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Abstract

The aim of this paper is to continue our investigation of the Lebesgue function of weighted Lagrange
interpolation by considering Erd6s weights on R and weights on [—1, 1]. The main results give lower
bounds for the Lebesgue function on large subsets of the relevant domains.
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1. Introduction, notations and preliminary results

1.1. In{15] it was proved that the weighted Lebesgue function is ‘big’ on a ‘large’

subset of {—a,, a,] for arbitrary fixed interpolatory matrix X considering a class of
Freud-type weights on R. The aim of the present work is to extend this result for
ErdSs weights on R and for weights defined on [—1, 1].

1A. Erdos weights on R

1.2. DEFINITION. We say that w € &(R) (w is an Erd6s weight on R) if and only
if w(x) = e 2% where Q: R — R is even and is differentiable on R, Q' > 0 and
Q" > 0in (0, 0o) and the function

Q"'(x)
X,

Q'(x)
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(1.1) Tx): =1+ x € (0, 0),
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is increasing in (0, co), with

(1.2) lim 7'(x) =co;  T(0+): = lim T(x) > 1.

A=
Moreover we assume that for some C,, C>, Cy > 0

0w _ .

(1.3) C = T(X)‘_Q,(‘,) <

=
-

v
o

(see [5, p. 201D).

The prototype of w € &(Z) is the case when Q(x) = Qi.(x) = exp,(|x|?),
k= 1, > 1 where exp, : = exp(exp(...)) denotes the kth iterated exponential. The
corresponding w will be denoted by w; ,. One can see that in that case

k—1
T(x) = ax® il_[expj(x“)}(l+o(1)), X — 00

j=1

(see [9, (1.8)]).

REMARK. We use the differentiability of Q on the whole (open) line when we
apply a result of Lubinsky [7, Lemma and Theorem 1] (see the ‘Proof of Lemma 3.2’
and ‘Statement 3.5’ of the present paper). Otherwise, evenness and conditions on the
interval (0, oo) would be enough.

1.3. If X C Ris an interpolatory matrix, that is
(14) =00 < Xy < Xy < v < Xy <X, < OQ, n e N»

for f € C(w, R) where w € &(#) and

Jx| = o<

C(w,R): = {f . fiscontinuous on R and lim f(x)w(x) =0¢,

one can investigate the weighted Lagrange interpolation defined by
(15 L(fiw, X, ) =) f)wl)t, X, ),  neN,
k=1

where

w(x)

(1.6) w(x) =t (w, X, x) =
(-an)

ll(rl(X’-X)v 1 Skfn,
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w, (X, X)

1.7 I =1L,(X,x)= , Il <k=<n,

4 K0 =00 = U o — "

and

(1.8) w,(0) =0,(X, ) =¢, [ [« =xa), neN.
k=1

The polynomials /; of degree exactly n — 1 (thatis [, € &, | \ &, ) are the
fundamental functions of the (usual) Lagrange interpolation while functions #; are the
fundamental functions of the weighted Lagrange interpolation.

The classical Lebesgue estimation now has the form

(1.9) IL,(f, w, X, x) = fDw)] < {Aa(w, X, x) + 1}E, 1 (f, w)

where the (weighted) Lebesgue function is

(1.10) w, X, x): = Z ten (w, X, X)), xeR, neN
k=1
and
(1.11) E, . (fiw): = inf |(f —pwl|, n e N.
pPER, |

Here ||- | isthe supnormon R. If w € &(R) thenitis well-knownthat £, _,(f, w) — 0
ifn - ooand f € C(w, R).
Relation (1.9) and its immediate consequence

(1.12) IL,(f, w, X) = fw| < {A,(w, X)+ 1} E,_;(f, w),
where
(1.13) Ay(w, X): = [Aa(w, X, x)

show that the investigation of A, (w, X, x)and A, (w, X) (weighted Lebesgue constant)
are fundamental. (For further motivations, see [15, §1].)

14. To get estimations for A, (w, X), at least for certain X, we consider the n
different roots

(1.14) —00 < Yo (W) < Yooy p(w?) < 0 < Y2 (W) < yia(w?) < 00

of the nth orthonormal polynomial p, (w?, x) € £, \ &,_, withrespectto w? € &(R)
(that is [ p,(w?) pn(w?)w? = 8,,). One can prove that for ¥ (w?) = {yi(w?)} (see

R
[1,(1.18)])
(1.15) An(w, Y (w?) ~ (nT,)"°, w € &R),
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where T, — oo as n — oo. (Here, and later, A, ~ B, means that0 < ¢; < A,/B, <
¢, where ¢, and ¢; do not depend on n, but may depend on other, previously fixed
parameters.)

