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Stability of Traveling Wavefronts for a
Two-Component Lattice Dynamical System
Arising in Competition Models

Guo-Bao Zhang and Ge Tian

Abstract. In this paper, we study a two-component Lotka-Volterra competition system on a one-di-
mensional spatial lattice. By the comparison principle, together with the weighted energy, we prove
that the traveling wavefronts with large speed are exponentially asymptotically stable, when the
initial perturbation around the traveling wavefronts decays exponentially as j + ct - —oo, where
j € Z, t > 0, but the initial perturbation can be arbitrarily large on other locations. This partially
answers an open problem by J.-S. Guo and C.-H. Wu.

1 Introduction

In this paper, we study the following two-component Lotka—Volterra competition sys-
tem on a one-dimensional spatial lattice

du;j
d—] =di(ujer + ujy = 2u;j) + ruj(1-buuj - kvj),
t
(11)
de
E = dz(Vj+1 + Vj—l — ZVJ') + 7’21/]'(1 — szj — huj),

with the initial data ;(0) = ujo, and v;(0) = vjo, where je Z, t > 0, d;, rj, bj, i = 1,2,
h, and k are some positive constants. This model describes how two species u and
v living in a discrete habitat compete with each other. Here u; and v; stand for the
populations of two species at time ¢ and position j, respectively, d; is the migration
coefficient, r; is the net birth rate, 1/b; is the carrying capacity of species i for i = 1,2,
and h, k are inter-specific competition coeflicients.

With a certain normalization, we assume that the diffusion coefficients of species
u, v are given by 1, d, the birth rates of species u, v are given by 1, , and the carrying
capacities are equal to 1. Then system (1.1) is reduced to the system

du;j
7] = (uj+1 + uj_1 - 2u]) + uj(l - uj - ij),
t
1.2)
de
ﬁ = d(‘Vj.H + Vi-1— 21/]') + rvj(l —Vj— hu]),

where all coefficients are positive.
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It is easy to see that the system (1.2) has four constant equilibria: (0, 0), (0,1), (1,0),
and coexistence equilibrium (%, %) provided that hk # 1. From [5], we have the
following asymptotic behaviors as t - +oo0.

() (w,v)— (1,0)if0<k<1<h.
(i) (u,v)—>(0,1)if0<h<1<k.
(iii) (u,v) — oneof (0,1), (1,0) (depending on the initial condition) if k, h > 1.

(iv) (u,v)— (%, %) (u and v coexist ) if 0 < k, h < 1.

We need to point out that case (ii) can be reduced to case (i) by exchanging the posi-
tions of 4 and v.

A biologically and mathematically interesting problem is the traveling wave solu-
tion connecting two equilibrium points. We note that a traveling wave solution of
(1.2) is a special translation invariant solution of the form

u(x 1) =9(8), vixt)=y(&), &=j+ct

that connect two different equilibria from {(0,0), (0,1), (1,0), (=5, 2=2)}, where
¢ > 0 is the wave speed. If ¢ and y are monotone, then (¢, y) is called a traveling
wavefront. Substituting (¢(j+ct), y(j+ct)) into (1.2), we obtain the following wave

profile system

c¢’(§) = (p(E+1) + 9(§-1) = 29(&)) + 9(E) (1 - (&) — ky(£)),
ey’ (§) =d(y(§+1) +y(§-1) - 2y(8)) + ry(§) (A - y(&) — ho(8)).

Recently, Guo and Liang [3] and Guo and Wu [4-6] studied traveling wave solu-
tions of system (1.2), which connect two boundary equilibria (0,1) and (1, 0). Itis easy
to see that when 0 < k <1 < h, the equilibrium (0, 1) is unstable and the equilibrium
(1,0) is stable. Hence, system (1.2) is called a monostable system. When 4, k > 1, both
equilibria (0,1) and (1, 0) are stable. Hence, system (1.2) is called a bistable system.
For the bistable system (1.2), Guo and Wu [4] first showed that the propagation failure
phenomenon occurs, and then proved the monotonicity of a traveling wave solution
with nonzero speed and the uniqueness of nonzero wave speed. For the monostable
system (1.2), Guo and Wu [5] proved the existence, monotonicity, and uniqueness of
traveling wave solutions. Meanwhile, Guo and Liang [3] gave the characterization
of the minimal speed for certain ranges of h, k, r, d. We note that Guo and Wu [6]
showed the recent results on the wave propagation of (1.2), and gave some open prob-
lems. The second open problem is the stability of traveling wave solutions for both
monostable and bistable cases. In this paper, we are devoted to proving the stability
of traveling wave solutions for the monostable case.

