with an irredundant n-cover with intersection D. An immediate consequence is that such a group G has a permutation representation of degree at most f(n), with kernel $\operatorname{core}_{G}(D)$. In particular $G/\operatorname{core}_{G}(D)$ is a finite group with an irredundant n-cover whose intersection is core-free.

The groups with an irredundant core-free intersection covering are known precisely when n=3 (Scorza [6]) and when n=4 (Greco [4, p.58]): see Propositions 2.3 and 2.4 below. Partial results are known for n=5: Greco [3] lists all groups with an irredundant 5-cover in which all pairwise intersections are the same; and Tompkinson [7] claims that f(5)=16.

The aim of the present article is to fill in some of the missing detail when n=5. We are concerned with irredundant, core-free intersection 5-covers in which all five subgroups of the cover are maximal. A cover in which all subgroups are maximal we shall call maximal.

THEOREM 1.1. Let G be a group with a maximal irredundant cover of five subgroups with core-free intersection D. Then either

- (a) D = 1 and G is elementary Abelian of order 16; or
- (b) D = 1 and $G \cong Alt_4$; or
- (c) |D| = 3, |G| = 48 and G embeds in Alt₄ × Alt₄.

Received 24 June 1966

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

THEOREM 1.2. f(5) = 16.

2. PRELIMINARY RESULTS

The following results will be needed below. Where no proof is given it is either very easy or a reference is given.

- **LEMMA 2.1.** Let $\{A_i: 1 \leq i \leq m\}$ be a (maximal) irredundant covering of a group G with intersection D. If N is a normal subgroup of G contained in D then $\{A_i/N: 1 \leq i \leq m\}$ is a (maximal) irredundant cover of G/N.
- **LEMMA 2.2.** (See [1, Lemma 2.2]) Let $A = \{A_i : 1 \leq i \leq m\}$ be an irredundant covering of a group G whose intersection is D.
 - (a) If p is a prime, x a p-element of G and $|\{i: x \in A_i\}| = n$ then either $x \in D$ or $p \leq m n$.
 - (b) $\bigcap_{j\neq i} A_j = D \ (1 \leqslant i \leqslant m).$
 - (c) If $\bigcap_{i \in S} A_i = D$ whenever |S| = n then $\left| \bigcap_{i \in T} A_i : D \right| \le m n + 1$ whenever |T| = n 1.
 - (d) If A is maximal and U is an Abelian minimal normal subgroup of G then, if $|\{i: U \leq A_i\}| = n$, either $U \subseteq D$, or $|U| \leq m n$.

PROPOSITION 2.3. (Scorza [6]) Let $\{A_i : 1 \le i \le 3\}$ be an irredundant cover with core-free intersection D of a group G. Then D = 1 and $G \cong C_2 \times C_2$.

PROPOSITION 2.4. (Greco [4]) Let $\{A_i: 1 \leq i \leq 4\}$ be an irredundant cover with core-free intersection D of a group G. If the cover is maximal then either

- (a) D = 1 and $G \cong \operatorname{Sym}_3$ or $G \cong C_3 \times C_3$; or
- (b) |D| = 2, |G| = 18 and G embeds into $Sym_3 \times Sym_3$.

If the cover is not maximal then either

- (c) D=1 and $G\cong D_8$, or $G\cong C_4\times C_2$, or $G\cong C_2\times C_2\times C_2$; or
- (d) |D| = 2 and $G \cong D_8 \times C_2$.
- **LEMMA 2.5.** Let G be a group with a maximal irredundant 5-cover with corefree intersection D.
 - (a) G is a 2-group if and only if D=1 and G is elementary of order 16.
 - (b) G is not a 3-group.