To be more precise about 7, we introduce the corresponding Mhaskar—-Rahmanov—
Saff (MRS) number a, (w), the positive root of the equation

1
2 !
(1.16) u=2 [@ @D, )

m) V1= '

(see [5, (1.13)D).
As an important application we mention the relations

”rnw" = ‘max |r,,(x)w(x)|
(1.17) x| <a, (w)
Irawl| > |r,(x)w(x)| for |x| > a,(w)

valid for r, € &2, and w € &(R).
If w = w, then

l/a
1 k+1
(1.18) a, = {log,(_l <logn—§ZIOgmn+0(l))}
j=2

where log ;) = log(log(...)), is the jth iterated logarithm.
Using a,,, T, can be written as

(1.19) T, = T(a,(w)).

Later on we use that T, = o(n?) (see [9, p. 209, (VIID)}).

Again, if w = wy,, then T, ~ ]illlog(j) n (see [9, (1.13)~(1.16)]).

j=
1.5. But we can do better as far as the order of A, is concerned. Let yo = yo, > 0
denote a point such that
(1.20) 1P (W, yo)w(yo)| = | pa(w?w].
Then if
Vw?) = {{ya(w?), 1 <k < n}U{yon, —You}, n € N}

one can prove the following.
Let w € &(R). Then

(1.21) A, (w, V(w?)) ~ logn

(see [1, (1.22)]; concerning the additional points {£yy,}, see [12]).
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1B. Exponential weights on [—1, 1]

1.6. Instead of R, we can define our weight function w on the interval (—1, 1).
There is a substantial resemblance concerning formulas, definitions and theorems. So
sometimes, especially in proofs, we only refer to the corresponding relations defined
on R. Following the exhaustive memoir of Levin and Lubinsky [4], we define the
class of functions W as follows.

DEFINITION. Let w(x) = e 2% where Q: (—1,1) — R, is even and is twice
continuously differentiable in (—1, 1). Assume moreover, that Q' > 0, Q" > 0 in
(0, 1) and lirln0 Q(x) = oc. The function

Q" (x)
Q'(x)

(1.22) Tx): =14x , xe[0, D

is increasing in {0, 1), moreover

i TO+)>1,
(1.23) (i) Tx)~ Q(x)/Q(x), xcloseenoughtol,
(i) T(x)/(1 ~x?) > A>2, xcloseenoughtol.

Then we write w € W (see [4, p. 5 and (1.34)]).

REMARKS. (1) Let woo(x) = exp(—(1 — x)™), a > 0 and wi,(x) =

exp(—exp (1 — x)™®), @ > 0, k > 1. These strongly vanishing weights at +1
are from W ([4, §1]).
(2) Consider the ultraspherical Jacobi weight w® (x) = (1 — x*)%, @ > —1. Here
Q(x) = —alog(l — x?), that is w' ¢ W if —1 < a < 0 (the conditions for Q(x)
are not satisfied). If @ > 0 then w' satisfies all the conditions required for W but
(1.23) (i), (iii) (by routine calculation, T(x) = 2(1 — x*)~' while Q'(x)/Q(x) =
—2x{(1 — x})log(l — x)}™*, x € (—1,1)). That means, w® ¢ W even for non-
negative values of «. However, they are very similar (at least from our point of view)
to weights in W, so we can deal with them (see subsections 1.9 — 1.10).

1.7. Now the interpolatory matrix X = {xy,}, 1 < k < n,n € N, is in the
open (!) interval I = (—1, 1); the meaning of C(w, I), L,(f, w, X, x), A,(w, X, x),
A(w, X), E,_\(f, w), p.(w? x) and {y,(w?)} C (=1, 1) are clear (see (1.4)—
(1.14)). For example if w € W, then

Cw, D: = [f : f is continuous on / and Il"}ml f(Nwx) = O} .
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Again, if w € W, E,_(f, w) — 0 whenever f € C(w, I), that is the Lebesgue
estimation (1.12) holds true (now | - | = rlna_xl | - ). As one can prove

(1.24) A (w, Y(wH) ~ (nT)VE, wew

(see [2]) where T, = T(a,) and a, = a,{(w), w € W, is defined by (1.16). By [4,
(1.16), (L.17)], 1 — @, (wgy) ~ n~"@*2 and 1 — a, (wy.o) ~ (log, n)~/* whence, by
(1.23) (iii), T, — oo. On the other hand, by (1.23) (i) and [4, (3.8)], 1 < T, = o(n?).