It should be mentioned that the stability of traveling wave solutions of reaction-
diffusion equations, nonlocal dispersal equations and lattice differential equations
with monostable nonlinearity has been extensively studied in the literature. We refer
the readers to [11,18-24] for reaction-diffusion equations, [7, 8,12, 32, 33] for nonlo-
cal dispersal equations, and [2,14-16,29-31] for lattice differential equations. To the
best of our knowledge, there were only a few papers studying the stability of travel-
ing wave solutions of reaction-diffusion systems and nonlocal dispersal systems, see
[9,13,26-28]. For the lattice differential system, there are still no results on the stability
of traveling wave solutions. More recently, we [25] studied the following continuum
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version of (1.1) (whered; = b; =1,i =1,2).

%(t,x) = D[u](t,x) + ru(t,x)[1-u(t,x) — kv(t,x)],

%(t,x) =Dv](t,x) + rv(t, x)[1-v(t,x) — hu(t,x)],

(1.3)

where t > 0,x € R, 1, 73, h, k are all positive constants, and

D[d](t,x) = p(t, x +1) = 24(t, x) + ¢(t,x —1).

By using the comparison principle and the weighted energy method, we proved the
stability of traveling wavefronts of (1.3). Motivated by [25], in this paper, we still take
the comparison principle and the weighted energy method to prove the stability of
traveling wavefronts of (1.2). We should point out that the key step is to establish
the I%-energy estimates for the solutions of the perturbed system. Although (1.2) and
(1.3) (choose r; = 1and r, = r in (1.3), and let the diffusion coefficient for v be d ) take
the same wave profile system, the technical details for obtaining a priori estimates
are different. We should remark that by this method, the obtained stability results
only hold for large wave speed. We leave the stability of traveling wavefronts with low
speeds, especially the critical speed, for future study.

We now briefly describe the organization of this paper. In Section 2, we will give
the notations, the existence of traveling wavefronts, some necessary assumptions, and
the main theorem. Section 3 is mainly devoted to the proof of the stability theorem.

2 Preliminaries and Main Result

In this section, we first recall some known results, then define a weight function, and
state our main result.

To study the stability of the traveling wavefront of (1.2), it is convenient to work on
(uj,v7), where vi = 1-v;. For the sake of convenience, we drop the star. Then (1.2)
can be represented as

du.
o % = (ttjor + 1 — 205) + uy(1— u; — k(1= v})),

. v

% =d(vin +vj1—2vj) +r(1-v;)(huj - vj),

with the initial data
(2.2) uj(O) = Ujo, Vj(O) :1—1/]'().

Let uj(t) = ¢(&), vj(t) = w(&), where & = j + ct. Then the wave profile system of
(2.1)is
0 L= (9(§+1) +9(§-1) - 20(8)) +9()(1-9(§) - k(1 -y(8))),

oy (§) =d(w(§+1) +y(§-1) - 2y(§)) +r(1-y() (ho(§) - y(£)),

with the boundary conditions

24)  (9(=00),y(-00)) = (0,0) and (¢(+o0),y(+00)) = (L1).

For the existence of a traveling wavefront of (2.1), we refer to Guo and Wu [4].
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Proposition 2.1 Assumethat0 <k <1< h,d >0, andr > 0. Then there exists c* > 0
such that for any ¢ > c¢*, (2.1) admits a traveling wavefront (¢(&),y(&)) connecting
(0,0) and (1,1), and satisfying ¢'(-) > 0 and y'(-) > 0 on R. For any ¢ < c*, there is
no such traveling wave.