PROOF: Let $G = M_1 \cup M_2 \cup M_3 \cup M_4 \cup M_5$ be a maximal irredundant cover for a p-group G, with core-free intersection D. Now $\Phi(G) \subseteq D$ so $D \subseteq G$, therefore D = 1, and G is elementary Abelian. By Lemma 2.2(b), (c), $|M_i \cap M_j \cap M_k| \leq 2$ whenever i, j, k are distinct. When p = 2, therefore, $|G| \leq 16$. Also $|G| \geq 8$ since otherwise G

does not have five maximal subgroups. However |G| = 8 is impossible. For, if |G| = 8 and $|M_1 \cap M_2 \cap M_3| = 2$ then $G = M_1 \cup M_2 \cup M_3$, contradicting the irredundance of the cover; and if $M_1 \cap M_2 \cap M_3 = 1$ then $|M_1 \cup M_2 \cup M_3| = 7$, so G is covered by four of the M_i , again a contradiction. Conversely if $\langle a, b, c, d \rangle$ is elementary of order 16, then $\langle a, b, c \rangle$, $\langle a, b, d \rangle$, $\langle a, c, d \rangle$, $\langle b, c, d \rangle$, $\langle ab, bc, cd \rangle$ provide a maximal irredundant core-free intersection cover.

When p=3 we conclude that $M_i\cap M_j\cap M_k=1$ for all distinct $i,\ j,\ k.\ |G|>9$ since an elementary Abelian group of order 9 has only four maximal subgroups; in particular, no pairwise intersection is trivial. Hence $|M_i\cap M_j|=3$ $(i\neq j)$. By the inclusion-exclusion principle |G|=5.9-10.3+10.1-5.1+1=21, which is not a power of 3, a contradiction.

LEMMA 2.6. Let F be finite field with q elements. Suppose that

$$(2.1) F^2 = S_1 \cup S_2 \cup \ldots \cup S_m$$

where S_i is a translate of a one dimensional subspace U_i $(1 \le i \le m)$. Then $m \ge q$ and

- (a) if m = q, $U_1 = U_i$ $(1 \le i \le q)$;
- (b) if m = q + 1 and the union (2.1) is irredundant, then the subspaces U_i are distinct and, for some $r \in F$, $S_i = U_i + r$ $(1 \le i \le q + 1)$;

and

(c) if m = q + 2 and the union (2.1) is irredundant then the subspaces U_i $(1 \le i \le q + 2)$ do not cover F^2 .

PROOF: Firstly note that $mq \ge q^2$ so $m \ge q$. Now observe that F^2 can be thought of as an affine plane in which the lines are the translates of one-dimensional vector subspaces. The result then has an easy, and presumably well known, geometrical proof. We give a sketch.

- (a) In this case the space is covered by the q lines S_i , each containing exactly q points. Hence these lines are parallel and one of them passes through the origin.
- (b) We are to prove that q+1 lines have a common point if their union is irredundant and equal to F^2 . There are at most q mutually parallel lines, so S_1 and S_2 say, meet at a point P. Let $A=S_1\cup S_2$. Every line S_i $(3\leqslant i\leqslant q+1)$ meets A in at least one point. Since $|F^2\setminus A|=q^2-(2q-1)=(q-1)^2$ no line S_i $(3\leqslant i\leqslant q+1)$ meets A in more than one point. If q=2 then S_3 is incident with P since neither S_1 nor S_2 is redundant. Hence we may suppose that q>2. Now no two S_i $(3\leqslant i\leqslant q+1)$ meet outside A. Suppose $P\in S_i$ but $P\notin S_j$ for some i,j satisfying $3\leqslant i,j\leqslant q+1$. Then S_j is parallel to just one of S_1 , S_2 , say to S_1 , and also parallel to just one of S_2 , S_i therefore to S_i , a contradiction since S_1 and S_i are not parallel. That is, if three of

the lines S_i $(1 \le i \le q+1)$ pass through P then all do, and we are done. Suppose that none of S_i $(3 \le i \le q+1)$ is incident with P. Then all S_j $(3 \le j \le d)$ are parallel to S_1 and all S_k $(d+1 \le k \le q+1)$ are parallel to S_2 , for some d satisfying $3 \le d < q+1$, or else the union (2.1) is redundant. It follows that $|S_i \cap S_j| = 1$ if $i \in \{1, 3, \ldots, d\}$ and $j \in \{2, d+1, \ldots, q+1\}$, and is zero otherwise; in particular all three-fold intersections are empty. Hence, counting points, $q^2 = q(q+1) - (d-1)(q-d+2)$ whence q = (d-1)(q-d+2). However, both right-side factors are greater than 1, and hence have a prime common factor which therefore divides both q and q+1, a contradiction.