1.8.  As in subsection 1.5, using some additional points ‘close’ to a,(w), for the
corresponding matrix V (w?) we get (see [2])

(1.25) A, (w, V(w?) ~ logn, weWw.

1.9. Insubsections 1.9-1.10 we deal with Jacobi weights and their generalizations.
First we give the rather general definition (see [10]; the present paper uses only a
special case of [10; Definition 1.1]).

In what follows, L?[a, b] denotes the set of functions F such that

b 1/p
I FLran: = {fIF(I)|”dt} if 0<p<oo,

| Flloo: = ess sup|F(2)] if p=oc

a<i<b

is finite. If p > 1 itis a norm; for 0 < p < 1 its pth power defines a metric in
L?[a, b].

By a modulus of continuity we mean a nondecreasing, continuous semiadditive
function w(4) on [0, oo) with w(0) = 0. If, in addition,

w(@)+wn) <2w(/2+n/2) forany 6, n > 0,

then w(8) is a concave modulus of continuity, in which case é/w(8) is nondecreasing
for § > 0. We define w(f,§), = sup | f(A + ) — fl,, the modulus of continuity

e
of f in L? (where L” stands for L7[0, 2rr]).
For a fixed m > 0 let

N =upp <up,<--<uy<uy=1

andwith/, e N =0,1,...,m+1)

1
w(8): = [ [{w @),
s=1
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where w,(8) are concave moduli of continuity with ¢(r,s) > 0 (s = 1,2,....1;
r=0,1,...,m+1).

Further let H (x) be a positive continuous functionon [—1, 1] suchthatforh(%): =
H{(cos ¥)

w(h, 8,87 € L'[0,1] or w(h,8),=0+38), &— 0.

DEFINITION. The function
(1.26) w(x) = Hx)wy(V' 1 — X)wp (V1 +x) l—[w,-(lx —u}), —-1=<x=I,
r=1

is a generalized Jacobi weight (w € G J), with singularities u, (0 <r <m 4 1).

REMARK. Since w,;(1) < w,,(8) (0 <1 <§),

8

(1.27) /w,-(r)dr < dw, (3);

0

in [10, Definition 1.10] where ¢ (r, s) might be negative, this important inequality had
to be assumed (see [10, (1.12)]). Actually by (1.27) and [10, (1.24)] we get

)

(1.28) /w,.(r)dr ~ dw,(8), r=0,1,...,m+ 1.

0
1.10. If S(w) =S8 :={u, :r =1,2,..., m} denotes the set containing the inner
singularities of w € GJ, a natural condition for an interpolatory X C (1, 1) is that
XNS=4a.

As above, one can define matrices V(w?) C (=1, 1)\ S, w € GJ, with
(1.29) A, (w, V(w?)) ~ logn

(see [8], [11], [16D).

2. New results

2.1.  Itis natural to seek to prove that the order of the estimations A (w, V (w?)) ~
log n (see (1.21), (1.25) and (1.29)) is the best amongst the interpolatory matrices. We
can get much more.
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THEOREM 2.1. Let w € &(R) and 0 < € < 1 be fixed. Then for any fixed
interpolatory matrix X C R there exist sets H, = H,(w, g, X) with |H,| < ea,(w)
such that

1 .
2.1 Mw, X, x) > §§4—0810gn if x€[—a,(w),a,(w)]\ H,,

whenever n > n,.
REMARK. Here (and later) n, depends on ¢ and w but not on X.

2.2. Similarly on (—1, 1) (see (1.25) and (1.29)), we state (with S = @ when
w € W) the following theorem.

THEOREM 2.2. Let w € WU GJ and 0 < &€ < 1 be fixed. Then for any X C
(—1, )\ S there exist sets H, = H,(w, €, X) with |H,| < ¢ such that

(2.2) Aa(w, X, x) > n(e, w)logn  ifx e (=1,1)\ H,
whenever n > n,. Especially, n(e, w) = £/3840 if w € W or w = (1 — x*)*, a > 0.