Before stating our main result, let us make the following notation. Throughout the
paper, I2 denotes a weighted [?-space with a weighted function 0 < w(§) € C(R),
ie., 2 = {(: {6i}ier, GeR|Tiw(i+ct)(? < oo},and its norm is defined by

Il = (ZW(I'JrCt)(iZ)E, for { e I2.

In particular, when w = 1, we denote I2 by I°.
In order to obtain our stability result, we need the following assumption.

2
(H) 0<k<-—, h>2+£.
3 2r

Define two functions on A as follows:
My(A) =4-3k—(e* +1), My(A) =2d —4r+2rh—k —d(e* +1).
By assumption (H), we get
Mi(0) =2-3k>0, My(0) = —4r+2rh—k > 0.

Then by the continuity of M; (1) and M, (1) with respect to A, there exists 1o > 0
such that M;(1¢) > 0 and M,(1o) > 0.
Furthermore, define

Ni(&) = 49(£) - 3k + rhy(§) —rh - (e* +1),
N2 (&) = 2d — 4r+2rhg(&) —k + rhy(&) —rh—d(e* +1),

where (¢ (&), w(&)) is the traveling wavefront given in Proposition 2.1.
By (2.4), we have

Ehm N](E) = Ml(/lo) >0 and fhm Nz(f) = Mz(Ao) > 0.
—+00 —+0o0

Hence, there exists a number &, > 0 large enough such that

Nl(fo) = 4@(50) -3k + T’]’ll//(go) —rh - (6/\0 + 1) >0,
Ny (&) =2d — 4r +2rhe(&) — k + rhy(&) - rh—d(e* +1) > 0.

Define the weighted function as follows:

Ao (&-&0)
(2.5) w(&) = {f zi zz
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Theorem 2.2 (Stability) Assume that (H) holds. For any given traveling wave-
front (9(&(t,7)),w(&(t,§))) with the wave speed ¢ > max{c*,c}, where T =
max{cy, ¢ } /Ao, and

(2.6) a1 =3k+rh+ (et +e 1),
(2.7) o =4r+k+rh+d(e*+e M +1).

If the initial data satisfies (0,0) < (4j(0),v;(0)) < (1,1), j € Z, and the initial per-
turbations satisfy u;(0) — ¢(j) € C(I3) and v;(0) — y(j) € C(I}), then the non-
negative solution of the Cauchy problems (2.1) and (2.2) uniquely exists and satisfies
(0,0) < (uj(t),vj(t)) <(L1), forall je Z,t >0, and

ui(t) —p(j+ct) e C((0,+00);12), vi(t) —y(j+ct) e C((0,+00);12),
where w(&) is defined by (2.5). Moreover, (u;j(t),v;(t)) converges to the traveling
wavefront (@(j + ct), y(j + ct)) exponentially in time t, i.e.,

sup|uj(t) — ¢(j+ct)| < Ce ™,
JEZ

sup|vi(t) —y(j+ct) < Ce™#!
j€Z
for all t > 0, where C and p are some positive constants.

3 Stability of Traveling Wavefronts
3.1 Existence and Comparison of Solutions

In this subsection, we will establish the existence and comparison principle of so-
lutions for the initial value problems (2.1) and (2.2).
Let X = I2 x I2, where w(x) is given by (2.5). Let

X" ={w=(upv;)eX:u;>0,v;20,jeZ}.

It is easy to say that X* is a closed cone of X.

Let Ty(t) = e "' and T, = e #2!, where y; = 2+k and p, = 2d +r+rh. Itis obvious
that T;(¢) is a linear Cy semigroup on X, i = 1,2. In particular, it is strongly positive.
Let

fiw) =ujp +ujg + (- Duj - ui — kuj + kujvj,
Hw)=via+viag+ (2 —2d-r)vj+ rv]g + rhuj — rhujv;.