(c) In this case q>2. Two of the lines, say S_1 and S_2 , are parallel. It is enough to show that there is another pair of parallels. If there is not, all the lines S_i $(3 \le i \le q+2)$ are incident in pairs, and each is incident with each of S_1 and S_2 . Since the complement of $S_1 \cup S_2$ has cardinality $q^2 - 2q = q(q-2)$, it follows that $S_i \cap S_j \subseteq S_1 \cup S_2$ $(3 \le i < j \le q+2)$. If all these intersections are the same, say lying in S_1 , then counting shows that S_2 is redundant. Hence $S_1 \cap S_h \neq S_1 \cap S_k$ for some $h, k \in \{3, \ldots, q+2\}$. Then $S_h \cap S_k$ is incident with S_2 , and there is some S_t $(3 \le t \le q+2)$ for which $S_2 \cap S_t \neq S_2 \cap S_h$. But then one of $S_h \cap S_t$ or $S_k \cap S_t$ is not incident with S_1 , a contradiction.

LEMMA 2.7. Let G be a group with the following structure: $O_3(G)$ is elementary Abelian of index 2 in G, and G has trivial centre. There does not exist a maximal irredundant 5-cover of G.

PROOF: Let us suppose that the result is false, and that G is a minimal counterexample. Note that |G| > 6 since Sym₃ is not a counterexample.

Let

$$(2.2) G = M_1 \cup M_2 \cup M_3 \cup M_4 \cup M_5$$

be a maximal irredundant cover of G with core-free intersection D. Then $|M_i| > 2$ $(1 \le i \le 5)$. Therefore either

- (a) for some i, $M_i = V := O_3(G)$ and $|G: M_j| = 3$ $(j \neq i)$; or
- (b) $|G: M_j| = 3 \text{ for all } j$.

Now $D \cap V = 1$ by Lemma 2.1 since $D \cap V \subseteq G$. Let a be an involution of G. Since $\langle a \rangle$ is a Sylow 2-subgroup of G every 2-element of G is conjugate to a. Define

$$S_i := \{ x \in V : a^x \in M_i \}, \quad 1 \leqslant i \leqslant 5.$$

Either $S_i = \emptyset$ or S_i is a coset of $X_i := V \cap M_i$ in V, and there is at most one of the first type. For all $x \in V$, there is an i for which $a^x \in M_i$ so

$$(2.3) V = S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5.$$

From Lemma 2.2(c) the intersection of every triple of the subgroups X_i $(1 \le i \le 5)$ is trivial. In the case (a) suppose that $M_5 = V$, so that the pairwise intersections $X_i \cap X_j$ $(1 \le i < j \le 4)$ are all trivial. In particular |V| = 9. Also $S_5 = \emptyset$ and

$$V = S_1 \cup S_2 \cup S_3 \cup S_4.$$

In this union all the S_i are essential since if, say, S_1 were omissible, then M_1 would be omissible in (2.2). However Lemma 2.6 now shows that the subgroups X_i ($1 \le i \le 4$) are distinct. They therefore cover V making M_5 redundant, a contradiction. This shows that case (a) does not arise.

In case (b) we have $V = X_1 \cup X_2 \cup X_3 \cup X_4 \cup X_5$. From Lemma 2.5 this union is redundant; and from Proposition 2.3 just one term, say X_i , is omissible. Since $1 = \bigcap_{j \neq i} X_j$, by Lemma 2.2(b), it follows from Proposition 2.4 that |V| = 9. Now we apply Lemma 2.6. Firstly, by (c) of that result, the union (2.3) is redundant, and at most two terms on the right are omissible. If omitting S_5 say, leaves an irredundant union then, by Lemma 2.6(b), $V = X_1 \cup X_2 \cup X_3 \cup X_4$ and M_5 is omissible from (2.2), contradiction. If omitting S_4 and S_5 from (2.3) leaves $V = S_1 \cup S_2 \cup S_3$ then Lemma 2.6(a) yields $X_1 = X_2 = X_3 \subseteq D \cap V = 1$, another contradiction.