3. Proofs

3.1. PROOF OF THEOREM 2.1 (subsections 3.1-3.10). First we state some properties
of p, = p.(w?) and p,w, w € &(X).

Let 0 < &€ < 1 be fixed and consider the interval I, = I,(¢) = [-b,,b,] =
{—a,(1 —&/5), a,(1 — &/5)]. By definition |[—a,, a,] \ I,| = 2¢ea,/5. First we deal
with the interval 7,.

By (1.14), p,(x) = p,(w? x) = y,(w?) [[(x — yt(w?). Using the notation
k=1

Yin = Yin(w?), we have

STATEMENT 3.1. Let w € &(R). Then uniformly in k andn € N

~ an a,
3.D Cl; = Yen — Yt = C1;, Yens Yettn € Lns

, n
(3.2) P, ORWOR ~ . Yin € .
Moreover, uniformly in k£, x and n € N

n

(3.3) [Pr(X)wx)| < clx — ym;,—z; X, Yin € Iy.
Finally,
(3.4) [P (Dw(x)| < ca;'*(nT,)"°, xeR, neN.
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See [5, (1.24) and the remark after the formula] for (3.1); [5, last formula on
p- 285] for (3.2); [5, (10.28)] for (3.3), and [5, (1.26)] for (3.4). We used that
Y. (x) ~ @,(x) ~ 1 whenever x € I,. (,(x) and ¢, (x) are defined by [5; (1.19) and
(10.11), (10.12)], respectively.)

Now let Yi = Yin = Yjtn.on be defined by

(3.5 X = yjal = min [x — yg|.
LEMMA 3.2. We have, uniformly in x € I,

, n
(3.6) | P OwW )| ~ [P, (¥jn)w(Yjm)| 1X = jnl ~ Wlx = Yjal-

REMARKS. (1) The constants in formula (3.1)—~(3.3) and (3.6) do depend on ¢.
(2) By definition, (3.5) and (3.6) mean that |(tj,,(Y(w2), x)} ~ 1 whenever x € I,.

PROOF OF LEMMA 3.2, Using [1, (2.16)],
(3.7 ltea (Y ()] < ¢, 1<k=<n, neN.

Consider the polynomial 7, (x) = L, (Y (w?), x)w~ () € £,_,. By definition,
La(x) = T (y)w(y) = 1; further, using (3.7) we get |t (x)w(x)| < ¢ for any k, n
and x € R. Then, applying a Markov-Bernstein inequality in [6, (1.26)],

15O =l @)wx)| = [w)w) + (wE)wE)) (x — yo)l
(3.8 >1—cnna;' -a,n'|>1/2 if |x =yl <na./n

(& between x and y,, x, y; € I,), whenever we choose n > 0, fixed, properly small.

Notice that > 0 does not depend on k and 7.

Now, relations (3.7) and (3.8) give (3.6) at least for x satisfying relations jx — y;| <
na,/n,x € I,.

We can finish the proof of the lemma as follows. For a fixed /, denote by z
the unique maximum point in (y;, y;-1) of |p,(x)w(x)|, 2 < | < n (for uniqueness
consult Lubinsky [7, Lemma]). Using (3.3) if x € (y;, y—1) C I, and k = I, gives
that [p,(z)w(z)| < ca,n~'na;¥? ~ a;'?. On the other hand if z, = y, + na,/n,
2; = Y1, — na,/n, we getrelations | p,(z))w(z;)| ~ a,n"'na;3* = a;'/? (see (3.6)),
whence y,_j—z ~ z—y, ~ a,/nisobvious. Then, we canchoosen > Osothatz—z, ~
7z, — z ~ a,/n. Now, if x € (z), z,), by the monotonicity of p,w (see [7, Lemma}),
a;'? ~ |p(Dw@)| = |p,()wx)| > min(|p,(z)w(z)|, |p.(2)w(z)|) ~ a;'/?
which, using that now |x — y;| ~ a,/n, gives relation (3.6).

https://doi.org/10.1017/51446788700034923 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700034923