Then the system (2.1) with the initial value (2.2) has an equivalent form as follows:

uj (1) = Tl(t)u,-(o)+f0tn(t—s)ﬁ(w(s))ds,

b(0) = To(0i(0) + [ Ta(t-)fa(w(s)) ds.
That is, w(t) = T(t)wo + fot T(t-s)F(w(s))ds, where

(1) Ti(t) 0 i(0)
v0=(0): T0=(" i) w0 -(55)
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- (1)

We now state the definition of super-sub solutions of (2.1) with (2.2) as follows.

and

Definition 3.1 A continuous function w = (u;j,v;):[1,b) - X, T < b, is called a
supersolution (subsolution) of (2.1) on [7, b) if

ui(t) 2 Ti(t = s)uj(s) + fst Ti(t—7r) fi(w(r)) dr, respectively (<),

t
vi(t) 2 To(t-s)vj(s) + [ T,(t—r)fo(w(r))dr, respectively (<),
foranyr<s<t<b.

By the property of the semigroups Ti(¢) and T>(t), standard super-sub solutions
technique, and the theory of abstract functional differential equations [17, Corol-
lary 5], we obtain the boundedness and the comparison principle for the Cauchy
problems (2.1) and (2.2), see also [1,10].

Lemma 3.2 (Boundedness) Assume that (H) holds and that the initial data
(u4j(0),v;(0))

satisfies (0,0) < (;(0),v;(0)) < (1,1) for j € Z. Then the solution (u;(t),v;(t)) of
the Cauchy problems (2.1) and (2.2) exists and satisfies (0,0) < (u;(t),v;(t)) < (1,1),
forte (0,+00),j€Z.
Lemma 3.3 (Comparison principle) Assume that (H) holds. Let (uJT(t),vj‘(t))
and (u;f(t),v;f(t)) be the solution of (2.1) with the initial data (u; (0),v;(0)) and
(47(0),v;(0)), respectively. If

(0,0) < (u;(0),v;(0)) < (uj(0),v](0)) <(1,1) jeZ,
then (0,0) < (u]’(t),v;(t)) < (u;(t),v;r(t)) <(1,1) fort € (0,+00), j € Z.

3.2 Proof of Theorem 2.2

In this subsection, we are devoted to the proof of the stability result. Our proof relies
on the weighted energy method combined with the comparison principle.
Let the initial data (uj(O), vj(O)) be such that (0,0) < (#;(0),v;(0)) < (1,1) for
je€Z,and for j e Zlet
uj (0) = min{u;(0),9(j)},  uj(0) =max{u;(0), 9(j)},
vi (0) =min{v;(0),y(j)},  vj(0)=max{v;(0),y(j)}.

This implies that
i 0<u;(0)<u;(0) <u;(0) <1, 0<u;(0)<o(j)<uj(0)<1,
G.D 0<v;(0) <v;(0) <vi(0) <1, 0<v;(0) <y(j)<vi(0) <1
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Define uf (t),u; (t),v;(t),v; (t) as the corresponding solutions of (2.1) with the ini-
tial data u7 (0), u;(0), v} (0), and v; (0), respectively. Then by the comparison prin-

ciple in Lemma 3.3, it follows that
2) 0<u;(t) <uj(t)<uj(t)<l, 0<u;(t) <o(j+ct)<uj(t)<l,
' 0<vi(t)<wi(t)<vi(t) <1, 0<vi(t)<y(j+et)<vi(t)<L,

where t € (0, +00), j€Z.
Let

Ui(t) =u;(t) —p(j+ct), Ujp(0)=u;(0)-o(j),
and

Vi(t) =vi () —y(j+ct), Vio(0) =vi(0) - y(j),
where t € (0, +00), j € Z. Then by (2.1) and (2.3), ( Uj(t), V](t)) satisfies

dUdjt(t) = [Uja(t) + Uja(t) = 2U5(1)]

L U0 k- 20(E(8 1)) + KV} (1) + Ky(E(1, )]
- U0 + ko(E(1 ) V(1)

TR 4Va(0) 4 Vioa(e) - 290
VIOLRE ) - 7 rhUj () - rhe(&(t, )]
L PVE(E) + rh(L- W(E(E ) U 1)

with the initial data U;(0) = Uj(0), V;(0) = Vjo(0), j € Z. It is easy to see from (3.1)
and (3.2) that