Finally we note the following well known fact which is used repeatedly, and without explicit reference, throughout what follows: if M is a maximal subgroup, and U an Abelian minimal normal subgroup, of a group then either $U \subseteq M$ or $U \cap M = 1$.

3. Proof of Theorem 1.1

We have already determined the 2-groups which have maximal irredundant corefree intersection 5-covers. The next lemma addresses non-2-groups

Lemma 3.1. Suppose that the intersection of a maximal irredundant cover of five subgroups of a group G is core-free. If G is not a 2-group then every minimal normal subgroup of G has order 4.

PROOF: By Lemma 2.2(a) G is a $\{2, 3\}$ -group. Since G is soluble, by Burnside's Theorem, every minimal normal subgroup U of G is Abelian. Moreover, by Lemma 2.2(d), $|U| \leq 4$.

If |U|=2 then, again by Lemma 2.2(d), U is contained in at most three of the subgroups A_i , say $U \not\subseteq A_4 \cup A_5$. Since U is central, and since $G=A_4U=A_5U$, every 3-element of G is in $A_4 \cap A_4$. However if $1 \neq u \in U$ and if y is a 3-element, then $uy \notin A_4 \cup A_5$. Hence $uy \in A_1 \cup A_2 \cup A_3$ and therefore $y \in A_1 \cup A_2 \cup A_3$. It follows that a Sylow 3-subgroup S of G is in $A_1 \cup A_2 \cup A_3$ and therefore, by Proposition 2.3, in one of A_i ($1 \leq i \leq 3$), say in A_3 . Therefore $S \subseteq A_3 \cap A_4 \cap A_5$ and so, by Lemma

2.2(c), $S \subseteq D$. Since, therefore, every 3-element of G is in D so is the subgroup T which they generate. Of course $T \subseteq G$ so T = 1. But this contradicts the fact that G is not a 2-group. Therefore G has no normal subgroups of order 2.

If |U|=3 then U is contained in at most two of the subgroups A_i , say $U \nsubseteq A_3 \cup A_4 \cup A_5$. It follows that $G=UA_i$ ($3 \le i \le 5$). An argument similar to that of the last paragraph shows that every 2-element of $C:=\mathbf{C}_G(U)$ is in D. Since the subgroup they generate is normal it is 1, and we see that C is a 3-group. Also, $\Phi(C) \subseteq \Phi(G) \subseteq D$, so $\Phi(C)=1$. That is, C is elementary Abelian. By Lemma 2.5(b) $C \ne G$. That is, no minimal normal subgroup of G is central. However |G:C|=2, and so G satisfies the hypotheses of Lemma 2.7, contradiction.

PROOF OF THEOREM 1.1: Let G be a group with a maximal irredundant cover $\bigcup_{i=1}^{5} A_i$ with core-free intersection D. By Lemma 2.5 we may suppose that G is not a 2-group. Suppose that U is a minimal normal subgroup of G. It follows from Lemma 3.1 that |U| = 4. Also, by Lemma 2.2(d), U is in at most one of the subgroups A_i , say $U \nsubseteq A_2 \cup A_3 \cup A_4 \cup A_5$. A familiar argument gives that $C := \mathbf{C}_G(U)$ is an elementary 2-group. Moreover G/C embeds into Aut $(U) \cong \operatorname{Sym}_3$, and $O_3(G/C) \neq 1$. As G/C-module, C has no non-trivial fixed points for the action of $O_3(G/C)$, using Lemma 3.1. It follows that C is the first or second nilpotent residual of G. Therefore C is complemented in G, using the result in [2, (5.18) p.383], say G = CH where $H \cong C_3$ or $H \cong \operatorname{Sym}_3$. As H-module C is completely reducible, and every minimal normal subgroup of G is of order G.