154 P. Vértesi [10]

3.2, Next, we prove Theorem 2.1 for x € [, = I,(¢). Fixnandlet K, = {k : x;, €

1,}. First suppose that |K,|: = N = N, > 0 and denote the corresponding nodes
{x0.} C 1, by 214, 22, . . ., Zy,. We order them as
(39) INtlns = _bn S Ing < Inogn < < 2oy < Iy S Zgyl = bn-

We introduce some other notations and definitions. Let

Jk = Jl\n(z): - [ZL+I.M, an]s (JA) - (-]kn(z)) - (Zk+l.ns an)s
(3.10) Jilgi) = T (@) = lzer + @il il 2z — gl Ji1,
Je = Jlg): = I\ Ji(q) with 0 < g, < % and0 <k < N.

The interval J; is called short if and only if | J;| < a,8,, where 8, = n~!/%

others are called long. (Actually, arbitrary 6, = n™*,0 < a < 1, works.)

, say; the

3.3. Forthe long intervals we prove (see [15, Lemma 3.3] and the references there).
LEMMA 3.3. Let w € &R), J;, C 1, a,8, < ||, co/(né,) < g < % and define
o =ok,n): =[q/D)Jl(n/c1a,)]. Then for a proper hy, C Ji we have

3Q(k.n)

(3.11) Aa(w, X, x) > sz

ifx c Jk,, \hk,,.

Here |hy,| < 4qi|Ji], 0 < k < N, n > ny; the constants ny and cy are properly
chosen.

PROOF. Let us consider those roots y,, of p,(x) which are in J;(g;). By (3.1), their
number is not less than

[(1 - 2qk>|fkli] > (1 = 2g,)ns,.

160

Let us define the set #; = hy, by

he = J(qe) U { U Ai(Qk)] ,

A CUi gy

where A; = A;(Y) = [y;, yiz1] and (A)), A;(qgi), A; are defined according to (3.10).
(We use the same ¢, = q(J;) for every A,;.) By construction,

[l < dqilJil.
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To prove (3.11), let y € Ji \ Ay = Ji(qi) \ hy and consider the interval

gk Gk 3qk
M :[ — —\Ji, — ] J, ,
=1y 4|L|y+4|JA|CI\<4>

containing at least

(3.12) [_IJk| ] =0 >cqns, =1

ciay,
roots of p,(x) if ¢, > 0 is properly chosen.
Consider the polynomial r(x) = ]_[\ amn (X — ¥i). Since

paw) = yur) [ =y

Y EM(y)
we have
wer(x) = DB gy T 222
w(y)pa(y) wemin X — Vi
Here, if x & (J;), by construction
Y =i l
X =Yy - 3,

lw(x)p, (0| < ¢ a;'*(nT,)"*
(see (3.4)). Finally if y; = y;(y) is the nearest root of p, to y, by construction,

lw(y) p.(¥)] > clp,(y)wy,)(y — y)| ~ na, qk— = qa, "’

(see (3.6)). So, as coq; ' < n8,, we get

a=\2(nT,)\/o
() ()] < clw(yr ()] )30
qkan
8,(nT,)"e
(3.13) < cworon S e o,

On the other hand, since ¢ > 1, r(x) € &,_, whence, using Lagrange interpolation,

(3.14) w(y)r(y) = Zw(x,)r<x, ))l M = > wee)renm.
=1
Using x; € (J;), (3.13) and (3.14) yield
7/671/6
lw(y)r (M| < clw(y)r(y)| 32 W, y),

whence as w(y)r(y) # 0, we get (3.11) with a constant ¢; > 0, actually for every
0 < 8, < 1/2 (say).
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3.4. Let us apply Lemma 3.3 for every long interval J; with ¢, = 1/logn, say.
By (3.12), we get the relation o(k, n) > né,/log>n > n*?, whence by (3.11) and

1 <T,=o0(n?
(315) )\-n(wvx) > n, X € Dln\Hlny
where Dy, = | J{Ji : Ji is long} and H,, = | J{h; : Ji is long}. By construction
k k
4
(3.16) |Hial <) 1l <4 qldil < ——a,,

logn
where the summations are over k : J; C D;, C I,. That is (2.1) holds for the long

intervals in /,, apart from a set of measure < 4q,/logn. If |K,| = 0, the same
argument works for the whole interval J;, = I,.