(0,0) < (U;(£), V(1) < (L1) and  (0,0) < (Uso(0), Vjo(0)) < (L 1).
Define
(3.4) B, (1]) = A, (6 )) =24 By, (1)) = AL (¢ ) - 2u,

where

(3.3)

e WL(E( )

A (04) =22 5T~k 20088 1) ~ KV (0~ k(8 1)

~kg(&(t ) - rh(1- y(E(t, )
L wE-D) | w(En )
(2 ey ey )
VI et 1)) 4+ U (1) + rhg(E(t )

Aiv(t,j):z(zlzl—E W) Y
~ k(6 ) — 2rVi() — rh(1 - y(E(t 1))
o wE(bi-) | w(E(h)+ D)
W2 =y e )

It is easy to see that £(¢, j+1) = &(¢,j) + land &(¢,j - 1) = &(¢,j) - 1.
Next we will establish some key inequalities.
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Lemma 3.4  Assume that (H) holds. For any ¢ > max{c*, ¢}, there exist some positive
constants C; such that AL, (t,j) > C;,i=1,2, forallt >0 and j € Z.

Proof Since ¢ > max{c*,c}, we get cAg > ¢; and cAy > ¢, where ¢; and ¢, can be
seen in (2.6) and (2.7). Clearly, the following hold.

cho-3k—rh—(e+e™+1)>0 and cdo—4r—k—rh—d(e+e? +1)>0.

We first show that A’ (¢, j) > C; for some positive constant C;.

Casel: &(t,j) < & -1 Itisclearthat &(¢, j) < &, &(t, j+1) < &g and E(¢, j-1) < &,.
Hence,

w(&(t, j)) = e P EBN=5)
w(é(t,j-1)) = e Mo (E(61)-1-4)
w(E(t, j+1)) = e EBDH-8)

Then one has

Ay (1)) 4% -2+ 2k + 49 (§(1,1)) - 2kV(1) - Zky (1, )
~kp(&(t, ) - rh(1-y(&(t, )
o, wE(tj-1)) W(E(t,j+1)))
(== e
>chg-3k—rh—(eM+e™)=clog-3k—rh—(e"+e M +1)+1
> 0.
Case2: & —-1<&(t,j) < &. In this case, &(t,j—1) < & and &(¢, j +1) 2 &. Then
w(&(t,j)) = e MGEN=8) yw(E(t, j-1)) = e CEN1=5) and w(&(t, j+1)) = L.
Hence, we get

wi(&(t,j
) =242k 49(E(1.7) - KV, (1) - W (E(1 )
—kp(&(t, j)) = rh(1-y(&( j)))
~ w(§(t,j-1)) W(f(txjﬂ)))
(“ Wl ) W)
> cdo =3k —rh — (&M + M CEN=0)Y > () — 3k —rh — (e™ +1)
=cAog-3k-rh- (e)Lo +e o +1)+ e Mo

> 0.

A, (hj)=4-c
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Case3: & < &(t,j) < & + 1. In this case, £(t,j— 1) < &y and &(t, j+1) > &,. Then
w(&(t,j—1)) = e M CENT=%0) and w(&(t, j)) = w(&(t, j+1)) = 1. Thus, we obtain
tﬁ;ﬁjﬁ-a+zk+4¢fuJ»—akW(o—zhmfaJ»

~kop(§(t, ) - rh(1-y(&(t )))

|, w(&tji-1) W(f(t,j+1)))

(=5 i

> 49 (&) = 3k + rhy (&) — rh — (e PGB0 L p)
> 4¢(&) - 3k + rhy(&) —rh - (e’ +1)
=Ni(&) > 0.

Case4: &(t,j) > & +1. Inthis case, £(¢, j) > &, (¢, j+1) > &y, and &(t, j—1) > &,.
Then w(&(t, 7)) =w(&(t,j-1)) =w(&(t,j+1)) = 1. Hence, we have

tjifg?—z+zk+4¢fuJ»—ka<0—zhw50J»
—kop(&(t, 1)) - rh(1-y(&(t )))
_P+wﬁu14»+w@ujﬂn)
w(&(t, ) w(&(t, j))
>49(&) -3k +rhy(&) —rh-2
= NI(EO) + (6110 +1) -2

>et —1>0.