If C = U then $G \cong \mathrm{Alt_4}$ or $G \cong \mathrm{Sym_4}$. The first case is (b) of the theorem. The second does not arise because $\mathrm{Sym_4}$ has no maximal irredundant cover of five subgroups. For, D is core-free, does not contain the monolith of $\mathrm{Sym_4}$ so, by Lemma 2.2(d), four of the five subgroups of the cover are copies of $\mathrm{Sym_3}$ whilst the fifth, therefore, contains all the elements of $\mathrm{Sym_4}$ of order 4. However this is a contradiction because these elements generate $\mathrm{Sym_4}$.

If $C \neq U$ then $\mathbf{C}_{A_i}(U) \neq 1$ $(2 \leq i \leq 5)$, and $C = U \times \mathbf{C}_{A_i}(U)$. Since D is core-free, it follows from Lemma 3.1 and Lemma 2.2(d) that $1 = \mathbf{C}_{A_i}(U) \cap \mathbf{C}_{A_j}(U)$ $(2 \leq i < j \leq 5)$. Then, for $i \neq j$,

$$\left|\mathbf{C}_{A_{j}}(U)\right|\left|U\right| = \left|C\right| \geqslant \left|\mathbf{C}_{A_{i}}(U)\mathbf{C}_{A_{j}}(U)\right| = \left|\mathbf{C}_{A_{i}}(U)\right|\left|\mathbf{C}_{A_{J}}(U)\right|$$

so that $|U| \ge |\mathbf{C}_{A_i}(U)| \ge |U|$. It follows that each $\mathbf{C}_{A_i}(U)$ is minimal normal in G. That is, C is the direct product of two minimal normal subgroups of G. If H were isomorphic to Sym_3 then C, as H-module, would contain just three proper non-zero submodules instead of the (at least) five it does contain. Hence |H| = 3.

Now we examine the nature of this cover for G. Choose $a \in G$ of order 3. Then $\langle a \rangle$ is a Sylow 3-subgroup of G, and every 3-element of G is conjugate either to a or

to a^2 . Define $S_i := \{w \in C : a^w \in A_i\}$ $(1 \le i \le 5)$ and $N_i := A_i \cap C$ $(1 \le i \le 5)$. S_i is a coset on N_i in C: it is not empty since otherwise A_i would contain no 3-element, would therefore be equal to C, and some N_j would be in two of the A_k whence, by Lemma 2.2(d), in D, which is core-free. We have

$$(3.1) C = S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5$$

since every a^w is in some A_i . We may regard C as a space of dimension 2 over the field F of 4 elements, where $\langle a \rangle$ is the multiplicative group of F, and apply Lemma 2.6(b). If the union (3.1) is irredundant then $S_i = N_i c$ $(1 \le i \le 5)$ for some $c \in C$. Hence $a^c \in A_i$ $(1 \le i \le 5)$, so |D| = 3 and G has the structure required by (c) of the theorem. If, however, (3.1) is redundant then, by Lemma 2.6, at most one term, say S_5 , is omissible and $N_i = N_1$ $(1 \le i \le 4)$. This gives $N_1 = \bigcap_{i=1}^4 N_i \subseteq \bigcap_{i=1}^4 A_i = D$, a contradiction to the core-freeness of D.

4. Proof of Theorem 1.2

If the result is false, let G be a group with an irredundant cover \mathcal{C} of five subgroups, with core-free intersection D, for which |G:D|>16. In the light of Theorem 1.1, \mathcal{C} is not maximal. Suppose \mathcal{C} chosen from among such 5-covers of G with as many maximal subgroups as possible. Let \mathcal{C}^* be a cover of G got from \mathcal{C} by replacing one of its non-maximal subgroups by a maximal subgroup containing it. Write D^* for the intersection of \mathcal{C}^* : $D^*\supseteq D$. \mathcal{C}^* is redundant; for, if not, $D^*=D$ by Lemma 2.2(b), and so is core-free, while \mathcal{C}^* has more maximal subgroups than does \mathcal{C} . It follows that we may write $\mathcal{C}=\bigcup_{i=1}^5 A_i$ where A_1 is not maximal, and if A_1^* is a maximal subgroup containing it, then $\mathcal{C}^*=\{A_1^*, A_2, A_3, A_4, A_5\}$ is redundant as a cover for G.