3.5. Next, we consider the short intervals (subsections 3.5-3.9). Let ¢, denote the
number of short intervals J,,, 1 < k < N — 1. If ¢, < n?, then their total measure
< n'a,é, = o(a,), whenever 0 < y < 1/6, which we suppose from now on. So
adding them to the exceptional set H,, we get, using (3.16) and (3.11),

|Hn| =< lHlnl +0(d,,) + 2an8n + 2(d,, - bn) < &a,

that is we would get the theorem (the third term, 2a,6,, estimates the measure of
the (possibly) short interval(s) Jy, and (or) Jy,; the fourth one measures the set
[_an’ an] \ In)

3.6. So from now on we can suppose ¢, > n?. First we introduce some further
notations. With ,(x) = w,(x)w(x), let u, = u,(q,) be defined by

€2, () = min {£2,(x)], 1 <k=<N-1,
x€Ji(qr)

(12, (up)| > 0, as g, > 0). Further let

iy Sl :=max(|zip — zels |2 — z]), 1<,k N -1,

o(Ji, Ji) =min(lziyy — zil, e —zil), 1<i, k< N-1.
We prove (see [15, Lemma 3.4 and its references]) the following lemma.
LEMMA 3.4. Letl <k,r <N — 1. Thenifw € &(R),

l 'Qn(ur)l |Jk| , n> 2’
4 120, (u)| |, Ji

whenever x € J.(q,), o(J,, ) > a,é, and |J,| < a,8,. Here t, and t,,, are the
fundamental functions corresponding to z; and z;.,, respectively.

(3.17) 2 QO] + [t (0] >
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PROOF. The proof of this lemma is similar to the one in [15]. We include it for sake
of completeness. First we verify relation

Q(x) [$2(x0)| (u, — 2z
1,0 = | = = Iy,
Qz)x —z)| Q)| x -z
1
(3.18) > E(t:(ur)l ifs=k, k+1andx € J.(q,).
Indeed,
|ll,~ - Zsl - {lur - zsl +a,,8,,} - an8n >1 - an‘sn — l’
|X - le - |ur - le + ansn - 2(1,,8,, 2

which gives (3.18). So we can write if » < £, say,

1
[t QO + [t ()| = 5{|fk(u,-)| + |ter ()1}
Q@)
=3 Q) {ltk(uk)|
- 11QG@,)| gl il
21 |, Tl

Zx — Ui

U, — 2z
+ ltk+l(uk)'u+_‘}

U, — 2z r T Zktl

(3.19) {lte @Ol + e ()}, x € J(q,).

To obtain (3.17), we use [7, Theorem 1] which is stated as follows.

STATEMENT 3.5. Let (@, b) C Rand w = ¢72: (a, b) — (0, oc). Assume that Q'
exists and is non-decreasing in (a, b). Thenfor1 <k <n —1

(3.20) [ten (w, X, )] + terra(w, X, x)| > 1 ifx € [Xtrn, Xan]
for arbitrary interpolatory X C (a, b).

Applying (3.20) we obtain (3.17), considering that 2¢,|J;| = 17k|.

REMARKS. (1) Actually, if x € [xe4y, x¢], thent,(x) > 0(s =k, k 4+ 1).
(2) Relation (3.20) is a generalization of an old theorem of Erd6s and Turan which
says that for an arbitrary interpolatory X,

X, X))+l (X, x) 21 if x € i, Xund, 1 <k <n—1

(see [3; Lemma 4, p. 529)).
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3.7. The following statement gives a result of Vértesi [14, Lemma 3.3] in a slightly
different form.
STATEMENT 3.6. Let F; = [A, Bi],1 <k <t,t > 2beany ¢ intervalsin [— A, A]
! —
with |[F, N Fj| =0k # )), |F| < AS (L <k, j <), Y |Fil = An. Let§ > 5. If
k=1

with a fixed integer R > 4 we have u > 2R&, then there exists the index s (1 < s <)
such that

. . |fk| Ru 3
(3.21) S = ; |FS,Fk|ZT_§'

oWFy FpizAE
F; will be called the accumulation interval of { F;};_,.

Here the definitions of F, = Fi(qi), |F,, Fx| and o(F,, F;) correspond to the
previous ones; i, 8 and & are fixed positive real numbers.