Ay (tj)=4-c

At j)=4-c

We can obtain Al (t, j) > C; > 0 by choosing a suitable C; small enough.
Next we prove A2 (t, j) > C, for some positive constant C,.

Casel: &(t,j) < & -1 Itisclearthat &(¢, j) < &y, &(t, j+1) < &g and E(¢, j-1) < &,.
Hence,

W(E(L ])) = e EED8) | y((r, - 1)) = e EBD-E),
w(E(t, j+1)) = e BN H-E)

Then one has
’:j ((j ((Z’j])))) —4ry(&(1 j)) + 2r + 20hU; (1) + 2rho(&(t, /)
—kp(&(t,j)) - 2rV;(t) = rh(1-y(&(t. )))
B w(é(t,j-1)) W(f(f’jﬂ)))
e T T
>2d +cho—4r—k—rh—d(e +e™M)
=chg—dr—k-rh—-d(eM+e™+1)+d+2d
>3d > 0.

A (t,j)=4d-c
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Case2: & —1<&(t,j) < &. Inthis case, £(t,j—1) < & and &(¢, j+ 1) > &. Then
w(E(t, j)) = e MoCEEN=8) yy(E(t,j-1)) = ePEEDT=8) and w(E(t,j+1)) = L.
Hence, we get

! f t, .
a2~ Ary(E(6)) 212U (1) » ek E(1.7)
- kp(&(t, ) = 2rV;(t) - rh(1-y(&(t,))))
B w(é(tj-1)) w((tj+1))
(2 )
>2d + chg — 4r — k- rh — d(e" + M C(L)=%0))
Zc)to—4r—k—rh—d(e)‘°+1+e’)‘°)+de7“+2d
>de™ +2d
> 0.

Case3: & < &(t,j) < & +1. Inthis case, &(t,j— 1) < & and &(¢, j +1) > &. Then
w(&(t, j—1)) = e M BD1=8) and w(E(t, j)) = w(&(t, j +1)) = 1. Thus, we obtain
wi(§(t, 7))
w(&(t 7))
~ko(&(1.)) = 2rV;(1) = rh(1- y(&(. )
w(&(t,j-1)) w((tj+1))
(e )
>2d - 4r +2rhg(&) — k — rh + rhy (&) — d(e 0 (BD1780) 1 q)
>2d — 4r + 2rho(&) — k —rh + rhy(&) — d(e™ +1)
=N2(&o) > 0.
Case4: &(t,j) > & +1. Inthis case, £(¢, j) > &, &(t, j+1) > &y, and &(t, j—1) > &,.
Then w( &(t,7)) =w(&(t,j—1)) =w(&(t,j+1)) = L. Hence, we have

_ C”:j((;((:,’j])))) —dry(&(t, j)) + 2 + 2rhU; + 2rho(&(1, )
—ko(&(t, j)) = 2rV;(t) = rh(1-y(&(t, j)))
—d(2+ w(é(t,j-1)) N W(f(t>j+1)))
w(é(t, 7)) w(é(t, 7))
>—4r+2rho(&) —k—rh +rhy(&)

=Ny (&) +d(eM +1)-2d
>d(er-1)>0.

A% (t,j)=4d-c

A2 (t,j) =4d-c —4ry(&(t, j)) + 2r + 2rhU; + 2rho(&(t, j))

A% (t,]) =4d

We can obtain A% (t, j) > C, > 0 by choosing a suitable C, small enough. This com-
pletes the proof. ]
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Lemma 3.5  Assume that (H) holds. For any ¢ > max{c*, ¢}, there exist some positive
constants C; such that B, ,(t,j) > Ci, i = 1,2, forallt > 0, j € Z, and 0 < p <

min;—;2{C;}
—

Proof The proof can be easily obtained by Lemma 3.4, so we omit it here. ]

Next we will give the energy estimates.