If G is an irredundant union of four of the subgroups in \mathcal{C}^* , then we may suppose that

$$(4.1) G = A_1^* \cup A_2 \cup A_3 \cup A_4$$

since A_1^* is certainly essential. If $D_1 := A_1^* \cap A_2 \cap A_3 \cap A_4$ then it follows from Proposition 2.4 that $|G:D_1| \leq 9$ with equality only if $A_1^* \cap A_i = D_1$ $(2 \leq i \leq 4)$. If we have equality therefore, it follows that

$$(4.2) A_1^* = A_1 \cup D_1 \cup (A_5 \cap A_1^*),$$

an irredundant union. However from (4.1) we deduce that $|A_1^*: D_1| = 3$, and from (4.2) and Proposition 2.3 that $|A_1^*: D_1| = 2$, a contradiction. Hence $|G: D_1| \leq 8$. Then,

since $D_1 = A_2 \cap A_3 \cap A_4$, we have $|D_1:D| \leq 2$ by Lemma 2.2(c), so $|G:D| \leq 16$, a contradiction.

Lastly, if G is an irredundant union of three of the subgroups in C^* , we may suppose that

$$(4.3) G = A_1^* \cup A_2 \cup A_3$$

since A_1^* is surely included. Let us write $N:=A_2\cap A_3$ $(=A_1^*\cap A_2=A_1^*\cap A_3)$. Now

$$(4.4) A_1^* = A_1 \cup N \cup (A_1^* \cap A_4) \cup (A_1^* \cap A_5).$$

If the union (4.4) is irredundant then $|A_1^*:D|=|A_1^*:A_1\cap N\cap A_4\cap A_5|\leqslant 9$. However, by (4.3), $|A_1^*:A_2\cap A_3|=2$, so $|A_1^*:D|\neq 9$. Hence $|G:D|=|G:A_1^*||A_1^*:D|\leqslant 16$, a contradiction. On the other hand if the union (4.4) is redundant then three of the subgroups on the right side are essential, and the possible intersections I satisfy $|I:D|\leqslant 2$, using Lemma 2.2(c). Hence $|G:D|=|G:A_1^*||A_1^*:I||I:D|\leqslant 2.4.2=16$. This contradiction completes the proof of Theorem 1.2.

REFERENCES

- [1] R.A. Bryce, V. Fedri and L. Serena, 'A Hughes-like property for finite groups', *Proc. Edinburgh Math. Soc.* (2) 38 (1995), 533-541.
- [2] K. Doerk and T. Hawkes, Finite soluble groups (Walter de Gruyter, Berlin, New York, 1992).
- [3] D. Greco, 'Su alcuni gruppi finiti che sono somma di cinque sottogruppi', Rend. Sem. Mat. Univ. Padova 22 (1953), 313-333.
- [4] D. Greco, 'Sui gruppi che sono somma di quattro o cinque sottogruppi', Rend. Accad. Sci. Fis. Mat. Napoli (4) 23 (1956), 49-59.
- [5] B.H. Neumann, 'Groups covered by finitely many cosets', Publ. Math. Debrecen 3 (1954), 227-242.
- [6] G. Scorza, 'I gruppi che possono pensarsi come somma di tre loro sottogruppi', Boll. Un. Mat. Ital. 5 (1926), 216-218.
- [7] M.J. Tomkinson, 'Groups covered by finitely many cosets or subgroups', Comm. Algebra 15 (1987), 845-859.

School of Mathematical Sciences The Australian National University Canberra ACT 0200 Australia Dipartimento di Matematica viale Morgagni 67/A 50134 Firenze Italia