3.8. Now we define g, for the short intervals. Let D,,: = :;1] {Jo 2 || < a,é,}
and K»,: ={k:|Ji| <a,,, 1 <k <N — 1}, |Ks]| = ¢,. If m; denotes the middle
point of J, let

Bu: =max{y:z, <y <m and (2.1)does not hold for y},
Vin: = min{y: m; <y <z and (2.1) does not hold for y},
dip: =max(By — Zeqr, 2k — ),

finally

(322) qin = q(-lkn) = dkn/l-]kn|7 ke K2n-

Using A,(w, x;) = 1,we obtain that g; > 0. Further by definition, (2.1) holds true
whenever x is from the interior of Ji(g:), k € K»,. For the remaining ‘bad’ sets J;
we prove relation

a,e

2

if n>n.

(3.23) D =auu <

keKay

Clearly, we can suppose that n € {n;} = N, for which u, > ¢/2. Now we can apply
Statement 3.6 with the cast {F,} = {Jinlteks, = Dans- A = a,, § =8 =8, 1 = Wy,
R = [log,n'"]and n € N,.

We get the accumulation interval and we denote it by M, = M,, (Ist step).
Dropping M,, we apply Statement 3.6 again, for the intervals {F,} = D,, \ M,,
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with u = w, — |M,,,|/a,, > u, — 68, > u,/2 and with the same A, &,65, R and N,.

We get the accumulation interval M, (2nd step). At the ith step (3 < i < i) we

drop M,,, M>,, ..., M;_,, and apply Statement 3.6 again for the intervals {F,} =
i—1 i-1

Dy, \ UM, with p =, — Y |M,,|/a, and with the same A, £, §, R and N,. Here

=1 t=1
¥, denotes the first index for which

Y1 ¥
— a, iy, T a, iy
3.24 M, < but M, > , n e N,.
(3.24) ,2:1 M| < > ,2:1 M| > I
Denoting by My, 1., My, 420> - - .» M, » the remaining (that is not accumulation)

intervals of D,,, from relation (3.21) we get, if n, is big enough,

oy, My nl 3 ol
(3.25) Z (M| palogn wylogn

M, M|~ 2-7-8 2 120 °

1 <r<4,, neN.
k=r

Here and later the dash on the summation indicates that we omit those indices & for
which o(M,., M}) < a,é,.

3.9. By (3.22), we can choose the ‘bad’ points v;, € M;,(g;,/2) such that (2.1)
does not hold for v;,, (1 <i < @,,n € Ny, gin = qin(M,,)).
If for a fixed n € N, there exists an index ¢ (1 <t < ¢,) such that

(3.26) An(W, V) = 2ty logn

(where ¢ > 0 will be determined later), then, using (2.1), we get relation c € logn >
A (w, v,,), whence by (3.26), 2u,, < &. That means, we obtained (3.23). We shall
verify (3.26) for every fixed n € N, with a proper t = t(n). Indeed, otherwise for a
certainm € N,

(3.27)
AW, V) < 2cp,logm, vV € M (q,m/2), foreveryr, 1<r <g,.

Then, by (3.27) and (3.23)
Om

(3.28) > Mo hn (W, V) < 2 @l logm.
r=1

On the other hand, applying (3.17) with ¢,,(M,,) /2 we can write (with the same M|,
as above)

R 1 —
IMII Z [Ik(vrn)| > §|M1| Z ,{|tk(vrn)| + |tk+l(vrn)|}
k=1

kekKi,
1 Pn Q —r M
>_'M"|Z,| (Z)| M| Cl<r<ao,
16 — Q)| IM,, M|
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for arbitraryn € N, (here |2(u;)| = Elm |€2(x)|). Then, using relationa+a~' >
2,(3.24) and (3.25), we get forn € N,

Q)| (M, |IM,]
M.\ (w, v,) > —
Z' a0 1) > 1 Zkz Q@] 1M, My
Q@) Q@I IM,|IM;]
1622 {IQ(uk)I Q@) | M., M|
1 & a,,uf,logn
§Z=: ’Z |M,,Mk| 8.2.120

=2ca,u’logn if ¢ = 1/3840.

But this contradicts (3.28), that is (3.26) must hold for any n € N, with a proper
t = t(n). So (3.23) has been proved.

3.10. Finally, we estimate H,. If Jy, is short, it should belong to H,; the same
holds for Jy,. So by (3.16) and (3.23) (see subsection 3.5)

a, a,
logn 2

|H,| <4

(Sn + 2(0,, - bn) < é€a,

which gives the theorem if n > n,(¢).