Lemma 3.6  Assume that (H) holds and 0 < k <1 < h. For any ¢ > max{c*,¢}, it
holds

t
65) NGO+ 1O+ [ e U1 1)) ds

< Ce M (U (0)7; + 1V0(0)3z)
for some positive constant C.

Proof Multiplying (3.3) by e**'w(&(t,j))U;(t) and e**'w(&(t, j))V;(t), respec-
tively, where y > 0 is defined in Lemma 3.5, we obtain

(3.6)
(%ezww@(r,j))U,?(t)) (= w(E(t 1)U (1) (U (8) + Uja (1))

e wi(&(8 1)) . .
(2_ 2w " —1+k+29(&(t, j)) - kV;(t) - kw(f(t,J)))

x e w(E(t 1))U; (¢)
=—ew(&(t, )))U; (1) + ko(&(t ) e w(&(t, ) U;(t) Vj(t)
and

(3.7)
(%eww(«nj))vf(t)) = de w(E(t 1) Vi(6) (Viea(t) + Vi (1))

cwi(§(t. 1)) . ;
+ (2 - EWE(T@J)) —p—2ry(&(t, j)) +r+rhUj(t) + 7]190(5(’3])))

x e w(E(t, j)) VA(t)
= rez’”W(f(l‘,]'))VJS(t) +rh(l1- ‘//(g(h]')))ezww(f(t’j))Uf(t)Vf(t)'

By the Cauchy-Schwarz inequality 2ab < a* + b?, we obtain

20U (0U;(1) < Uj(8) + UF (1), 2Via(H)Vi(8) < Vig (1) + Vi(1).
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Summing about all j € R for (3.6) and (3.7), then integrating over [0, ¢], yields
3.8) e|Ui(n)lIE:

fz[ wa“s]))—u—1+k+z¢<5<s,j)>

2 w(é(s, /)
~kVi(s) - kl//(f(s,j))) ‘vaf((g(’sj,;)l))) - vaf((;(’i;)l))) B

x e w(&(s, j))Uf(s) ds

<1100, + & [ 5 (65 D) w(Els ) (UHE) + VE(s)) ds
J

and
39 evi(nli

t §(s
+ fo Z[ d -3 ws((f(( ]])))) =2ry(&(s, j)) +r+rhU;(s)
j

e s D) w(Es D)
ho (e ) =45 ey

< (E(5, )V () ds
<V (Ol +2r [ 5 e w(E(s )Vi(s)VE(s) ds
J

t
v [ S (- (& s D) w(ES D) + V7 () ds
j
Adding the two inequalities (3.8) and (3.9), we have
(Ul + Vi)llE)
+ fo ;EZ”S(BL,W(S,J')U,?(S) + By, (5 )V (s)) w(&(s, j)) ds
<[ Ujo(0)[72 + [Vio(0)[ %2

where B, (¢, j) and Bi)w (t, j) are defined in (3.4). According to Lemma 3.5, we can
obtain (3.5), i.e.,

t
WO+ 1Ol + [ e (U@l + VOl ds
< Ce 2 ([Uo(0)[f; + Vo (0) ;)

for some positive constant C. This completes the proof. ]
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Proof of Theorem 2.2 By Sobolev’s embedding inequality, I* < [ and |-|;> <
I-[:2 due to w(&) >1defined by (2.5), one has

sup U; (0] < Cllu; ()l < U (0]l
JE

sup V(D) < Clv; (D)l < CIVi(0II7; -
JE

Then we obtain

supu; (t) = ¢(j + ct)| = sup|U;(t)| < Ce ",
JEZ JjeZ

sup [vi (t) —y(j+ct)| = sup|V;(t)] < Ce™H,
jeZ JEZ

where t > 0. Similarly, we can also have

sup |uj (t) = ¢(j+ ct)] = sup|U;(1)| < Ce™,
JE€Z JEZ

sup|v; (t) —y(j+ct)| =sup|V;(t)[ < Ce .
JEZ JjeZ

Thus, in view of the squeezing technique, we have

This completes the proof of Theorem 2.2.

sup [u;(t) — @(j+ct)| < Ce ™, >0,
JEZ

sup|vi(t) —y(j+ct)| < Ce™, t>0.
jeZ
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