3.11. PROOF OF THEOREM 2.2. The proof is analogous to the previous one after
establishing the corresponding formula, so we only sketch it (subsections 3.11-3.14).

3.12. Firstlet w € W. The fact is that we have the same relations as before (for
example, again y;, (w?) — Yi1..(W?) ~ @, /N, yin € 1,), but of course, now I, yi, (w?),
a,(w), and so on, are defined forw € W.

To be more precise, let I, = [—b,, b,] where, with0 < ¢ < 1, b, = a,(1 — €/5).
As we know a, — 1 (see [4, p. 30, (ii)], say).

Relations corresponding to Statement 3.1 are [4, (1.35); p. 130, last row; (12.7) and
(1.39)] respectively. Notice that we used relations a, ~ 1, |yi,| < b, = a,(1 — €/5),

= (nT,)72? = o(1) (see [4, (1.23)]), ¥, (x) ~ @, (x) ~ 1,if x € I, ([4, (11.11)
and (11.10)]).

The relation corresponding to (3.6) can be proved as in the proof of Lemma 3.2:
the relation corresponding to (3.7) is [4, (12.5)]; the corresponding Markov—Bernstein
inequality is now [4, (12.16)].

Moreover, the definition of the class W (see subsection 1.6) ensures that [7, Lemma)
and [7, Theorem 1] hold true, whence, among others, Statement 3.5 can be applied.

Other details, which are based on the previously mentioned relations, can be left to
the reader.
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3.13. Letw € GJ be defined by formula (1.26), further let

m+1

£
s =1 lll\U(“’ 10(m +1)" 10(m+1))

(actually, I, does not depend on n, but for convenience, we keep this notation).
Replacing a, by 1, the formulae corresponding to (3.1), (3.2) and (3.6) come from
[10; Theorems 3.2 and 3.3].

Indeed, (3.1) is immediate from [10, (3.4)]. To get (3.2), first let us remark that
in I, wn, x) ~ w(x) ~ 1, where w(n, x) = wo(x/1 —x + /0w, (V1 +x +
1/n) [Jw,(x — u,} + 1/n). Now [10, (3.5)] yields formula (3.2), because for

o) = sin® (x = cos 9, @(x) ~ lif x € I,.

To get (3.6) (which is an improvement of (3.3)), we use [10, (3.6)] and the fact
w(x) ~wn,x) ~ 1,x € I,, again.

Finally we verify

(3.30) Ip.(whwl < c/n

(which corresponds to (3.4) if we replace T, by n?). We use relation

(3.31) 19, () w(n, )| ~ | Qn(wx)]
valid for any Q, € £, supposing that the weight w satisfies the inequality
(3.32) w(x) < % w(x)dx,

for all intervals / ¢ [—1, 1]and x € I where ¢ > 0 is independent of / and x (see [9,
(5.1) and (6.26)]).

However, if w € G J, then relation (1.28) involves (3.32), that means (3.31) holds
true whenever w € GJ. Then, if y; = y,-,,(wz) is the closest root to x of p,(w?, x)
we can write

|pn(w2$ x)w(n, X)I ~ |pn(w29 x)w(n’ yj)l

~ | pn(w?, ypw(n, y)llx — y;l
n sin ¥
3.33 <¢c——"2L < , <1,
(3.33) = CGmo R n <cvn, x| =
(see [10; (3.4)«(3.6)] moreover, relations w(n, x) ~ w(n, y;) and |x~y;| < sin?;/n),
whence by (3.31) we get (3.30).

3.14. The above mentioned relations yield the analogue of Lemma 3.3 (again

replacing T, by n%). However to get the relation corresponding to (3.20) we cannot
use Statement 3.5 because we do not have the conditions for Q'; we choose another
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way. By definition, w(x) ~ | whenever x € I,; so by the Erd6s—Turén relation (see
subsection 3.6, Remark 2) we can write

(3.34) 1(x) + f(x) = w(( A))IA( )+ (( ))IA-H()‘) > c{li(x) + L (x0)} =
Xyl

if x € Jiy C I,; here ¢ does depend on ¢ and w. Other details in proving (2.2) when
w € GJ are analogous to the previous ones, so they are left to the reader.
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